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Abstract

In a recent paper, Dolado, Gonzalo and Mayoral (2002) introduce a fractional
Dickey-Fuller (FD-F) t-statistic for testing a unit root against the alternative of a mean
reverting fractional unit root process. This t-statistic is based on the assumption that
the errors are unconditionally homoskedastic. However, Busetti and Taylor (2003), Mc-
Connell and Perez-Quiros (2000), and van Dijk et al. (2002) have found compelling
evidence that such an assumption is unlikely to hold in many macroeconomic and �-
nancial time series, especially those obtained at a longer time span. In this paper,
we investigate the �nite-sample properties of the FD-F statistic when the errors are
unconditionally heteroskedastic. We �nd that, depending on the form of heteroskedas-
ticity, the FD-F statistic su¤ers from substantial size distortions. In order to correct
for such distortions, we propose the use of White standard errors (White (1980)) when
computing the FD-F statistic. This yields a test that is robust to heteroskedasticity of
unknown form. We demonstrate that the FD-F statistic that employs White standard
error has a standard normal limiting distribution under the unit root null hypothesis as
in the FD-F statistic with homoskedastic errors. Monte Carlo results suggest that: (i)
White�s correction is e¤ective in reducing the size distortions; and (ii) the power loss of
using White standard error in the case of homoskedasticity is very small. These results
suggest that it is prudent to use the White robust standard errors regardless of whether
the errors are heteroskedastic or not.
Keywords: Fractional unit root tests, heteroskedasticity, structural breaks
J.E.L. Classi�cation: C30, C32

1 Introduction

Several articles have provided Monte Carlo evidence on the performance of the unit-root
tests, stationary tests and persistence change tests under unconditional heteroskedasticity.
The general �nding from these articles is that these tests su¤er from severe size distortions
when there is an abrupt change in the error variance. In standard unit root testing against
stationarity alternatives, Hamori and Tokihisa (1997) study the Dickey-Fuller (D-F) test,
Cavaliere and Taylor (2007) study theM test of Stock (1999) and Beare (2007) investigates
the Phillips-Perron test. In the stationarity testing framework, where the null hypothesis
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of stationarity is tested against a unit root alternative, Cavaliere (2004) examines the prop-
erties of the KPSS test, and Busetti and Taylor (2003) examines the properties of the test
statistics due to Busetti and Harvey (2001). In the persistence change testing framework,
where statistical procedures are developed to test the null hypothesis of a constant unit root
process against the alternative of a change in persistence either from a stationary process to
a unit root process or vice versa, Cavaliere and Taylor (2006) investigate the properties of
the ratio-based tests introduced by Kim (2000), Kim et al. (2002) and Busetti and Taylor
(2004).

However, to the best of our knowledge, no study has examined the e¤ects of uncondi-
tional heteroskedasticity on existing statistical procedures designed to test the null hypoth-
esis of a unit root process against the alternative of a mean reverting fractional process.
It is well known that although the D-F test is consistent against such an alternative, the
power of D-F test is generally quite low. To circumvent this problem, Dolado, Gonzalo and
Mayoral (2002, hereinafter DGM) recently introduced the Fractional Dickey-Fuller (FD-F)
test for a unit root that has high power against fractional alternatives. Let � = (1� L),
where L is the lag operator. The FD-F statistical procedure is based on the usual t-statistic
of � in the ordinary least squares (OLS) regression �yt = ��d1yt�1+et: The null hypothesis
that yt has a unit root is then H0 : � = 0 against H1 : � < 0: If � = 0; then �yt = et and
so yt has a unit root. Under the alternative that � < 0; it can shown that yt is fractionally
integrated of order d1: The regression cannot be made operational without a value of d1:
DGM demonstrate that if the value of d1 is obtained by using a

p
T -consistent estimator

of the true fractional di¤erencing parameter, the resulting t-statistic of � has a limiting
standard normal distribution under the unit root null hypothesis.

In DGM, the error term et is assumed to be independent and unconditionally ho-
moskedastic. In this paper, we investigate the robustness of this t-statistic in the presence of
unconditional heteroskedastic errors. Our Monte Carlo experiments show that, depending
on the form of heteroskedasticity, the FD-F statistic su¤ers from substantial size distortions.
In order to correct for such distortions, we propose to replace the usual OLS homoskedastic
standard errors by White�s heteroskedasticity robust standard errors when constructing the
t-statistic (White (1980)). We demonstrate that the FD-F statistic that employs White
standard errors still retains its standard normal limiting distribution. We obtain this result
by exploiting the fact that under the unit root null hypothesis the FD-F t-statistic, unlike
the standard unit root tests, possesses standard limit theory.

White�s results are established under the assumption that the regressors are exogenous.
Nicholls and Pagan (1983) and more recently Phillips and Xu (2006) show that White�s
results remain valid in a dynamic regression model, provided that the time series are covari-
ance stationary. Our results therefore illustrate the general applicability of White�s results
in unit root testing literature.

Robusti�ed versions of the unit root tests mentioned above have been suggested in the
time series literature. Kim, Leybourne and Newbold (2002) suggest pre-estimating the
variance break point together with the pre- and post-break variances. These estimates are
then employed in modi�ed variants of the Perron-type unit root tests (Perron (1989, 1990)).
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The critical values for these modi�ed tests are given in Perron (1989), and they depend on
the location of the break. Kim, Leybourne and Newbold (2002) assume the existence of a
single break in the error variance process. In a recent paper, Cavaliere and Taylor (2007),
based on the work of Cavaliere (2004), relax this assumption. Their procedure does not
require a parametric speci�cation of the error variance, but only requires the error variance
to be uniformly bounded and to display a countable number of jumps. They demonstrate
that heteroskedasticity induces a time-deformation in the limiting distribution of the unit
root statistics. Using a consistent non-parametric estimator of this time-deformation, the
resulting limiting distribution can then be simulated to obtain asymptotically valid critical
values. Thus the correct critical values to use depend on the precise nature of the het-
eroskedasticity. More recently, Beare (2007) suggests an alternative approach that does not
require case-by-case numerical tabulation of critical values. Beare�s approach is to transform
the data in such a way that the transformed data are approximately homoskedastic. The
Phillips-Perron unit root test is then applied to the homoskedastic transformed data. This
yields, under conditions more restrictive than those used by Cavaliere and Taylor (2007), a
unit root test which has a pivotal asymptotic null distribution.

Since the FD-F test involves standard limit theory, our solution to the size distortion
problem is very simple to implement in practice, is robust against unknown heteroskedas-
ticity, and does not require pre-estimation of some non-parametric functions of the het-
eroskedasticity. Unlike Cavaliere and Taylor (2007), our error variance is not required to
display countable number of jumps. We only assume that the error variance is uniformly
bounded away from zero and in�nity. We note here that the procedures suggested by Kim,
Leybourne and Newbold (2002) and Cavaliere and Taylor (2007) allow for the presence
of deterministic components in the data generating process, while our procedure assumes
that the series contains no deterministic components. Nevertheless, our procedure could be
extended in a straightforward manner to include deterministic regressors.

Throughout this paper, the symbols
p! and d! denote, respectively, convergence in

probability and in distribution. We write Xt = Op (1) to denote a stochastic sequence fXtg
that is uniformly bounded in probability for all t: We write Xt = op (1) to denote that Xt
converges in probability to zero. The indicator function 1(t�1) is equal to one if t � 1 or to
zero otherwise. The notation bxc denotes the largest integer below x: The notation � (x)
denotes the Euler gamma function de�ned for any real value of x except negative integers.
We use a _ b as shorthand for max (a; b).

The rest of this paper is organised as follows. Section 2 presents the model and assump-
tions. Section 3 describes the FD-F statistical procedure and analyses the properties of
this test under unconditional heteroskedasticity. The Monte Carlo experiments presented
in Section 3.2 serve to illustrate that the presence of unconditional heteroskedasticity in the
error term can cause invalid statistical inferences. Section 4 suggests a modi�ed version of
the FD-F t statistic that is robust to the presence of unconditional heteroskedasticity. It
also establishes the asymptotic theory of this modi�ed test. Monte Carlo evidence on the
small-sample properties of this modi�ed test are presented in Section 5. The �nal section
concludes. The proofs are collected in the Appendix.
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2 Model and Assumptions

Suppose the time series fytg is generated by the fractionally integrated model:

�d0yt = et (1)

et = �Tt"t1(t�1) (2)

where d0 2 [0; 1] : Since the fractional parameter d0 can take on any real value rather than
only an integer value, the fractional �lter �d0 in (1) can be expanded to obtain a truncated
autoregressive representation for fytg :

�d0yt =
t�1X
j=0

�j (d0) yt�j

where �j (d0) = � (j � d0) = (� (j + 1)� (�d0)). Starting at �0 (d0) = 1; �j (d0) can be
written recursively as �j (d0) = (�j�1 (d0) (j � d0 � 1)) =j for j � 1: In (2) ; �Tt and "t are
assumed to satisfy the following conditions.

Assumption V
�Tt is non-stochastic and satis�es for all t

0 < � < �Tt � �� <1

where � and �� are strictly positive constants.

Assumption E
"t is an i.i.d. process with E ("t) = 0; E

�
"2t
�
= 1 and suptE j"tj2� � B <1 for some � > 2:

Under Assumption E, the error term et in (1) has zero unconditional mean. Assumption
E normalises the variance of "t to unity so that (2) implies that E

�
e2t
�
= �2Tt; signifying

explicitly that the unconditional variance of the error term is not constant over time. The
functional form of the error variance �2Tt is treated as unknown, and thus, our framework
is non-parametric. By Liapunov�s inequality and Assumption E, it follows that for r � 4;
the error term et satis�es

sup
t
E jetjr = sup

t
E j�Tt"tjr = sup

t
�rT tE j"tj

r < ��rB
r
2� <1: (3)

Under Assumptions V and E, the series fytg in (1)-(2) is generated by a fractionally inte-
grated model with time-varying innovation variances.

Since �Tt depends on T; formally we should write et = eTt and thus yt = yTt; so that
the time series in (1)�(2) form a triangular array. However, this extra subscript T does not
play any role in the development of asymptotic theory, and is thus suppressed for notational
simplicity.
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Assumption V is slightly weaker than that of Cavaliere (2004) and Cavaliere and Taylor
(2007). We do not require the error variance �2t to be imbedded in a variance function, to
display a countable number of jumps, and to satisfy a Lipschitz condition. The indepen-
dence assumption imposed in Assumption E is stronger than necessary and is adopted for
simplicity. This assumption rules out the presence of conditional heteroskedasticity of the
type introduced by Engle (1982) and Bollerslev (1986).

3 The Fractional Dickey-Fuller Test

The FD-F test is a regression based statistical procedure. It involves OLS estimation of the
following regression equation:

�yt = ��
d1yt�1 + et: (4)

For a given value of d1 2 [0; 1), under the Type 2 de�nition of the fractionally integrated
model (see Robinson and Marinucci (2001)), the regressor can be computed as �d1yt�1 =Pt�2
j=0 �j (d1) yt�1�j : Notice that when d1 = 0; equation (4) is the standard D-F regression.

