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Preliminary

Abstract

This paper investigates selection and combination of linear regressions with a possible structural

break. We investigate the form of the Mallows criterion for the structural break model, and propose

an approximate feasible penalty for the structural break model. We propose an averaging estimator,

which combines the estimates from the no-break model and the break model. This estimator

is simple to compute, as the weights are a simple function of the ratio of the penalty to the

Andrews SupF test statistic. We show that this estimator has lower squared error than conventional

unrestricted and pretest estimators.
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1 Introduction

Structural change is an important issue in time series econometrics. Applied economists rou-

tinely test their models for the presence of structural change, typically using the Andrews (1993)

and Andrews-Ploberber (1994) tests. Sometimes, when the evidence supports it, a structure break

model is estimated. The breakdate may be estimated formally (as recommend by Bai (1997)) or

may be selected informally, but the practical e�ects are rather similar. This means that applied

econometricians may be de facto using a pretest estimator: using a restricted estimator (linear

regression) when the structural change test is insigni�cant, and using the unrestricted estimator

(the structural change estimator) when the test is signi�cant.

This practice is unfortunate because it is well known that pretest estimators generically have

poor sampling properties. The squared error of pretest estimators is parameter-dependent, but can

be quite high relative to unrestricted estimation.

This paper advocates the use of the Mallows information criterion, which is better suited for

selection of estimators with low risk. Furthermore, advocate the use of an averaging estimators,

with the weight selected to minimize the Mallows criterion.

We derive the form of the Mallows penalty term for the structural change model, and �nd that

it is non-standard. We tabulate the penalty terms, and show how they can be used for the selection

of structural break models and for averaging estimators. The Mallows averaging estimator is simple

to compute, as the weights are a simple function of the ratio of the Mallows penalty to the Andrews

SupF test statistic.

We investigate the asymptotic performance of the estimators using three squared error criteria.

The new averaging estimator has excellent risk performance as measured by all criteria.
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2 Model and Estimation

The model of interest is a linear time-series regression with a possible structural break. The

observations are (yt;xt) for t = 1; :::; n; where yt is scalar and xt is an m vector which may contain

lagged values of yt: The model is

yt = x0t�11 (t < k) + x
0
t�21 (t � k) + et (1)

E (et j xt) = 0

E
�
e2t j xt

�
= �2

which has parameters (�1;�2; k; �
2): The true breakdate k0 is unknown but constrained to satisfy

the restriction k1 � k0 � k2. A potential parameter of interest is the di�erence in regression slopes
� = �2 � �1:

If there is no break in the slope coe�cients, then �1 = �2 and the model simpli�es to

yt = x
0
t� + et (2)

where � = �1 = �2 and the breakdate k drops out.

When a structural break is uncertain it is common in applications to employ a two-step proce-

dure where the �rst step is to test for the presence of a structural break and the second step is to

estimate the model selected by the test. Let us decribe this procedure in detail.

Estimation of (1) is easiest by concentration. First, �x k. Then equation (1) is estimated by

least-squares, which we write as

yt = x
0
t�̂1(k)1 (t < k) + x

0
t�̂2(k)1 (t � k) + êt(k): (3)

Let ê(k) denote the n � 1 residuals from (3). The concentrated sum of squared errors, given k,

is then ê(k)0ê(k): The least-squares estimate of k is then found by numerically minimizing this

criterion:

k̂ = argmin
k1�k�k2

ê(k)0ê(k):

The remaining estimates are then obtained using k̂ :

�̂1 = �̂1(k̂)

�̂2 = �̂2(k̂):

We write the �tted model as

yt = x
0
t�̂11(t < k̂) + x

0
t�̂21(t � k̂) + êt: (4)

Let ê = ê(k̂) denote the vector of �tted residuals.
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The no-break model (2) is also estimated by least-squares, which we write as

yt = x
0
t
~� + ~et: (5)

As an estimator of the parameters in (1), we set ~�1 = ~�2 = ~�: Note that the estimator of � = �2��1
is ~� = 0: Let ~e denote the n� 1 vector of residuals from (5).