Like the D-F test, the FD-F test is the conventional t-statistic for testing the hypothesis
H0 : � = 0 against H1 : � < 0 in (4) :

Under the null, the process yt has a unit root because the regression in (4) becomes
�yt = et: Under the alternative that � < 0, the process yt is fractionally integrated of order
d1; because DGM show that the regression in (4) can be rewritten as

�d1yt = C (L) et

where C (L) =
�
�1�d1 � �L

��1
and they show that C (L) does not contain unit roots. If

we have some a priori knowledge as to the value of d1; then it can be seen immediately that
testing for the signi�cance of � in (4) is equivalent to testing the null hypothesis

H0 : d0 = 1

against the simple alternative
H1 : d0 = d1: (5)

Note that the standard D-F unit root testing procedure imposes a priori restriction on d1
by setting d1 = 0: This is theoretically justi�ed only when the process yt is taken to follow
either an I (1) process or an I (0) process. The FD-F test eliminates such a restriction by
generalising the D-F test to explicitly allow for the possibility that yt is a mean reverting
fractional integrated process I (d). If the true data generating process for fytg is indeed an
I (d0) process with 0 < d0 < 1, it is expected that the FD-F will yield better �nite sample
power properties than the D-F test. In a realistic case in which d1 is typically unspeci�ed in
practice, the simple alternative hypothesis in (5) can be replaced by a composite alternative

H1 : 0 � d0 < 1:
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Without the value of d1; the OLS regression in (4) is not feasible and in order to make
the FD-F test operational, DGM suggest replacing the unknown parameter d1 in (4) by ap
T -consistent estimate of d0 in (1) :
The OLS estimator of � for equation (4) is

�̂ =
T�1

PT
t=2�

d1yt�1�yt

T�1
PT
t=2 (�

d1yt�1)
2 : (6)

In DGM, the error term fetg is assumed to be i:i:d: with zero mean and unknown variance
�2: Under these assumptions, the standard error of �̂ (denoted as SE

�
�̂
�
) is given by

SE
�
�̂
�
=

�̂�PT
t=2 (�

d1yt�1)
2
�1=2

where �̂2 is the usual OLS estimator of the unknown error variance �2 :

�̂2 = T�1
TX
t=2

�
�yt � �̂�d1yt�1

�2
:

The t-ratio for testing � = 0 is therefore given by

t (d1) =
�̂

SE
�
�̂
� : (7)

3.1 Normality under the null hypothesis

Under the unit root null hypothesis, Theorem 1 of DGM establishes that the OLS estimate
�̂ is consistent, converges at the standard asymptotic rate of

p
T and is asymptotically

normal only if d1 lies in the interval 1=2 < d1 < 1: An interesting feature of this result is
that the t (d1)-ratio given in (7) has a standard normal limiting null distribution. This is in
contrast to the D-F unit root test which has a non standard asymptotic distribution. The
intuitive reasoning behind this result is quite simple. When the H0 : d0 = 1 is true, the
data generating process for fytg is

�yt = et

and hence the standardised and centred OLS estimator in (6) becomes

p
T �̂ =

T�1=2
PT
t=2 zt�1et

T�1
PT
t=2 z

2
t�1

(8)

where zt�1 = �d1yt�1: The sequence fzt�1g is fractionally integrated of order 1 � d1. To
see this, we pre-multiply both sides of (1) by �d1�1 to obtain

�d1yt�1 = �d1�1et�1

�1�d1 (zt�1) = et�1:
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Thus, fzt�1g � I (1� d1) as claimed.
If d1 is restricted to lie in the interval (1=2; 1), the process fztg is asymptotically sta-

tionary since 0 < 1 � d1 < 1=2: This indicates that the process fztg may possess standard
asymptotic properties. Although, under the Type 2 model of fractional integration, the
series fztg is non-stationary for any values of d1, Lemma 1 of DGM shows that

T�1
TX
t=1

�
z2t � (zst )

2
�

p! 0 (9)

where zst is the non-truncated fractionally integrated process of order 1� d1 corresponding
to zt and is expressed as an in�nite order moving average of the innovations:

zst = zt +

1X
j=t

�j (d1 � 1) et�j :

The result in equation (9) states that the di¤erence between z2t and (z
s
t )
2 ; when suitably

centred, disappears asymptotically. This is the key ingredient in deriving the formula for
the asymptotic variance of �̂: Using (9) together with the fact that zst is a stationary ergodic
process (see Sowell (1990)), the probability limit of the denominator in (8) can be obtained
simply by appealing to the WLLN for stationary and ergodic process:

T�1
TX
t=2

z2t�1
p! E

�
zst�1

�2
: (10)

Note that E (zst )
2 is the variance function of zst ; which can be obtained from Hosking (1981)

by replacing the parameter d in equation (3:2) of Hosking with 1� d1:

E (zst )
2 =

�2� (1� 2 (1� d1))
�2 (1� (1� d1))

=
�2� (2d1 � 1)
�2 (d1)

: (11)

As for the numerator in (8), Lemma 2 of DGM shows that it has the normal asymptotic
distribution; that is

T�1=2
TX
t=2

zt�1et
d! N

�
0; E

�
zst�1et

�2�
: (12)

Putting together Cramer�s Theorem with (10) and (12) yields the result given in DGM
Theorem 1; that is under the null hypothesis,

p
T �̂

d! N
�
0; AV ar

�
�̂
��

where AV ar
�
�̂
�
denotes the asymptotic variance of �̂ and is given by

AV ar
�
�̂
�
=
�
E
�
zst�1

�2��1
E
�
zst�1et

�2 �
E
�
zst�1

�2��1
: (13)
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Since the error term et is i.i.d., the formula for AV ar (�) can be re�ned further by applying
the LIE to E (zst et)

2 and noting that E
�
e2t j=t�1

�
= E

�
e2t
�
= �2. It therefore follows that

the asymptotic variance for �̂; under the null hypothesis, becomes

AV ar
�
�̂
�

=
�
E
�
zst�1

�2��1
E
h
E
��
zst�1

�2
e2t j=t�1

�i�
E
�
zst�1

�2��1
=

�
E
�
zst�1

�2��1
E
h�
zst�1

�2
E
�
e2t j=t�1

�i �
E
�
zst�1

�2��1
= �2

�
E
�
zst�1

�2��1
: (14)

Substituting for E
�
zst�1

�2 using equation (11) ; we obtain the required formula for AV ar ��̂�
as given in Lemma 2 of DGM:

AV ar
�
�̂
�
=

�2 (d1)

� (2d1 � 1)
:

In the presence of heteroskedasticity, the formula for the asymptotic variance given in
(14) is incorrect because the third equality in (14) is obtained by assuming homoskedasticity.
This will yield incorrect estimate of OLS standard errors. As a result, the FD-F t-statistic
computed using this homoskedastic OLS standard errors will give misleading statistical
inferences.

3.2 The e¤ects of unconditional heteroskedasticity

In order to investigate how heteroskedasticity can a¤ect the size properties of the FD-F test,
we conduct a simple Monte Carlo study. Under the null hypothesis that � = 0 in (4) ; the
data generating process is (1)� (2) with d0 = 1: The f"tg are standardised normal random
variables i:i:d:N (0; 1) and were generated using GAUSS normal random number generator
rndn. We concentrate on the case of a single abrupt structural change in the error variance:

�2t = 

2
11 (t � b�T c) + 
221 (t > b�T c) (15)

with � 2 (0; 1) gives the location of the break point. In this case, the error variance shifts
from 
21 to 


2
2 at time b�T c : Let � = 
2=
1 be the parameter that measures the magnitude

of the shift. Without loss of generality, we set 
21 = 1, then, � > 1 (� < 1) corresponds
to a positive (negative) shift. The further the value of � di¤ers from unity, the larger the
magnitude of the shift. For a positive shift, we consider � = 2; 5; 10 and for a negative shift,
we consider � = 0:1; 0:2; 0:5: The values of � are in steps of 0.1. The number of Monte
Carlo replications is 10,000. We calculate the empirical size of the t (d1)-statistic in (7)
with d1 = 0:9 for a sample size of T = 250: The critical value is obtained from the standard
normal distribution N (0; 1) which is �1:645 for 5% signi�cance level.

Figure 1 reports the real size against the nominal size at the 5% level of signi�cance. On
the horizontal axis nine break points are marked and the vertical axis gives the corresponding

8



0

5

10

15

20

25

30

35

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

break points

P
ro

ba
bi

lit
y 

of
 T

yp
e 

1
d = 2 d = 5 d = 10

0

5

10

15

20

25

30

35

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

break points

P
ro

ba
bi

lit
y 

of
 T

yp
e 

1

d = 0.5 d = 0.2 d = 0.1

Figure 1: Empirical Sizes at the 5 percent signi�cance level

percentage of rejections under the unit root null hypothesis. The left graph presents the
case of an upward shift and the right graph presents the case of a downward shift.

DGM have shown that the empirical size of the t (d1)-test, under homoskedasticity, are
reasonably close to the 5% nominal level. In the upward shift case (left graph), as � moves
from 0.1 to 0.9, rejection frequency increases from about 5% to about 30%. The opposite
is true for the case of a downward shift (right graph). Notice also that as the magnitude
of the shift increases, the rejection frequency increases. The degree of size distortion varies
with the direction, timing and magnitude of the break. Without knowledge of the timing
and magnitude of the break, the t-ratio given in (7) cannot be relied upon to give valid
inferences.

4 Testing for a unit root under unconditional heteroskedas-
ticity

It is important to note that in the heteroskedastic case we cannot claim that the correct

formula for AV ar
�
�̂
�
is given in (13) unless we re-establish the results stated in (9) ; (10)

and (12) under Assumption V. In order to correct for the size distortion shown in the
Monte Carlo study we follow White�s suggestion. The White�s heteroskedasticity robust
t-ratio (denoted as tW (d1)) for testing the signi�cance of � in (4) is given by

tW (d1) =
�̂

WSE
�
�̂
� (16)

where WSE
�
�̂
�
is the White standard error given by

WSE
�
�̂
�
=

vuuut PT
t=2 (�

d1yt�1)
2 be2t�PT

t=2 (�
d1yt�1)

2
�2 :

The advantage of using White standard errors is that applied researchers are not required
to specify, a priori, a model for the error variance process. This is especially useful since in
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many practical situations such model is unknown a priori. In the case of a single structural
break in the error variance, the Monte Carlo evidence presented in the previous section
reveals that the t-test is a¤ected by the location of the break in the sample. The use of
White standard errors to correct for heteroskedasticity is particularly useful since it does
not require any information regarding the timing of the break.

4.1 Asymptotic Distribution of the FD-F Test with a �xed d1

The following theorem is concerned with the asymptotic properties of the tW (d1)-ratio
de�ned in (16) for a �xed d1:

Theorem 1 Let the time series process fytgTt=1 be de�ned by (1)�(2) : Under Assumptions
E and V, the asymptotic properties of the tW (d1)-ratio with 1=2 < d1 < 1 for testing � = 0
in (4) are given by:

tW (d1)
d! N (0; 1)

under the null hypothesis that d0 = 1;

tW (d1)
p! �1

under the alternative hypothesis that 0 � d0 < 1:

The �rst part of Theorem 1 states that the tW (d1)-ratio de�ned in (16) is pivotal and has
a standard limiting null distribution. The second part states that the tW (d1)-ratio is able
to discriminate between the null hypothesis of a random walk process and the alternative
hypothesis of a fractional integrated process with probability one in large samples. Thus
for a given value of d0 2 [0; 1); the tW (d1)-ratio, computed using any value of d1 in the
interval 1=2 < d1 < 1; tends to negative in�nity and so the power of the tW (d1)-ratio tends
to unity as T ! 1: This means that the tW (d1)-ratio is a consistent test statistic even if
d1 is chosen di¤erently from d0.

Establishing Theorem 1 is more di¢ cult than in the homoskedastic case where the er-
godic stationary WLLN is a key ingredient. This is because unconditional heteroskedasticity
renders invalid the application of ergodic stationary WLLN for the various sample moments
appearing in �̂ and tW (d1). The proof of Theorem 1 is given in the Appendix.

4.2 Asymptotic Distribution of the FD-F Test with an Estimated d1

So far the value of d1 is speci�ed a priori under the simple alternative hypothesis. In the
absence of such a speci�cation, as is usually the case, Theorem 2 shows that any available
consistent estimator of d0 in (1) can be used to make the FD-F operational. Let d̂ be a
consistent estimator such that d̂� d0 = op (1) : Since FD-F regression requires the value of
d1 to be strictly less than one, we follow DGM�s suggession and de�ne a trimming rule for
d̂1:

d̂1 =

�
d̂ if d̂ < 1� c

1� c if d̂ � 1� c
(17)
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where c is a �xed constant such that 0 < c < 1=2. The least squares regression in (4) can
now be made operational by replacing the unspeci�ed d1 by d̂1 :

�yt = ��
bd1yt�1 + et: (18)

The heteroskedasticity robust t-statistic, computed in the same way as before except using

the regression (18), is now denoted as tW
�
d̂1

�
: The following Theorem establishes that the

tW

�
d̂1

�
-ratio has a standard normal limiting null distribution under heteroskedastic errors.

The proof of the Theorem is given in the Appendix.
Unlike DGM, we do not require the estimator d̂ to converge in probability to d0 at ap
T -rate. Instead of relying only on parametric estimation, which has a standard

p
T -rate

of convergence, Theorem 2 opens up the possibility that semi-parametric estimation, which
converges slower than the

p
T -rate, can be used to make the FD-F test operational.

Theorem 2 Let d̂1 satisfy the trimming rule in (17) with d̂ � d0 = op (1) : Suppose As-
sumptions E and V hold. Under the null hypothesis that yt is generated by (1) � (2) with
d0 = 1, the asymptotic distribution of the tW

�
d̂1

�
-ratio of the OLS estimator of � in the

regression
�yt = ��

d̂1yt�1 + et

is given by

tW

�
d̂1

�
d! N (0; 1) :

We follow the DGM approach and consider the parametric GMD estimation method.
Harris and Kew (2007) examine the GMD estimation in the presence of unconditional
heteroskedasticity in a fractional integrated model. The GMD estimation procedure relies
only on the absence of autocorrelations and not of heteroskedasticity in the residuals and
hence this estimator can be potentially robust to the presence of heteroskedasticity. We
next describe the GMD estimator.

4.3 GMD estimation method

This section describes the GMD estimation procedure. To describe this estimator, we de�ne
the residuals et (d) for some d as

et (d) = �
dyt =

t�1X
j=0

�j (d) yt�j ; t = 1; :::; T: (19)

The Minimum Distance Estimation (MDE) of d0 is de�ned as

d̂ = arg min
d2[0;1]

kX
m=1

�̂2m (d)
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where �̂m (d) is the m�th sample autocorrelation of the residuals et (d) ; for m = 1; 2; :::; k:
The notation argmin denotes the value of d such that the argument of

Pk
m=1 �̂

2
m (d) is

minimised Given the residuals e1 (d) ; :::; eT (d), the �̂m (d) is a function of the parameter d
and it can be calculated as follows:

�̂m (d) =
T�1

PT
t=m+1 et (d) et�m (d)

T�1
PT
t=1 e

2
t (d)

:

Note that the residual in (19) can be re-written as

et (d) = �d�d0+d0yt

= �d�d0�d0yt

= �d�d0et

and the population counterpart of �̂m (d) is de�ned to be

�m (d) =
T�1

PT
t=m+1E (et (d) et�m (d))

T�1
PT
t=1E

�
e2t (d)

� : (20)

Despite the fact that et (d0) are unconditionally heteroskedastic, the population autocorre-
lations, �m (d) ; evaluated at the true parameter d0 can still be zero since

�m (d0) =
T�1

PT
t=m+1+pE (et (d0) et�m (d0))

T�1
PT
t=1+pE

�
e2t (d0)

� =
T�1

PT
t=m+1+pE (etet�m)

T�1
PT
t=1+pE

�
e2t
� = 0:

In order for the GMD method to be a reliable estimator under unconditional heteroskedas-
ticity, the population autocorrelation �m (d) should not equal zero if d 6= d0 and therefore
the residuals, et (d) ; are autocorrelated. To verify this, we write the numerator of �m (d) in
(20) as

E (et (d) et�m (d)) = E
�
�d�d0et�

d�d0et�m
�

= E

0@ t�1X
j=0

�j (d� d0) et�j
t�m�1X
i=0

�i (d� d0) et�m�i

1A
=

t�1X
j=0

t�1X
i=m

�j (d� d0)�i�m (d� d0)E (et�jet�i)

=

t�1X
i=m

�2i�m (d� d0)�2t�i

and so �m (d) is not equal zero when d 6= d0.
It is clear that the GMD estimator can be potentially robust to an unknown form of

unconditional heteroskedasticity. The assumption of constant unconditional variances over

12



time is unnecessarily restrictive for the consistency of the GMD estimator. Harris and
Kew (2007) show that the GMD estimator is consistent and converges at

p
T -rate under

Assumption V. This result implies that the GMD estimator turns out to be very useful in
implementing a feasible FD-F statistic under heteroskedasticity.

5 Monte Carlo Simulation Results

This section uses Monte Carlo (MC) experiments to examine the �nite sample performance
of the FD-F tests with White standard errors when the errors are unconditionally het-
eroskedastic. The simulated data set for fytg is generated according to (1) - (2) : The
pseudo random numbers for "t are generated using the rndn function in Gauss 7. For all
of the MC experiments, the number of replications is 10000 and the seed used for the rndn
function is 999. The sample sizes considered are T = 250; 500 and 1000. The larger values
of T are chosen since empirical studies of structural breaks in the error variance use data
collected over an extended period of time.

Apart from the single structural break model considered in Section 3.2, we consider two
additional models for the error variance process, �2t : These heteroskedasticity models are
based on that used by Cavaliere (2004), Cavaliere and Taylor (2007) and Phillips and Xu
(2006).

Double Variance Shifts. Two abrupt shifts in the error variance at �rst from 
21 to 

2
2

occurring at time b�1T c and then follow by another abrupt shift from 
22 to 

2
3 at time

b�2T c : The dynamics of �2t can be written as

�2t = 

2
11 (t � b�1T c) + 
221 (b�1T c < t � b�2T c) + 
231 (b�2T c < t � T )

where �1; �2 2 (0; 1) : A special case arises when �2 = 1 � �1 and 
23 = 
21: In this case,
the multiple variance shifts are symmetric and and hence the double variance shifts model
reduces to

�2t = 

2
11 (t � b�T c) + 
221 (b�T c < t � 1� b�T c) + 
211 (1� b�T c < t � T ) (21)

where � 2 (0; 1) :

Trending Variances. The variance of the innovations changes monotonically from 
21 at
time t = 0 to 
22 at time t = T: Note that, the variance may not necessarily trends linearly.
The dynamics of �2t can be written as

�2t = 

2
1 +

�

22 � 
21

�� t
T

�m
where m = 1; 2; :: <1: The variance changes continuously in a linear fashion when m = 1
and it changes in a non-linear way otherwise.
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For each of the variance models, a wide range of parameter settings are used to generate
the di¤erent patterns of variance dynamics. Following Section 3.2, we de�ne � = 
2=
1 and
normalise 
1 = 1.

As for the single structural break model in (15), we allow the shift to occur towards the
beginning, middle and end of the sample by setting � = 0:1; 0:5 and 0:9: Two values of �
were used: � = 5 (positive shift) and � = 0:2 (negative shift). We consider early positive
shift (� = 0:1 and � = 5), early negative shift (� = 0:1 and � = 0:2); positive shift occurring
mid-way through the sample (� = 0:5 and � = 5), negative shift occurring mid-way through
the sample (� = 0:5 and � = 0:2), late positive shift (� = 0:9 and � = 5); and late negative
shift (� = 0:9 and � = 0:2):

As for the double variance shifts model, we consider the special case where the double
breaks occur symmetrically. We let � = 0:05; 0:45 and � = 5; 0:2: Here, four di¤erent
types of multiple break points are generated: early positive break then followed by late
negative break (� = 0:05 and � = 5); early negative break then followed by late positive
break (� = 0:05 and � = 0:2); positive shift occurring near the middle of the sample then
immediately followed by a negative shift (� = 0:45 and � = 5) and a negative shift occurring
near the middle of the sample then immediately followed by a positive shift (� = 0:45 and
� = 0:2):

In the trending variances model, we allow the trending variance to increase continuously
in a linear and non-linear fashion. In the linear case where m = 1; we consider both upward
(� = 5) and downward (� = 0:2) trends. In the non-linear case (m = 2), we consider both
upward and downward trending variances.

5.1 Size Properties with known d1

Tables 1 to 3 report the percentage of rejections under the null hypothesis (empirical size)
when d0 = 1 in (1) for the t (d1)- and tW (d1)-tests with d1 = 0:6; 0:7; 0:8; 0:9; 0:95 at the
nominal 5% level. Since both tests have standard normal limiting distributions, the critical
value, at the 5% signi�cance level, is -1.645. All other things equal, the t (d1) and tW (d1)
tests display roughly the same rejection frequencies for all values of d1, although it is worth
nothing that size distortions are slightly smaller the closer d1 is to 1:

For comparison purposes, we include the actual sizes of the t (d1) test under homoskedas-
tic error and these are reported in the �rst row of Table 1. In terms of empirical size, the
tW (d1) test performs just as well as the t (d1) test in the absence of heteroskedasticity.

We will discuss �rst the performance of the t (d1) test in the presence of unconditional
heteroskedasticity. Tables 1 to 3 clearly show that the t (d1) tests are not robust to de-
partures from the homoskedasticity assumption. The degree of size distortions can vary,
depending on the variance structure. For example, in the case of a single abrupt shift (see
Table 1), substantial size distortion occurs when the abrupt shift is either an early negative
shift or a late positive shift, while the opposite is true when the abrupt shift is either an
early positive shift or a late negative shift. When the positive or negative shift occurs to-
wards the middle of the sample, the t (d1) tests overreject moderately with empirical sizes
of around 11%.
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As for the double variance shifts model (see Table 2), serious size distortions arise when
an early negative shift is followed by a late positive shift of the same magnitude as the
earlier shift (� = 0:05, � = 0:2); and when a positive shift occurring towards the middle of
the sample is followed immediately by a negative shift of the same magnitude (� = 0:45,
� = 5). In these cases, the proportion of rejections is about 25% when the nominal size
is 5%. However, the t (d1) tests appear to have approximately correct size when an early
positive shift is followed by a late negative shift (� = 0:05; � = 5), and when a negative
shift occurring towards the middle of the sample is followed immediately by a positive shift
(� = 0:45; � = 0:2).

When the error variance follows a polynomial trend (see Table 3), the t (d1) display
smaller size distortions than those in Tables 1 and 2. In this case, the t (d1) tests moderately
overreject the unit root null hypothesis with empirical sizes varying from 7 to 10 per cent.

Tables 1 �3 about here

The tW (d1) test which uses White standard errors is very e¤ective in reducing the
observed size distortions. Take for example the case where there is an early negative break
(i.e. � = 0:1 and � = 0:2). In this case, when d1 = 0:90 and T = 250; Table 1 shows
that the White correction can reduce the empirical size from 23.14% to 6.98%. This 6.98%
empirical size of the tW (d1) test is seen, as expected, to fall towards the 5% nominal size
as T grows. When the sample size is relatively large (T = 1000); empirical sizes of tW (d1)
tests are always reasonably close to the 5% nominal level in all of the heteroskedastic
models considered. Thus, Monte Carlo evidence reveals that White�s correction works well
in practice for a wide range of models of unconditional heteroskedasticity.

Tables 4 to 7 report the raw power of the tW (d1) test against the alternative of fraction-
ally integrated processes given in (1) with values of d0 chosen from [0:55; 0:95] in steps of
0:05. The tW (d1) test is computed under the assumption that d1 is known a priori by setting
d1 = d0: Under homoskedasticity (i.e. � = 1), Table 4 shows that the rejection frequencies of
the heteroskedastic standard errors are comparable to those of the homoskedastic standard
errors. This suggests there is no loss in power from using White�s correction when the errors
are homoskedastic. Table 4 therefore can be used as a benchmark to compare the �nite
sample power results of the tW (d1) under heteroskedasticity. From Tables 5 to 7, there are
cases where the power of the tW (d1) tests under heteroskedasticity are considerably lower
than those under homoskedasticity. In those cases, it turns out that the FD-F tests without
White standard errors su¤er from severe size distortions. To illustrate, take an example
of an early negative break (� = 0:1; � = 0:2). As noted before, the t (d1) tests tends to
overreject substantially. For this same variance model, Table 5 shows that the power of
the tW (d1) test is considerably less than that observed in Table 4, where the errors are
homoskedastic. In some cases where the t (d1) tests su¤er from severe size distortions, the
White correction loses power relative to the homoskedastic case. In all cases, as expected,
power increases as T increases, and as d0 moves away from 1.