The standard test of model (2) against model (1) is the SupF test of Andrews (1991). The test

statistic is the standard F test

Fn =
(~e0~e� ê0ê)

s2

where

s2 =
1

n� 2m ê
0ê (6)

is the bias-corrected estimator of the error variance from the full model (4). It is convenient to

observe that Fn = Fn(k̂) where

Fn(k) =
(~e0~e� ê(k)0ê(k))

s2

and that k̂ is the argmax of Fn(k):

Let � = k=n denote the breakdate fraction. Under the hypothesis �1 = �2;

Fn(n�)!d F (�) =
W�(�)0W�(�)

� (1� �)

whereW�(�) is an m-dimensional standard Brownian bridge, and therefore

Fn !d SupF = sup
�1����2

F (�) (7)

where �1 = k1=n and �2 = k2=n: A 5% asymptotic test rejects (2) in favor of (1) if Fn > q where

q is the 5% upper quantile of the distribution of SupF. Critical values are tabulated in Andrews

(2003), and depend on m and � = �2(1 � �1)=(1 � �2)�1: For example, if m = 1; �1 = :15 and

�2 = :85; then q = 8:68:

As we mentioned above, the conventional estimator of the model is to use the unrestricted

estimator (4) when Fn is signi�cant, otherwise to use the restricted estimator (5). The reasoning

behind this estimation strategy is fairly straightforward. A reasonable presumption is that unless

there is evidence to the contrary we should use a standard linear regression model. We should

use a breakdate estimator only if there is evidence of a structural break. As the most compelling

evidence is a statistical test, this leads to two-step estimation.

This type of estimator is known as a pre-test estimator. In classic settings, there is an old

and established literature documenting that pre-test estimators generically have poor sampling

properties. We expect this problem to carry over to structural break models. A standard alternative

to pre-testing is selection based on an information criterion. A recent generalization is model

averaging with the weights determined by an information criterion (Hansen, 2007). However, an
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appropriate information criterion for the structural break model has not yet been developed.

3 Mallows Criterion

In this section we develop Mallows criterion appropriate for models (1) and (2). The Mallows

criterion is a penalized sum of squared residuals designed to be approximately unbiased for the

in-sample �t. The general approach is as follows. Write the model in vector notation as y = �+ e

where � is the regression function. Let �̂ = Py be an estimator of � with residual vector ê = y��̂:
A measure of in-sample �t is (�� �̂)0 (�� �̂) and the goal is to estimate this quantity by the sum
of squared errors ê0ê plus a penalty. By expanding the square

ê0ê = (e+ �� �̂)0 (e+ �� �̂)

= (�� �̂)0 (�� �̂) + e0e+ 2e0 (�� �̂)

= (�� �̂)0 (�� �̂) + e0e+ 2e0 (I�P)�� 2e0Pe:

Thus the sum of squared residuals ê0ê equals the in-sample �t (�� �̂)0 (�� �̂) plus three terms.
The �rst term e0e is independent of the estimation method and therefore does not matter. The

second term 2e0 (I�P)� has an approximate mean of zero and is therefore also ignored. The �nal
term 2e0Pe has a non-zero mean which is the focus of attention. The general form of the Mallows

criterion adjusts the sum of squared errors for the mean of this term:

C = ê0ê+ 2E
�
e0Pe

�
:

In the case of the restricted least-squares estimator (5) for model (2), P = X (X0X)�1X0 where

X is the regressor matrix. Under standard conditions e0Pe!d �
2�2m so E (e

0Pe)! �2m: It follows

that the Mallows criterion for this model takes the classic form

~C = ~e0~e+ 2s2m (8)

where s2 is (6).

If the breakdate k were known then a similar argument can be applied to the estimates (3) and

we would obtain the Mallows criterion

Ĉ(k) = ê(k)0ê(k) + 4�̂2m:

However the case with unknown breakdate is non-standard. For �xed k; we can write �̂(k) = P(k)y

where P(k) is the projection matrix onto the space of regressors xt1 (t < k) and xt1 (t � k) : With
estimated k̂ we have �̂ = �̂(k̂) = P(k̂)y and thus the desired penalty is E

�
e0P(k̂)e

�
.
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To obtain an asymptotic approximation to E
�
e0P(k̂)e

�
; we adopt the canonical framework

� = �2 � �1 = n�1=2�c (9)

and assume �0 = k0=n is constant as n!1: The local nesting (9) is the setting in which asymptotic
comparisons of model (1) and (2) are interesting. Let M = E (xtx

0
t) : Andrews (1993, Theorem 4)

shows that when (9) holds, then

Fn(n�)!d F (� j �; �0) =
�
W�(�) +M1=2c ((�0 ^ �)� �0�)

�0 �
W�(�) +M1=2c ((�0 ^ �)� �0�)

�
� (1� �)

(10)

which is a function only of the scalar parameters �0 and � = c
0Mc. The parameter � indexes the

magnitude of the structural change.