Tables 4 �7 about here
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So far we have been treating the value of d1 as if it is pre-speci�ed. Now we use the GMD
estimation procedure described earlier to estimate d0. Using the trimming rule de�ned in
(17) ; the resulting estimate is then used to replace d1 with d̂1: Under homoskedasticity,
DGM show via Monte Carlo experiments that replacing the value of d1 with d̂1 has very
little impact on the size and power properties of the FD-F test without White�s correction.
We now check whether these results continue to hold under heteroskedasticity. Tables 9
to 11 present the size and power properties of the FD-F tests with and without White�s

correction. The t
�
d̂1

�
and tW

�
d̂1

�
tests are calculated in the same way as before, but

using the input d̂1 as de�ned in (17) : Following DGM, we set c = 0:02 and thus d̂1 � 0:98:
By comparing the results in Tables 8 - 11 with the corresponding results in Tables 1-7, the
rejection frequencies when d1 is replaced with d̂1 are broadly similar to those when d1 is
speci�ed a priori. Thus, the estimation of d1 using the GMD estimator under unconditional

heteroskedasticity will not a¤ect the performance of the tW
�
d̂1

�
tests.

Tables 9 �11 about here

6 Conclusion

We have shown that, via Monte Carlo simulations, the OLS t-statistics su¤er from substan-
tial size distortions when the errors are heteroskedastic. Thus, the FD-F t-statistics com-
puted using OLS standard errors derived under the assumption of homoskedasticity will give
misleading statistical inferences. We suggest FD-F t-statistic that uses White heteroskedas-
ticity robust standard errors to account for the presence of unconditional heteroskedasticity
of unknown form. We demonstrate that White�s version of the FD-F statistics has a stan-
dard limiting null distribution una¤ected by unconditional heteroskedasticity. A Monte
Carlo study shows that the proposed method is e¤ective in reducing the size distortion. In
the absence of heteroskedasticity, the power loss due to the use of White standard errors
instead of homoskedastic standard errors turns out to be very small.
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Appendix: Proofs

Lemmas 3 and 4 below give the weak law of large numbers and the Central Limit Theorem
for fractional integrated processes under Assumptions V and E, respectively.

Lemma 3 Let fetg be a sequence of random variables generated according to (2) with
�t and f"tg satisfy Assumptions V and E respectively. Consider the following fractionally
integrated processes:

��zt = et; � < 1=2

and
�
xt = et; 
 < 1=2:

Then
(i) sup1�t�T E jztjr <1 for r � 4;
(ii) 0 < B � T�1

PT
t=2E

�
z2t�1

�
; and

(iii) T�1
PT
t=2 (xt�mzt�n � E (xt�mzt�n))

p! 0 for m;n = 0; 1:

It seems useful to state the following results here. The stochastic sequence T�1
PT
t=2 z

2
t�1

does not converge to zero in probability. To see this, we write

T�1
TP
t=2
z2t�1 = T

�1
TX
t=2

�
z2t�1 � E

�
z2t�1

��
+ T�1

TX
t=2

E
�
z2t�1

�
: (22)

The �rst term on the right-hand side of the above equation converges in probability to zero
by Lemma 3(iii) with xt�1 = zt�1: The second term is bounded away from zero uniformly
in T by Lemma 3(ii).

Lemma 4 Let fztg and fetg be de�ned as in Lemma 3. If the conditions of Lemma 3 are
satis�ed, then as T !1; 

T�1
TX
t=2

E
�
z2t�1e

2
t

�!�1=2
T�1=2

TX
t=2

zt�1et
d! N (0; 1) :

Proof of Lemma 3

Part (i) Under the Type 2 model of fractional integration, the series zt can be written as

zt = �
��et1(t>0) =

t�1X
j=0

�j (��) et�j (23)
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and since � < 1=2; the coe¢ cient �j (��) is square summable. Choosing r = 4; we have

E
�
z4t
�

(24)

= E

 
t�1P
j=0

�j (��) et�j

!4
=

t�1P
i=0

t�1P
j=0

t�1P
k=0

t�1P
l=0

�i (��)�j (��)�k (��)�l (��)E (et�iet�jet�ket�l) :

First observe that

E (et�iet�jet�ket�l)

= E (et�iet�j)E (et�ket�l) + E (et�iet�k)E (et�jet�l)

+E (et�iet�l)E (et�jet�k) + �t (t� i; t� j; t� k; t� l) (25)

where �t (:; :; :; :) denotes the joint fourth order cumulants of et. It follows that equation
(24) can be rewritten as

E
�
z4t
�

(26)

= 3
t�1P
i=0

t�1P
j=0

t�1P
k=0

t�1P
l=0

�i (��)�j (��)�k (��)�l (��)E (et�iet�j)E (et�ket�l)

+
t�1P
i=0

t�1P
j=0

t�1P
k=0

t�1P
l=0

�i (��)�j (��)�k (��)�l (��)�t (t� i; t� j; t� k; t� l) :

We will show that each term on the right hand side of equation (26) is uniformly bounded
in 1 � t � T .

Since fetg are independent and E (et) = 0; non-zero expectations arise in the following
three pairs: (i) i = j and k = l; (ii) i = k and j = l; (iii) i = l and j = k: The �rst term on
the right side of equation (26) is uniformly bounded in 1 � t � T since

3
t�1P
i=0

t�1P
k=0

�2i (��)�2k (��)E
�
e2t�i

�
E
�
e2t�k

�
= 3

t�1P
i=0

t�1P
k=0

�2i (��)�2k (��)�2t�i�2t�k

� 3
t�1P
i=0

t�1P
k=0

�2i (��)�2k (��) ��4

� 3��4
1P
i=0
�2i (��)

1P
k=0

�2k (��) <1: (27)

Regarding the second term on the right hand side of equation (26) ; the independence
assumption for et implies that the fourth order cumulants are zero except when i = j =
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k = l: To see this, consider the case where i = j 6= k = l: Then, equation (25) becomes

�t (t� i; t� i; t� k; t� k) = E
�
e2t�ie

2
t�k
�
� E

�
e2t�i

�
E
�
e2t�k

�
= E

�
e2t�ie

2
t�k
�
� E

�
e2t�i

�
E
�
e2t�k

�
= 0:

Similar arguments follow for cases where i = k 6= j = l and i = l 6= j = k: However, if
i = j = k = l; equation (25) becomes

� (t� i; t� i; t� i; t� i) = E
�
e4t�i

�
� 3E

�
e2t�i

�2
:

In this case, the fourth order cumulants are zero only when the process fetg is Gaussian
because E

�
e4t�i

�
= 3�4t�i: Therefore, the second term in (26) is uniformly bounded in

1 +m � t � T under Assumption V since
t�1X
i=0

�4i (��) j�t (t� i; t� i; t� i; t� i)j

=

t�1X
i=0

�4i (��)
���E �e4t�i�� 3E �e2t�i�2���

�
t�1X
i=0

�4i (��)
���E �e4t�i���+ ��3�4t�i���

�
t�1X
i=0

�4i (��)
�����sup

t
E
�
e4t
�����+ ��3��4���

�
�����sup

t
E
�
e4t
�����+ ��3��4��� 1X

i=0

�4i (��) <1: (28)

Combining equations (27) and (28) yields

sup
1�t�T

E
�
z4t
�
� B <1:

Then (i) follows directly from the Liapunov inequality.
Part (ii) To show (22), we write

T�1
TP
t=2
E
�
z2t�1

�
= T�1

TX
t=2

E
�
���et�1

�2
= T�1

TX
t=2

t�1X
j=1

�2j�1 (��)�2t�j

� �2T�1
TX
t=2

t�1X
j=1

�2j�1 (��) :

21



Since �2 > 0, it is only required to show that

0 < B � lim
T!1

T�1
TX
t=2

t�1X
j=1

�2j�1 (��) <1:

In order to show this, we write

T�1
TX
t=2

t�1X
j=1

�2j�1 (��)

= T�1
TX
t=2

T�1X
j=1

�2j�1 (��)� T�1
T�1X
t=2

T�1X
j=t

�2j�1 (��)

=

�
1� 1

T

� T�1X
j=1

�2j�1 (��)� T�1
TX
t=2

T�1X
j=t

�2j�1 (��)

=
T�1X
j=1

�2j�1 (��)�
1

T

T�1X
j=1

�2j�1 (��)� T�1
TX
t=2

T�1X
j=t

�2j�1 (��) :

As T ! 1; the �rst term approaches a �nite positive limiting value since the sequence
�j (��) is square summable, that is

0 < B � lim
T!1

T�1X
j=1

�2j�1 (��) <1:

This thus implies that the second term converges to zero. The third term converges to zero
by Cesaro summation. This completes the proof for part (iii).

Part (iii) We show that the sequence fxtzt�1 � E (xtzt�1)g satis�es the conditions of
the Chebyshev Law of Large Numbers (see Davidson 2000 pg 42). The �rst condition, which
requires the sequence has zero mean, is satis�ed trivially. The second condition requires
that

lim
T!1

E

 
T�1

TX
t=2

(xtzt�1 � E (xtzt�1))
!2

= 0: (29)

Like the series zt in (23) ; xt can be written as

xt = �
�
et1(t>0) =

t�1X
j=0

�j (�
) et�j : (30)

In order to simplify notation, we will rewrite the coe¢ cient �i (�
) in (30) as �i and the
coe¢ cient �j (��) in (23) as �i: Under the condition of Lemma 3 (
 < 1=2 and � < 1=2),
the coe¢ cients �i and �i are square summable.
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To show (29) ; we write������E
 
T�1

TX
t=2

(xtzt�1 � E (xtzt�1))
!2������

� 2T�2
TP
t=2

t�2P
s=0

jE ((xtzt�1 � E (xtzt�1)) (xt�szt�s�1 � E (xt�szt�s�1)))j

� 2T�2
TP
t=2

t�2P
s=0

���������E
 
t�1P
i=0

t�2P
j=0

�i�j (et�iet�1�j � E (et�iet�1�j))
!

�
t�s�1P
k=0

t�s�2P
l=0

�k�l (et�s�ket�s�1�l � E (et�s�ket�s�1�l))
�
���������

= 2T�2
TP
t=2

t�2P
s=0

����������
E

 
t�1P
i=0

t�1P
j=1

�i�j�1 (et�iet�j � E (et�iet�j))
!

 
t�1P
k=s

t�1P
l=s+1

�k�s�l�s�1 (et�ket�l � E (et�ket�l))
!
����������
: (31)

Because of independence property of et; the following three pairs have non-zero expected
values: (a) i = j and k = l; (b) i = k and j = l; and (c) i = l and j = k: In each of these
cases, we will show that the term converges to zero as T !1:

Case (a). The term in equation (31) for which i = j and k = l simpli�es as follows:

2T�2
TP
t=2

t�2P
s=0

�����t�1Pj=1 t�1P
l=s+1

�j�j�1�l�s�l�s�1E
�
e2t�j � E

�
e2t�j

�� �
e2t�l � E

�
e2t�l

�������
� 2T�2

TP
t=2

t�2P
s=0

t�1P
l=s+1

j�lj
���l�1�� j�l�sj ���l�s�1�� ���E �e2t�l � �2t�l�2��� (32)

+2T�2
TP
t=2

t�2P
s=0

t�1P
j=1

t�1P
l=s+1;l 6=j

j�j j
���j�1�� j�l�sj ���l�s�1�� ��E �e2t�j � E �e2t�j�� �e2t�l � E �e2t�l���� :

The inequality is triangle inequality. The second term is zero since for l 6= j

E
�
e2t�j � E

�
e2t�j

�� �
e2t�l � E

�
e2t�l

��
= E

�
e2t�j � E

�
e2t�j

��
E
�
e2t�l � E

�
e2t�l

��
= 0:
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The term (32) converges to zero as T !1 since

2T�2
TP
t=2

t�2P
s=0

t�1P
l=s+1

j�lj
���l�1�� j�l�sj ���l�s�1�� ���E �e2t�l � �2t�l�2���

= 2T�2
TP
t=2

t�1P
l=1

j�lj
���l�1�� lP

s=1
j�sj

���s�1�� ��E �e4t�l�� �4t�l��
� 2T�2

TP
t=2

t�1P
l=1

j�lj
���l�1�� lP

s=1
j�sj

���s�1�� ���E �e4t�l���+ ���4t�l���
� 2T�2

TP
t=2

t�1P
l=1

j�lj
���l�1�� lP

s=1
j�sj

���s�1�� �����sup
t
E
�
e4t
�����+ ����4���

= 2

�����sup
t
E
�
e4t
�����+ ����4���T�2 TP

t=2

t�1P
l=1

j�lj
���l�1�� lP

s=1
j�sj

���s�1��
� 2

�����sup
t
E
�
e4t
�����+ ����4���T�2 TP

t=1

�1P
l=1

�2l

��1P
l=0

�2l

�� 1P
s=1

�2s

�� 1P
s=0

�2s

�
= 2

�����sup
t
E
�
e4t
�����+ ����4���T�1�1P

l=1

�2l

�2�1P
l=0

�2l

�2
:

The �rst inequality follows from the triangle inequality, the second inequality follows from
equation (3); the third inequality holds because the coe¢ cients �l (= �l (�
)) and �l(=
�l (��)) are square summable.

Case (b). The term in equation (31) for which i = k and j = l simpli�es as follows:

2 T�2
TP
t=2

t�2P
s=0

t�1P
k=s

t�1P
l=s+1

j�kj
���l�1�� j�k�sj ���l�1�s�� ��E �e2t�ke2t�l���

� 2 T�2
TP
t=2

t�2P
s=0

t�1P
k=s

j�kj j�k�sj
t�1P
l=s+1

���l�1�� ���l�1�s�� ����qE �e4t�k�E �e4t�l�����
� 2T�2

TP
t=2

t�2P
s=0

t�1P
k=s

j�kj j�k�sj
t�2P
l=s

j�lj
���l�s��

�����
r
sup
t
E
�
e4t
�
sup
t
E
�
e4t
������

� 2 sup
t
E
�
e4t
�s� 1P

k=0

�2k

��1P
l=0

�2l

�
T�2

TP
t=1

TP
s=0

s� 1P
k=s

�2k

��1P
l=s

�2l

�

= 2 sup
t
E
�
e4t
�s� 1P

k=0

�2k

��1P
l=0

�2l

�
T�1

TP
s=0

s� 1P
k=s

�2k

��1P
l=s

�2l

�
:

The �rst inequality follows from Cauchy-Schwartz inequality, the second inequality follows
from equation (3) and the third inequality holds since the coe¢ cients �k and �l are square
summable. From the last equality, the terms

�P1
k=s �

2
k

�
and

�P1
l=s �

2
l

�
go to zero as s!1.

Thus by Cesaro summation, as T !1; it follows that

T�1
TP
s=0

s� 1P
k=s

�2k

��1P
l=s

�2l

�
! 0:
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Case (c). The case when i = l and j = k; disappears similarly as in case (b). This
completes the proof for part (iii).

Proof of Lemma 4

De�ne
XTt = s

�1
T zt�1et

where

s2T =
TX
t=2

E
�
z2t�1e

2
t

�
:

The sequence fXTtg is a martingale di¤erence sequence, since

E
�
XTtjFT (t�1)

�
= E

�
s�1T zt�1etjFT (t�1)

�
= s�1T zt�1E

�
etjFT (t�1)

�
= s�1T zt�1E (et) = 0 a:s:

Theorem 6.2.3 of Davidson gives conditions under which the process fXTtg obeys the central
limit theorem for martingale di¤erences; that is

TX
t=2

XTt =
T�1=2

PT
t=2 zt�1etq

T�1
PT
t=2E

�
z2t�1e

2
t

� d! N (0; 1) :

The �rst condition requires the square sequence XTt obeys the weak law of large numbers
or

TX
t=2

X2
Tt

p! 1 (33)

and the second condition requires

max
2�t�T

jXTtj
p! 0: (34)

Regarding the �rst condition, note that

TX
t=2

E
�
X2
Tt

�
=

PT
t=2E

�
z2t�1e

2
t

�PT
t=2E

�
z2t�1e

2
t

� = 1
and thus equation (33) can be re-written as

TX
t=2

�
X2
Tt � E

�
X2
Tt

�� p! 0: (35)

Even though XTt is a martingale di¤erence sequence, the squared sequence, X2
Tt; is not a

martingale di¤erence sequence. Consequently, the WLLN for martingale di¤erence sequence
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cannot be used to imply that equation (35) holds. We proceed by rewriting the squared
sequence as

TX
t=2

�
X2
Tt � E

�
X2
Tt

��
=

T�1
PT
t=2

�
z2t�1e

2
t � E

�
z2t�1e

2
t

��
T�1s2T

=
�
T�1s2T

��1 
T�1

TX
t=2

z2t�1
�
e2t � �2t

�
� T�1

TX
t=2

�2t
�
z2t�1 � E

�
z2t�1

��!
:

Thus it su¢ ces to show that equation (35) is true if:

T�1
TX
t=2

�
z2t�1e

2
t � z2t�1�2t

� p! 0; (36)

and

T�1
TX
t=2

�2t
�
z2t�1 � E

�
z2t�1

�� p! 0 (37)

and
0 < B � T�1s2T � �B <1: (38)

To show (36) ; we note that
�
z2t�1e

2
t � z2t�1�2t

	
is a martingale di¤erence sequence as

E
�
z2t�1e

2
t � z2t�1�2t jFt�1

�
= E

�
z2t�1e

2
t jFt�1

�
� E

�
z2t�1�

2
t jFt�1

�
= z2t�1E

�
e2t jFt�1

�
� z2t�1�2t

= z2t�1�
2
t � z2t�1�2t = 0 a:s:

By Minkowski inequality, Lemma 3(i), and (3), we have

E
�
z2t�1e

2
t � z2t�1�2t

�2 �
�q

E
�
z4t�1e

4
t

�
+
q
E
�
z4t�1�

4
t

��2
=

�q
E
�
z4t�1

�
E
�
e4t
�
+ �2t

q
E
�
z4t�1

��2
�

 r
sup
2�t�T

E
�
z4t�1

�
sup
t
E
�
e4t
�
+ ��2

r
sup
2�t�T

E
�
z4t�1

�!2
<1:

Thus by WLLN for martingale di¤erences (Theorem 6.2.2 of Davidson) equation (36) holds.
For the consistency in (37) to be valid, we have to check that the sequence

�
�2t
�
z2t�1 � E

�
z2t�1

��	
satis�es the conditions of the Chebyshev Law of Large Numbers (see Davidson 2000 pg 42).
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The �rst condition, which requires the sequence has zero mean, is satis�ed trivially. The
second condition requires that the variance of the sum tends to zero as T !1; that is

lim
T!1

E

 
T�1

TX
t=2

�2t
�
z2t�1 � E

�
z2t�1

��!2
= 0: (39)

Unlike the above proof, this time the sequence
�
�2t
�
z2t�1 � E

�
z2t�1

��	
is not a martingale

di¤erence sequence and therefore the variance of the sum of terms is not equal to the sum
of the variances. In order to simplify the notation, we will express z2t as

z2t�1 =
�
���et�11(t�1>0)

�2
=

 
t�2X
i=0

�i (��) et�1�i

!2

=
t�2X
i=0

t�2X
j=0

�i�jet�1�iet�1�j ;

where �i = �i (��) : To show (39), we write������E
 
T�1

TX
t=2

�2t
�
z2t�1 � E

�
z2t�1

��!2������
� 2T�2

TP
t=2

t�2P
s=0

�2t�
2
t�s
��E ��z2t�1 � E �z2t�1�� �z2t�1�s � E �z2t�1�s�����

� ��42T�2
TP
t=2

t�2P
s=0

���������E
 
t�2P
i=0

t�2P
j=0

�i�j (et�1�iet�1�j � E (et�1�iet�1�j))
!

�
t�s�2P
k=0

t�s�2P
l=0

�k�l (et�s�1�ket�s�1�l � E (et�s�1�ket�s�1�l))
�
��������� :

By letting �i = �i and �k = �k; the above equation tends to zero by arguments similar to
those used in proving Lemma 3(i). Thus by the Chebyshev Law of Large Numbers,

T�1
TX
t=2

�2t
�
z2t�1 � E

�
z2t�1

�� p! 0;

as required.
To show (38), we �rst show that

0 < B � T�1
TX
t=2

E
�
z2t�1e

2
t

�
: (40)
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To see this, we write

T�1
TX
t=2

E
�
z2t�1e

2
t

�
= T�1

TX
t=2

E
�
e2t
�
E
�
z2t�1

�
= T�1

TX
t=2

�2t

t�1X
j=1

�2j�1 (��)�2t�j

=

T�1X
j=1

�2j�1 (��)T�1
T�jX
t=1

�2t�
2
t+j

� �4
T�1X
j=1

�
1� j

T

�
�2j�1 (��) : (41)

Since the coe¢ cient �j (��) is square summable, which means that
PT�1
j=0 �

2
j (��) is con-

vergent, Lemma 8.3.1 of Anderson (1971) implies that

0 < B � lim
T!1

T�1X
j=1

�
1� j

T

�
�2j�1 (��) =

1X
j=0

�2j (��) <1;

where
P1
j=0 �

2
j (��) > 0. Given that �4 is a strictly positive constant, equation (41) is

bounded away from zero for all T � 2: Next for (38) we show

T�1
TX
t=2

E
�
z2t�1e

2
t

�
� �B <1: (42)

Following from the arguments in equation (41) ; we write

T�1
TX
t=2

E
�
z2t�1e

2
t

�
� ��4T�1

TX
t=2

t�1X
j=1

�2j�1 (��)

� ��4T�1
TX
t=1

1X
j=0

�2j (��)

= ��4
1X
j=0

�2j (��) = �B <1: (43)

Thus (38) has been proved.
Equations (38) ; (36) and (37) imply that the �rst condition of the central limit theorem

stated in (33) holds. Regarding the second condition for the central limit theorem (see
equation (34)), we note that for any � > 0 and for some � > 1;

P

�
max
2�t�T

jXTtj > �
�
�

TX
t=2

P (jXTtj > �) �
TX
t=2

E jXTtj�

��
:
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Set � = 4 and note that fetg are independent, we obtain

TX
t=2

E
�
X4
Tt

�
= s�4T

TX
t=2

E
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z4t�1e

4
t

�
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PT
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4
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��2
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�� �
suptE
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e4t
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T�1
PT
t=2E

�
z2t�1e

2
t

��2 ! 0

as T !1: This follows because Lemma 3(i) and equation (3) uniformly bound the numer-
ator and (38) uniformly bounds the denominator away from zero and in�nity.

Proof of Theorem 1

Part (a) Asymptotic Distribution. In order to simplify notation we write zt�1 for
�d1yt�1: Following from the discussion in section 3.1, zt � I (1� d1) under the unit root
null hypothesis. The values of (1� d1) will lie in the interval (0; 1=2) since d1 2 (1=2; 1).
Using this and noting that �yt = et, the tW -ratio in (16) can be re-written as

tW (d1) =

TP
t=2
zt�1ets

TP
t=2
z2t�1ê

2
t

=

T�
1
2

TP
t=2
zt�1ets

T�1
TP
t=2
E (zt�1et)

2

0BBB@
T�1

TP
t=2
z2t�1ê

2
t

T�1
TP
t=2
E (zt�1et)

2

1CCCA
� 1
2

:

Since 1=2 < d1 < 1; the series fztg is asymptotically stationary and by Lemma 4, it follows
that

T�
1
2

TP
t=2
zt�1et s

T�1
TP
t=2
E (zt�1et)

2

! d! N (0; 1) :
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It remains to show that

T�1
TP
t=2
z2t�1ê

2
t

T�1
TP
t=2
E (zt�1et)

2

p! 1

or equivalently

T�1
TP
t=2

�
z2t�1ê

2
t � E (zt�1et)

2
�

T�1
TP
t=2
E (zt�1et)

2

p! 0: (44)

Equation (38) both bounds the denominator uniformly away from zero and ensures that it
is �nite. It su¢ ces to show that the numerator converges in probability to zero as T !1:
We note that the residuals êt can be written as êt = �yt � �̂�d1yt�1 = et � �̂zt�1. Using
this, we write the numerator in (44) as

T�1
TP
t=2

�
z2t�1

�
et � �̂zt�1

�2
� E

�
z2t�1e

2
t

��
= T�1

TP
t=2

�
z2t�1

�
e2t � 2�̂zt�1et + �̂

2
z2t�1

�
� �2tE

�
z2t�1

��
= T�1

TP
t=2

�
z2t�1e

2
t � �2tE

�
z2t�1

��
� 2�̂T�1

TP
t=2
z3t�1et + �̂

2
T�1

TP
t=2
z4t�1 (45)