From (10) it follows that

k̂

n
!d �� = argmax

�1����2
F (� j �; �0) : (11)

This is the asymptotic distribution of the breakdate estimate under the local break assumption

(9). (11) shows that the breakdate fraction is inconsistent for �0. However, as � gets large, the

distribution �� concentrates about the breakdate �0:

We now can deduce our main result.

Theorem 1 If (9) holds then as n!1

E
�
e0P(k̂)e

�
! m+ p (m; �; �0; �) : (12)

where p (m; �; �0; �) = E (�
�) : It follows that the correct penalty for the Mallows criterion is twice

m+ p (m; �; �0; �) : This function has the limiting values

p (m; 0; �0; �) = E (SupF)

lim
�!1

p (m; �; �0; �) = m

where SupF is the distribution in (7).

The theorem shows that correct form of the penalty depends on the unknown values � and �0

and is therefore infeasible. As a practical solution, we recommend approximating p (m; �; �0; �) by

an average of the limiting cases � = 0 and � !1 which does not depend on unknowns. This is

p� (m;�) =
1

2
(m+ E (SupF)) :

Using this value to approximate p (m; �; �0; �) ; we obtain the practical Mallows criterion for the

structural change model.
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Proposition 1 The correct Mallows criterion for the structural change model is

Ĉ = ê0ê+ 2s2 (m+ p (m; �; �0; �))

which is infeasible. A practical approximate Mallows criterion is

Ĉ� = ê0ê+ 2s2 (m+ p� (m;�)) : (13)

The penalty coe�cients p� (m;�) are displayed in Table 1 as a function of �1:

4 Selection and Combination

Model selection based on the Mallows Criterion (13) picks the structural change model (4) if

Ĉ� < ~C; and picks the restricted model (5) if ~C < Ĉ�: Equivalently, it picks (4) if Fn > 2p� (m;�) :

This is similar to the pre-test estimator, but replaces the critical value from Andrews' table with

the value 2m�: Since the latter value is smaller (4.98 versus 8.68 for the case m = 1 and �1 = :15),

selection based on Mallows criterion tends to pick the structural change model more frequently.

In a recent paper, Hansen (2007) has argued for model combination based on Mallows weights,

rather than selection. Model combination assigns a weight of w to model (1) and a weight of 1�w
to model (2). The Mallows criterion for the weighted average is

C (w) = (êw + ~e (1� w))0 (êw + ~e (1� w)) + 2s2 (m+ p� (m;�)w) :

The Mallows weight is the value in [0; 1] which minimizes C(w): The solution is

ŵ =

8<: 0 if Fn < p
� (m;�)

1� p
� (m;�)

Fn
if Fn � p� (m;�)

(14)

Viewed as a function of the test statistic Fn; the weight ŵ as a smoothed version of the selection

criterion.

Given the weight ŵ; the estimates of the model parameters are obtained as weighted averages:

�̂1(w) = ŵ�̂1 + (1� w) ~�

�̂2(w) = ŵ�̂2 + (1� w) ~�

5 Numerical Comparison

We now illustrate the e�ciency gains achievable by Mallows averaging through a simple nu-

merical investigation. We take model (1) with m = 1; normalize Ex2t = 1 and �2 = 1; and set

�2��1 = � = n�1=2�:We make large sample (asymptotic) comparisons, so the environment is fully
determined by the parameters �0 and �:
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We compare four estimation methods: (1) unrestricted least-squares; (2) Pre-Test estimation

(based on an asymptotic 5% test); (3) Selection using the Mallows criterion (13); and (4) Averaging

using the Mallows weights (MMA) (14).

The methods are compared using three criterion:

Fit = E

nX
t=1

(�t � �̂t)2

MSE(�̂) = nE
�
�̂ � �

�2
MSE(�̂2) = nE

�
�̂2 � �2

�2
Fit is an overall measure of performance. MSE(�̂) is useful when the goal is to measure the

degree of structural change. MSE(�̂2) equals out{of-sample mean squared forecast error.

In additional to the four feasible estimation procedures, we also include the optimal weighted

average estimator. The optimal weights depend on the parameters �0 and � and are therefore

infeasible.

Figure 1 displays the calculations based on Fit. There are three panels displaying results for

�0 = :15; �0 = :30 and �0 = :45: The parameter � is varied along the x-axis, Fit is displayed in the

y-axis. Five lines are plotted. The long dashes are for the unrestricted least-squares estimator. The

short dashes are for the PreTest estimator. The closely spaced dots are for the Selection estimator.