The aim is to show that all the three terms in (45) converge in probability to zero. The
�rst term converges in probability to zero by equations (36) and (37). As for the second
and third terms in (45), we will �rst show that �̂

p! 0: Under the null hypothesis, �̂ in (6)
can be written as

�̂ =

T�1
TP
t=2
zt�1et

T�1
TP
t=2
z2t�1

:

The numerator T�1
PT
t=2 zt�1et converges to zero in probability by Lemma 3(iii) with 
 = 0:

As for the denominator, we have already shown in equation (22) that T�1
PT
t=2 z

2
t�1 does

not converge to zero in probability. Therefore �̂
p! 0:

Now, coming back to the second term in (45) ; since �̂
p! 0, it will converge in probability

to zero if

T�1
TP
t=2
z3t�1et = Op (1) : (46)

Before proving equation (46), we state the Holder�s inequality. For any random variables
X and Y and for a > 0; if E jXja <1 and E jY ja=(a�1) <1 then

E jXY j � (E jXja)1=a
�
E jY ja=(a�1)

�(a�1)=a
:
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Now to establish (46) ; by Holder�s inequality (with a = 4) and Lemma 3(i), we have

E

����T�1 TP
t=2
z3t�1et

���� � T�1
TP
t=2
E
��z3t�1et��

� T�1
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��z3t�1�� 43� 34 �E jetj4� 14
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�� 3
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E
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e4t
�� 1

4
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sup
2�t�T

E
�
z4t�1

�! 3
4 �
sup
t
E
�
e4t
�� 1

4

<1:

Thus by Markov inequality, equation (46) is true.
In view of Lemma 3(i), the third term in (45) converges in probability to zero by argu-

ments similar to those used in proving the second term.
Part (b) Consistency In order to simplify notation we write zt�1 for �d1yt�1 and xt

for �yt: Under the alternative hypothesis, the data generating process for fytg is

�d0yt = et: (47)

The sequence fzt�1g is fractionally integrated of order d0�d1. To see this, we pre-multiply
both sides of (47) by �d1�d0 to obtain

�d1yt�1 = �d1�d0et�1

�d0�d1 (zt�1) = et�1 (48)

and so fzt�1g � I (d0 � d1) as claimed. The values of (d0 � d1) will lie in the interval
(�1; 0:5) since d0 2 [0; 1) and 1=2 < d1 < 1:

The sequence fxtg is fractionally integrated of order d0�1: To see this, we pre-multiply
(47) by �1�d0 to obtain

�yt = �1�d0et

�d0�1 (xt) = et (49)

and so fxtg � I (d0 � 1) as claimed. The values of (d0 � 1) will lie in the interval [�1; 0).
Using these representations, the tW (d1)-ratio in (16) under the alternative hypothesis

can be re-written as

tW (d1) = T
1=2

T�1
TP
t=2
zt�1xts

T�1
TP
t=2

�
z2t�1ê

2
t

� : (50)

The residuals êt can be expressed as

êt = �yt � �̂�d1yt�1 = xt � �̂zt�1: (51)
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Substitute (51) into (50) yields

tW (d1) = T
1=2

T�1
TP
t=2
zt�1xts

T�1
TP
t=2

�
z2t�1

�
xt � �̂zt�1

�2� : (52)

To prove the Theorem, we need to: (a) establish that the numerator in (52) converges
in probability to a negative constant; and (ii) establish that the denominator in (52) is
uniformly bounded in probability. Then as T !1; the tW (d1)-ratio will diverge to negative
in�nity, implying that the tW (d1)-ratio is consistent and this proves the second part of
Theorem 1. We organise the presentation of the proof as follows. First we consider the
case when d1 6= d0 and then we consider the case when d1 = d0: A separate treatment for
the latter case is necessary because the process fztg is no longer a fractionally integrated
process but a short memory process with zt = et:

1. d1 6= d0: The numerator in (52) can be written as

T�1
TP
t=2
(zt�1xt � E (zt�1xt)) + T�1

TP
t=2
E (zt�1xt) :

The �rst term converges in probability to zero by Lemma 3(iii) with m = 0. As for the
second term, we will show that it converges to a negative constant as T !1. To see this,
we write

T�1
TP
t=2
E (zt�1xt) = T�1

TP
t=2
E
�
�d1�d0et�1�

1�d0et
�

= T�1
TP
t=2
E

 
t�1P
i=1
�i (d1 � d0) et�i

t�1P
j=0

�j (1� d0) et�j

!

= T�1
TP
t=2

t�1P
i=1

t�1P
j=0

�i�1 (d1 � d0)�j (1� d0)E (et�iet�j)

= T�1
TP
t=2

t�1P
i=1
�i (1� d0)�i�1 (d1 � d0)�2t�i

=
T�1P
i=1

�i (1� d0)�i�1 (d1 � d0)T�1
TP

t=i+1
�2t�i

=
T�1P
i=1

�i (1� d0)�i�1 (d1 � d0)T�1
T�iP
t=1

�2t

=

�
T�1P
i=1

�i (1� d0)�i�1 (d1 � d0)
��

T�1
TP
t=1
�2t

�
�
T�1P
i=1

�i (1� d0)�i�1 (d1 � d0)T�1
TP

t=T�i+1
�2t

= R1T �R2T :
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As T !1; we will show that R1T converges to a negative constant; that is

lim
T!1

R1T =

�
lim
T!1

T�1P
i=1

�i (1� d0)�i�1 (d1 � d0)
��

lim
T!1

T�1
TP
t=1
�2t

�
= �C (53)

for some 0 < C <1 and R2T converges to zero; that is

lim
T!1

R2T = 0: (54)

Regarding R1T ; we will �rst show that, as T !1;

lim
T!1

����T�1P
i=1

�i (1� d0)�i�1 (d1 � d0)
���� <1 (55)

and then we will show that its limiting value is strictly negative; that is

lim
T!1

T�1P
i=1

�i (1� d0)�i�1 (d1 � d0) < 0: (56)

Equations (55) and (56), taken together, imply that equation (53) holds.
To show (55) ; note that for large i; the sequence

�i (1� d0)�i�1 (d1 � d0) � i�(1�d0)�1i�(d1�d0)�1 � i�3+2d0�d1 :

For the above sequence to be summable, we require that �3+2d0�d1 < �1 or d0 < 1+ 1
2d1,

which holds since d1 > 1=2 and d0 < 1 under the alternative hypothesis. Thus equation
(55) holds. Next to show (56) ; we note that the coe¢ cient �i (1� d0) is negative for all
i � 1 but the coe¢ cient �i (d1 � d0) is not necessary positive. We consider the following
two cases:

(i) Assume that d1 < d0: Then, the coe¢ cient �i (d1 � d0) is positive for all i � 0: Thus,
the product of �i (1� d0) and �i (d1 � d0) will be negative for all i � 1: Hence (56) holds
as required.

(ii) Assume that d1 > d0: Then, �0 (d1 � d0) = 1 but for all i � 1 the coe¢ cient
�i (d1 � d0) is negative. In contrast to the previous case, now �i (1� d0)�i�1 (d1 � d0) > 0:
In order to show that equation (56) is true, we need only show that

�1 (1� d0) < �
� 1P
i=2
�i (1� d0)�i�1 (d1 � d0)

�
: (57)

DGM have shown that the absolute value of the right hand term of the above equation can
be ���� 1P

i=2
�i (1� d0)�i�1 (d1 � d0)

���� � sup
j2[2;1)

j�j (1� d0)j
1P
i=1
j�i (d1 � d0)j

= j�2 (1� d0)j :
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The last equality is obtained by noting that
P1
i=1 j�i (d1 � d0)j = 1: Since j�2 (1� d0)j <

j�1 (1� d0)j ; it follows that���� 1P
i=2
�i (1� d0)�i�1 (d1 � d0)

���� < j�1 (1� d0)j
as required to show that the inequality in (57) is true.

To show (54) ; we write�����T�1Pi=1 �i (1� d0)�i�1 (d1 � d0)T�1 TP
t=T�i+1

�2t

�����
�

T�1P
i=1

j�i (1� d0)j j�i�1 (d1 � d0)jT�1
TP

t=T�i+1
��2

= T�1
T�1P
i=1

j�i (1� d0)j j�i�1 (d1 � d0)j i��2

� B���2T�1
T�1P
i=1

i�(1�d0)�1i�(d1�d0)�1i

= B���2T�1
T�1P
i=1

i2d0�2�d1 ! 0

(for some B� > 0) as T ! 1 by Cesaro Summation since 2d0 � 2 � d1 < 0 under the
alternative hypothesis. This therefore completes the proof that the numerator of the tW (d1)-
ratio in (52) converges in probability to a negative constant.

The denominator of the tW (d1)-ratio in (52) can be written as

T�1
TP
t=2

�
z2t�1

�
xt � �̂zt�1

�2�
= T�1

TP
t=2
z2t�1x

2
t � 2�̂T�1

TP
t=2
z3t�1xt + �̂

2
T�1

TP
t=2
z4t�1: (58)

We will show that each term in (58) is uniformly bounded in probability or Op (1) : As for
the �rst term, by Cauchy-Schwarz (CS) inequality and Lemma 3(i), it follows that

E

����T�1 TP
t=2
z2t�1x

2
t

���� � T�1
TP
t=2
E
��z2t�1x2t ��

� T�1
TP
t=2

q
E
�
z4t�1

�
E
�
x4t
�

�

vuut sup
2�t�T

E
�
z4t�1

�!�
sup
t
E
�
x4t
��
<1:

Therefore the �rst term in (58) is Op (1) by Markov inequality.
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As for the second term and third terms in (58), we �rst show that �̂ = Op (1) : Under the
alternative hypothesis and using expressions (48) and (49) ; the �̂ in (6) can be rewritten as

�̂ =

T�1
TP
t=2
zt�1xt

T�1
TP
t=2
z2t�1

:

The numerator of �̂ is Op (1) since it is the same expression as that given in the numerator
of the tW (d1)-ratio, see (52). We have already shown in equation (22) that the denominator
does not converge to zero in probability. Therefore �̂ = Op (1) :

Now coming back to the second term in (58) ; all that is required is to show that

T�1
TP
t=2
z3t�1xt = Op (1)

since �̂ = Op (1) : To see this, by Holder�s inequality and Lemma A (i), it follows that

E

����T�1 TP
t=2
z3t�1xt

���� � T�1
TP
t=2
E
��z3t�1xt��

� T�1
TP
t=2

�
E
��z3t�1�� 43� 34 �E jxtj4� 14

= T�1
TP
t=2

�
E
�
z4t�1

�� 3
4
�
E
�
x4t
�� 1

4

�
 
sup
2�t�T

E
�
z4t�1

�! 3
4 �
sup
t
E
�
x4t
�� 1

4

<1:

The third term in (58) is Op (1) by using similar arguments as above. Therefore the
denominator in (58) is Op (1) and this completes the proof for the case when d1 6= d0:

2. d1 = d0: In this case zt�1 = et�1 and thus the numerator in (52) can be written as

T�1
TP
t=2
(et�1xt � E (et�1xt)) + T�1

TP
t=2
E (et�1xt) : (59)

The �rst term converges in probability to zero by Lemma 3(iii) with � = 0 and n = 1.
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Regarding the second term, we write

T�1
TP
t=2
E (et�1xt) = T�1

TP
t=2
E
�
et�1�

1�d0et
�

= T�1
TP
t=2

t�1P
j=0

�j (1� d0)E (et�jet�1)

= T�1
TP
t=2
�1 (1� d0)�2t�1

= �1 (1� d0)
�
T�1

T�1P
t=1

�2t

�
:

Under Assumption V, the term T�1
PT
t=1 �

2
t is uniformly bounded away from zero and

in�nity for all T and since the coe¢ cient �1 (1� d0) < 0, the second term in (59) converges
to a negative constant as T ! 1: This completes the proof that the numerator in (52)
converges in probability to a negative constant. The denominator in (52) is Op (1) by
similar argument to the d1 6= d0 case. This completes the proof for the case where d1 = d0:

Proof of Theorem 2

Under the null hypothesis, d̂ is a consistent estimator of d0 = 1: The trimming rule de�ned

in (17) implies that the pre-estimated value of d1
�
d̂1

�
is also a consistent estimator of

(1� c); that is
d̂1

p! (1� c) :
Following DGM, we will show that

tW

�
d̂1

�
� tW (1� c) = op (1) : (60)

Since 0 < c < 1=2; part (a) of Theorem 1 shows that tW (1� c)
d! N (0; 1) and thus an

asymptotic equivalence argument implies that tW
�
d̂1

�
d! N (0; 1) :

To show (60), we apply the mean value theorem to tW
�
d̂1

�
around (1� c) to obtain

tW

�
d̂1

�
� tW (1� c) =

@tW (d1)

@d1

����
d1=d�

�
d̂1 � (1� c)

�
where d̂1 � d� � (1� c) : Since d̂1 � (1� c) = op (1) ; it su¢ ces to show that

@tW (d1)

@d1

����
d1=d�

= Op (1) : (61)

To show (61) ; we show
@tW (d1)

@d1
= Op (1) (62)
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for all d1 2 [1� c� "; 1� c] with any 0 < " < 1=2�c. Then (61) follows since d�
p! (1� c),

that is
Pr (d� 2 [1� c� "; 1� c])! 1:

The remainder of the proof is concerned with showing (62).
We next evaluate the �rst derivative of tW (d1). Under H0 we have �yt = et and

�d1yt�1 = �d1�1et: The tW (d1) ratio can thus be written as

tW (d1) =

TP
t=2
et�

d1�1et�1s
TP
t=2
(�d1�1et�1)

2
�
et � �̂�d1�1et�1

�2 (63)

with

�̂ =

TP
t=2
et�

d1�1et�1

TP
t=2
(�d1�1et�1)

2

: (64)

When we substitute (64) into (63) ; the denominator can be written as

TP
t=2

�
�d1�1et�1

�2 �
et � �̂�d1�1et�1

�2
=

TP
t=2

�
�d1�1et�1

�2
e2t � 2�̂

TP
t=2

�
�d1�1et�1

�3
et + �̂

2 TP
t=2

�
�d1�1et�1

�4
=

TP
t=2

�
�d1�1et�1

�2
e2t � 2

�
TP
t=2
et�

d1�1et�1

��
TP
t=2

�
�d1�1et�1

�3
et

��
TP
t=2

�
�d1�1et�1

�2��1
+

�
TP
t=2
et�

d1�1et�1

�2� TP
t=2

�
�d1�1et�1

�4�� TP
t=2

�
�d1�1et�1

�2��2
:

To simplify notations, we let:

NT (d1) =
TP
t=2
et�

d1�1et�1; (65)

D1T (d1) =
TP
t=2

�
�d1�1et�1

�3
et; (66)

D2T (d1) =
TP
t=2

�
�d1�1et�1

�2
; (67)

D3T (d1) =
TP
t=2

�
�d1�1et�1

�4
; and (68)

D4T (d1) =
TP
t=2

�
�d1�1et�1

�2
e2t : (69)
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Using equations (65)� (69) ; the tW (d1) in (63) can then be written as

tW (d1) = NT (d1)DT (d1)
�1=2 (70)

where DT (d1) is

DT (d1) = D4T (d1)� 2NT (d1)D1T (d1)D2T (d1)�1

+NT (d1)
2D3T (d1)D2T (d1)

�2 :

The �rst derivative of tW (d1) is given by

@tW (d1)

@d1

=
@NT (d1)

@d1
DT (d1)

� 1
2 +

0@@
�
DT (d1)

�1=2
�

@d1

1ANT (d1) : (71)

Therefore equation (62) holds if, for all d1 2 [1� c� "; 1� c] with any 0 < " < 1=2� c,�
T�1=2

@NT (d1)

@d1

��
T�1DT (d1)

�� 1
2 = Op (1) (72)

and 0@T 1=2@
�
DT (d1)

�1=2
�

@d1

1A�T�1=2NT (d1)� = Op (1) : (73)

For equation (72) ; Lemma 5 below shows that

T�1=2
@NT (d1)

@d1
= Op (1) :

Given that DT (d1) appears in the denominator, we wish to show that T�1DT (d1) does not
converge to zero in probability. To show this we write

T�1DT (d1)

= T�1D4T (d1)� 2T�1NT (d1)T�1D1T (d1)
�
T�1D2T (d1)

��1
+
�
T�1NT (d1)

�2
T�1D3T (d1)

�
T�2D2T (d1)

��2
: (74)

Let �d1�1et�1 = zt�1: Since d1 2 [1� c� "; 1� c] ; we can apply Lemma 3 to the terms
in (xx) : The �rst term in (74) does not converge to zero in probability. To see this, we
write

T�1D4T (d1)

= T�1
TP
t=2

�
z2t�1e

2
t � E

�
z2t�1e

2
t

��
+ T�1

TP
t=2
E
�
z2t�1e

2
t

�
: (75)
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the �rst term in (75) converges to zero in probability by (36) and (37) : The second term in
(75) is bounded away from zero by (38) :

We will show that the second and third terms in (74) converge to zero in probability. To
see this, we note the following convergence results for T�1D2T (d1) ; T�1NT (d1) ; T�1D1T (d1)
and T�1D3T (d1) : Given that T�1D2T (d1) = T�1

PT
t=2 z

2
t�1 appears in the denominator of

(74), we have shown that equation (22) does not converge to zero in probability. We have

T�1NT (d1) = T�1
TP
t=2
et�

d1�1et�1

= T�1
TP
t=2
etzt�1 = op (1) (76)

by Lemma 3(ii) with � = 0: We have

T�1D1T (d1) = T�1
TP
t=2

�
�d1�1et�1

�3
et

= T�1
TP
t=2
z3t�1et = Op (1) (77)

by equation (46). We have

T�1D3T (d1) = T
�1

TP
t=2

�
�d1�1et�1

�4
= Op (1) (78)

by equation (??). Thus (72) is shown.
As for equation (73) ; since Lemma 4 and (38) imply that

T�1=2NT (d1) = T
�1=2

TP
t=2
et�

d1�1et�1 = Op (1)

it su¢ ces to show that

T 1=2
@
�
DT (d1)

�1=2
�

@d1
= Op (1) : (79)

To show (79) ; we write

T 1=2
@
�
DT (d1)

�1=2
�

@d1

= �1
2

�
T�1DT (d1)

��3=20@T�1@D4T (d1)
@d1

� 2T�1
@
�
NT (d1)D1T (d1)D2T (d1)

�1
�

@d1

+ T�1
@
�
NT (d1)

2D3T (d1)D2T (d1)
�2
�

@d1

1A
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We have already shown in the proof of (72) that DT (d1) does not converge to zero in
probability. From Lemma 5 below,

T�1
@D4T (d1)

@d1
= Op (1) :

We will show that

T�1
@
�
NT (d1)D1T (d1)D2T (d1)

�1
�

@d1

p! 0 (80)

and

T�1
@
�
NT (d1)

2D3T (d1)D2T (d1)
�2
�

@d1

p! 0: (81)

To show (80) ; we write

T�1
@
�
NT (d1)D1T (d1)D2T (d1)

�1
�

@d1

= T�1D1T (d1)
�
T�1D2T (d1)

��1
T�1

@NT (d1)

@d1

+T�1NT (d1)
�
T�1D2T (d1)

��1
T�1

@D1T (d1)

@d1

�T�1NT (d1)T�1D1T (d1)
�
T�1D2T (d1)

��2
T�1

@D2T (d1)

@d1
: (82)

As noted previously, T�1D2T (d1) does not converge to zero in probability. The �rst term
on the right-hand side of (82) is op (1) by (77) and Lemma 5(d) below. The second term is
op (1) by (76) and Lemma 5(e) below. The third term is op (1) by (76) ; (77) and Lemma
5(f) below.

To show (81) ; we write

T�1
@
�
NT (d1)

2D3T (d1)D2T (d1)
�2
�

@d1

= 2T�1NT (d1)T
�1D3T (d1)

�
T�1D2T (d1)

��2
T�1

@NT (d1)

@d1

+
�
T�1NT (d1)

�2 �
T�1D2T (d1)

��2
T�1

@D3T (d1)

@d1

�2
�
T�1NT (d1)

�2
T�1D3T (d1)

�
T�1D2T (d1)

��3
T�1

@D2T (d1)

@d1
:

By similar arguments as above, the �rst term is op (1) by (76) ; (78) and Lemma 5(d) below.
The second term is op (1) by (76) and Lemma 5(g). The third term is op (1) by (76), (78)
and 5(f) below.

The next Lemma gives the asymptotic properties of the �rst-order derivatives for the
expressions (65)-(69) de�ned above.
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Lemma 5 Let fetg be a sequence of random variables generated according to (2) with �t
and f"tg satisfy Assumptions V and E respectively. Let 0 < c < 1=2: If d1 2 [1� c� "; 1� c]
for any 0 < " < 1=2� c then:
(a) sup2�t�T E

�
�d1�1 log�et�1

�2
< Bc <1

(b) sup2�t�T E
�
�d1�1et�1

�2 �
�d1�1 log�et�1

�2
< Bc <1

(c) supd1 T
�1=2 @NT (d1)

@d1
= supd1 T

�1=2
TP
t=2
et
�
�d1�1 log�et�1

�
= Op (1) ;

(d) supd1 T
�1 @NT (d1)

@d1
= supd1 T

�1
TP
t=2
et
�
�d1�1 log�et�1

�
= op (1) ;

(e) supd1 T
�1 @D1T (d)

@d = supd1 3T
�1

TP
t=2

�
�d1�1et�1

�2
et
�
�d1�1 log�et�1

�
= op (1) ;

(f) supd1 T
�1 @D2T (d)

@d = supd1 2T
�1

TP
t=2

�
�d1�1et�1

� �
�d1�1 log�et�1

�
= Op (1) ;

(g) supd1 T
�1 @D3T (d)

@d = supd1 4T
�1

TP
t=2

�
�d1�1et�1

�3 �
�d1�1 log�et�1

�
= Op (1) ;

(h) supd1 T
�1 @D4T (d)

@d = supd1 2T
�1

TP
t=2
e2t
�
�d1�1et�1

� �
�d1�1 log�et�1

�
= Op (1) :

Proof of Lemma 5
Throughout the proof, we use the formula

log� = log (1� L) = �
1P
i=1

1

i
Li: (83)

According to DGM, (83) holds because the function log (1� L) is analytic in the convergence
disc jzj < 1:

(a) We write

E
�
�d1�1 log�et�1

�2
=

�����E
�
t�2P
i=1

1

i
�d1�1et�1�i

�2�����
=

�����t�2Pi=1 t�2Pj=1 1i 1j E
��
�d1�1et�1�i

��
�d1�1et�1�j

�������
=

�����t�2Pi=1 t�2Pj=1 1i 1j t�2Pk=i
t�2P
l=j

�k�i (d1 � 1)�l�j (d1 � 1)E (et�1�ket�1�l)
�����

�
t�2P
i=1

t�2P
j=1

1

i

1

j

t�2P
k=i_j

j�k�i (d1 � 1)j j�k�j (d1 � 1)j�2t�1�k

� ��2
1P
i=1

1P
j=1

1

i

1

j

1P
k=i_j

j�k�i (d1 � 1)j j�k�j (d1 � 1)j = Bd1 < Bc <1:
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The second last inequality follows from Lemma 6 below. Thus, (a) is established.
(b) We write

E
�
�d1�1 log�et�1
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We show that the terms for which non-zero expectations arise are uniformly bounded in
2 � t � T . First, consider the case in which the summation indices k = l and m = n:
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uniformly in 2 � t � T by equation (3), Lemma 6 below and the fact that �m (d1 � 1) is
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square summable. Second, when m = k and n = l; equation (84) becomes
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where 
�i (1� d1) denotes the autocovariance function de�ned in Lemma 6 below. The last
inequality follows from the fact that 
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is summable since the asymptotic approximation of 
�i (1� d1) is i2(1�d1)�1 = i1�2d1 :

Finally, when the summation indices m = l and n = k; equation (84) is uniformly
bounded in 2 � t � T by arguments similar to those above. Therefore, (b) is proved.
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uniformly in d1 2 [1� c� "; 1� c] for any 0 < " < 1=2� c. Then (c) follows directly from
the Markov�s inequality.
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(e) Note that
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uniformly in d1 2 [1� c� "; 1� c] for any 0 < " < 1=2� c. Thus, (e) follows from Markov
inequality.
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uniformly in d1 2 [1� c� "; 1� c] for any 0 < " < 1=2 � c. Thus (f) follows from Markov
inequality.
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uniformly in d1 2 [1� c� "; 1� c] for any 0 < " < 1=2� c. Thus (g) follows from Markov
inequality.