The solid line is for the MMA estimator, and the remaining dotted line is the the optimal weighted

average.

To facilitate comparisons, the �nal panel displays the Maximal Regret of the four estimators as

a function of �0, maximized over �: The Regret is the di�erence in Fit with the optimal estimator,

and the Maximal Regret is the largest value of the Regret across all values of �:We plot the Maximal

Regret as a function of �0 to show how this criterion varies with the location of structural change.

Figure 2 displays similar calculations for MSE(�̂): Figures 3 and 4 display the results for

MSE(�̂2). This criterion is more sensitive to �0; so we display results for �0 = :15, .30, .45,

.55, .65, .75 and .85, with the Maximal Regret displayed in the �nal panel of Figure 4.

How do the estimators compare? Figure 1 displays the comparisons based on the Fit criterion.

First, compare the risk of the unrestricted and pretest estimators. We see that the pretest estimator

achieves much lower risk for small values of �; but at the cost of much higher risk for moderate

values of �: The result is that the pretest estimator has the highest maximum risk. Second, compare

the risk of these estimators with that of the MMA estimator. We see that the MMA estimator

uniformly dominates the unrestricted estimator, and has much lower risk than the pretest estimator

for almost all parameter values. The MMA estimator has considerably lower Regret than the other

estimators.

Now take Figure 2, which displays the results for MSE(�̂): We can see that the MSE of both

the unrestricted least-squares estimator and the pre-test estimator are quite sensitive to the true
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value of �: For the unrestricted estimator, the MSE is monotonically decreasing with �; while the

MSE of the pretest estimator is hump-shaped, with the highest MSE for moderate values of �: For

both estimators, however, the maximum MSE (across �) is quite high. The MSE of the Mallows

selection estimator is intermediate between these two estimators. The MSE of the MMA estimator

is the least sensitive to the value of � (the plot is relatively at as a function of �) and most closely

tracks the MSE of the optimal weighted average. As a result, the Maximum Regret of the MMA

estimator is considerably lower than the other feasible estimators.

Similar lessons emerge from Figures 3 and 4, which display the results for MSE(�̂2). The

unrestricted estimator does quite well when �0 is large but does poorly when �0 is small. In

constrast the pretest estimator does well when �0 is small but does porrly when �0 is large. The

MSE of the MMA estimator is less sensitive to the values of �0 and �; and as a result has low

Regret.

6 Conclusion

Common empirical practice is to test time-series regressions for the presence of a structural

break, and if a break is detected then account for this by allowing for structural change in the

parameter estimates. This practice corresponds to a pre-test estimator with poor sampling prop-

erties. An estimator with better risk properties can be constructed as the weighted average of

the no-break and break estimates, where the weight is selected to minimize a modi�ed Mallows

criterion and is a simple function of the Andrews SupF test statistic and a penalty term.
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Table 1: Penalty Coe�cients p� (m;�)

�1 = 1� �2
m .01 .05 .10 .15 .20 .25

1 3.28 2.9 2.67 2.49 2.33 2.18

2 5.02 4.56 4.27 4.05 3.85 3.66

3 6.56 3.06 5.73 5.47 5.24 5.01

4 8.00 7.45 7.08 6.80 6.55 6.30

5 9.37 8.78 8.40 8.09 7.81 7.54

6 10.7 10.1 9.69 9.37 9.07 8.77

7 12.0 11.4 10.9 10.6 10.3 9.98

8 13.3 12.6 12.2 11.8 11.5 11.2

9 14.6 13.9 13.4 13.0 12.7 12.3

10 15.8 15.1 14.6 14.2 13.9 13.5

11 17.1 16.3 15.8 15.4 15.0 14.7

12 18.3 17.5 17.0 16.6 16.2 15.8

13 19.6 18.8 18.2 17.8 17.4 17.0

14 20.8 19.9 19.4 18.9 18.5 18.1

15 21.9 21.1 20.5 20.0 19.6 19.2

16 23.2 22.3 21.7 21.2 20.8 20.4

17 24.3 23.5 22.9 22.4 21.9 21.5

18 25.5 24.6 24.0 23.5 23.0 22.6

19 26..7 25.8 25.2 24.6 24.2 23.7

20 27.9 26.9 26.3 25.8 25.3 24.8

Note: � = (1� �1)2 =�21
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