(h) By argument similar to (f)
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Lemma 6 Let ut be a fractionally integrated process de�ned by ut = ���vt =
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To show Lemma 6; we use equation (85) and write
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is summable for � < 1=2:Thus
Lemma 6 is proved.
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7 Appendix: Tables

Table 1: Single Variance Shift: Empirical Size
Volatility d1 = 0:6 d1 = 0:7 d1 = 0:8 d1 = 0:9 d1 = 0:95
� � T t (d1) tW (d1) t (d1) tW (d1) t (d1) tW (d1) t (d1) tW (d1) t (d1) tW (d1)

250 5.68 5.98 5.66 5.99 5.52 5.62 4.84 5.06 4.84 5.21
1 500 5.46 5.65 5.12 5.38 4.63 4.76 5.11 5.19 5.29 5.37

1000 5.34 5.45 5.12 5.16 5.19 5.33 5.31 5.32 4.59 4.69

250 6.45 5.89 6.33 5.85 6.08 5.46 5.85 5.34 5.90 5.30
0:1 5 500 6.15 5.54 6.17 5.46 5.59 5.03 5.86 5.19 5.78 5.12

1000 6.13 5.24 5.96 5.04 6.19 5.45 6.26 5.43 5.53 4.77

250 25.03 7.91 25.10 7.67 24.14 7.38 23.35 7.21 23.14 6.98
0:2 500 24.64 6.70 24.34 6.61 24.26 6.21 24.27 6.58 24.63 6.47

1000 25.28 6.32 25.24 5.93 24.41 5.76 24.35 5.86 23.81 5.69

250 12.55 6.11 12.03 5.96 11.60 5.48 11.45 5.65 11.54 5.46
0:5 5 500 12.24 5.80 11.95 5.81 11.67 5.32 11.19 5.21 11.64 5.61

1000 11.91 5.73 11.54 5.08 11.50 5.30 11.70 5.34 11.11 4.80

250 12.55 6.25 11.64 5.86 11.81 5.90 11.48 5.50 11.30 5.50
0:2 500 11.60 5.77 11.69 5.66 11.22 5.44 11.19 5.26 11.72 5.60

1000 11.92 5.64 11.75 4.98 11.16 5.28 11.62 5.53 11.14 5.08

250 24.92 7.95 25.46 7.58 24.26 7.58 22.77 7.02 23.29 6.90
0:9 5 500 25.55 6.60 25.46 6.86 25.14 6.34 24.05 6.37 23.79 6.08

1000 24.81 5.99 25.11 6.20 24.74 5.86 25.00 5.68 22.96 5.01

250 6.42 5.92 6.17 5.57 6.01 5.57 5.77 5.30 6.05 5.56
0:2 500 6.31 5.65 6.00 5.33 5.35 4.74 5.98 5.14 6.08 5.38

1000 6.23 5.44 5.92 5.24 5.86 5.11 5.99 5.31 5.78 4.96
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Table 2: Double Variance Shifts: Empirical Size
Volatility d1 = 0:6 d1 = 0:7 d1 = 0:8 d1 = 0:9 d1 = 0:95
� � T t (d1) tW (d1) t (d1) tW (d1) t (d1) tW (d1) t (d1) tW (d1) t (d1) tW (d1)

250 6.28 5.83 6.19 5.90 5.91 5.49 5.80 5.35 6.01 5.57
0:05 5 500 6.18 5.47 6.01 5.39 5.48 4.68 5.98 5.40 5.86 5.11

1000 6.13 5.13 5.82 5.16 6.31 5.39 6.00 5.28 5.60 4.81

250 24.14 7.51 24.66 7.55 23.44 7.37 23.12 7.16 23.55 7.52
0:2 500 24.03 6.80 25.25 6.57 24.11 6.40 24.39 6.17 24.68 6.23

1000 25.21 6.26 25.69 5.98 24.47 6.01 24.82 5.65 23.81 5.67

250 24.13 7.95 23.57 7.18 23.55 7.34 23.37 7.32 23.53 7.27
0:45 5 500 24.54 6.68 24.32 6.41 24.45 6.05 23.86 6.21 24.49 6.46

1000 24.45 6.08 24.73 5.84 24.81 5.86 24.59 5.48 23.61 5.60

250 6.54 5.91 6.41 5.85 6.19 5.52 5.76 5.24 5.84 5.12
0:2 500 6.46 5.88 6.20 5.45 5.55 4.87 6.00 5.30 6.09 5.40

1000 5.97 5.29 6.26 5.30 5.90 5.20 6.00 5.31 5.80 5.04

Table 3: Trending Variances Model: Empirical Size
Volatility d1 = 0:6 d1 = 0:7 d1 = 0:8 d1 = 0:9 d1 = 0:95
m � T t (d1) tW (d1) t (d1) tW (d1) t (d1) tW (d1) t (d1) tW (d1) t (d1) tW (d1)

250 7.81 5.83 7.65 5.65 7.67 5.67 7.37 5.43 7.25 5.20
1 5 500 7.70 5.54 7.64 5.54 7.24 5.48 7.57 5.32 7.61 5.66

1000 7.43 5.36 7.74 5.41 7.54 5.48 7.75 5.66 6.83 4.76

250 8.04 6.39 7.30 5.59 7.55 5.88 7.29 5.45 7.40 5.50
0:2 500 7.44 5.68 7.21 5.32 6.94 4.86 7.21 5.27 7.81 5.59

1000 7.77 5.67 7.37 5.14 7.13 5.16 7.58 5.46 7.36 5.11

250 10.56 5.98 10.22 5.85 10.12 6.08 9.64 5.48 9.61 5.43
2 5 500 10.14 5.63 10.80 5.73 9.74 5.67 10.14 5.32 10.59 5.52

1000 10.40 5.28 10.29 5.49 10.04 5.36 10.65 5.55 9.39 4.60

250 7.10 6.12 6.45 5.46 6.61 5.68 6.31 5.25 6.76 5.63
0:2 500 6.63 5.68 6.49 5.37 6.05 4.79 6.42 5.26 6.73 5.53

1000 6.88 5.51 6.65 5.25 6.41 5.19 6.78 5.34 6.60 5.19

Table 4: Constant Variance Model: Empirical Power
Test T jd0 0:60 0:65 0:70 0:75 0:80 0:85 0:90 0:95

250 100.00 100.00 99.99 99.46 95.21 77.76 46.43 19.27
t (d1) 500 100.00 100.00 100.00 100.00 99.85 96.63 73.14 29.91

1000 100.00 100.00 100.00 100.00 100.00 99.96 94.38 47.40

250 100.00 100.00 99.99 99.50 95.25 77.94 47.17 19.88
tW (d1) 500 100.00 100.00 100.00 100.00 99.84 96.57 73.41 30.16

1000 100.00 100.00 100.00 100.00 100.00 99.96 94.53 47.75
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Table 5: Single Variance Shift Model: Empirical Power of tW (d1) test
� � T jd0 0:60 0:65 0:70 0:75 0:80 0:85 0:90 0:95

250 100.00 100.00 99.93 99.09 93.14 74.26 43.94 19.17
0:1 5 500 100.00 100.00 100.00 100.00 99.78 95.03 69.42 28.28

1000 100.00 100.00 100.00 100.00 100.00 99.90 92.38 44.41

250 91.95 83.61 71.83 59.03 44.78 31.46 20.83 12.40
0:2 500 99.57 98.14 92.62 81.47 64.16 44.88 27.28 14.14

1000 100.00 99.95 99.89 97.74 88.35 67.38 40.14 17.12

250 100.00 99.80 98.24 91.84 77.22 54.64 31.43 14.84
0:5 5 500 100.00 100.00 99.99 99.73 96.17 80.40 50.62 20.69

1000 100.00 100.00 100.00 100.00 99.93 97.54 76.18 30.59

250 99.96 99.81 98.28 91.83 77.03 55.15 31.29 14.90
0:2 500 100.00 100.00 100.00 99.68 96.18 81.40 49.81 20.61

1000 100.00 100.00 100.00 100.00 99.99 97.43 77.14 31.40

250 90.23 81.30 69.93 56.69 43.55 30.37 19.84 12.65
0:9 5 500 99.44 97.53 91.56 80.34 62.89 43.63 26.51 13.91

1000 100.00 99.98 99.63 97.13 87.54 66.99 39.62 17.12

250 100.00 100.00 99.97 99.10 93.22 75.15 44.34 19.04
0:2 500 100.00 100.00 100.00 100.00 99.79 95.14 69.85 28.54

1000 100.00 100.00 100.00 100.00 100.00 99.88 92.43 44.39

Table 6: Double Variance Shift Model: Empirical Power of tW (d1) test
� � T jd0 0:60 0:65 0:70 0:75 0:80 0:85 0:90 0:95

250 100.00 100.00 99.94 99.02 93.37 75.05 44.24 19.36
0:05 5 500 100.00 100.00 100.00 100.00 99.80 95.18 69.58 28.58

1000 100.00 100.00 100.00 100.00 100.00 99.91 92.46 44.76

250 91.36 82.84 71.63 58.39 45.07 31.54 21.14 12.13
0:2 500 99.47 97.67 92.32 81.22 63.78 44.19 27.39 13.79

1000 100.00 99.98 99.78 97.23 88.80 65.78 39.72 17.00

250 91.70 83.99 72.56 60.04 44.85 32.39 21.13 12.47
0:45 5 500 99.71 97.96 92.43 81.78 64.10 45.66 26.48 14.29

1000 100.00 99.98 99.75 97.55 88.47 67.46 39.83 17.36

250 100.00 100.00 99.90 99.02 93.20 74.36 43.75 19.00
0:2 500 100.00 100.00 100.00 100.00 99.77 95.33 69.73 28.26

1000 100.00 100.00 100.00 100.00 100.00 99.91 92.63 44.50
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Table 7: Trending Variances Model: Empirical Power of of tW (d1) test
m � T jd0 0:60 0:65 0:70 0:75 0:80 0:85 0:90 0:95

250 100.00 99.99 99.79 97.86 89.12 68.37 40.01 17.86
1 5 500 100.00 100.00 100.00 100.00 99.41 91.96 63.69 26.00

1000 100.00 100.00 100.00 100.00 99.99 99.74 88.75 39.96

250 100.00 100.00 99.76 97.99 89.37 69.64 40.37 17.52
0:2 500 100.00 100.00 100.00 100.00 99.37 92.33 63.74 25.91

1000 100.00 100.00 100.00 100.00 100.00 99.65 88.79 40.34

250 100.00 99.92 98.96 94.76 81.73 59.86 34.72 15.98
2 5 500 100.00 100.00 100.00 99.84 97.70 84.96 54.76 22.67

1000 100.00 100.00 100.00 100.00 99.97 98.71 81.06 34.29

250 100.00 100.00 99.89 98.66 91.41 72.48 42.17 18.29
0:2 500 100.00 100.00 100.00 100.00 99.62 94.18 66.82 27.30

1000 100.00 100.00 100.00 100.00 100.00 99.80 90.85 42.54

Table 8: Constant Variance Model: Empirical Size and Power
Test T jd0 1 0:95 0:9 0:85 0:8 0:75 0:7 0:65 0:6

250 5.11 20.00 47.96 76.15 93.11 98.60 99.82 99.96 100.00

t
�
d̂1
�

500 4.76 30.61 72.79 95.39 99.61 99.98 100.00 100.00 100.00

1000 5.43 48.10 93.12 99.85 100.00 100.00 100.00 100.00 100.00

250 5.39 20.37 48.54 76.47 93.08 98.61 99.81 99.96 100.00

tW
�
d̂1
�

500 4.90 30.94 72.80 95.45 99.62 99.98 100.00 100.00 100.00

1000 5.46 48.38 93.13 99.86 100.00 100.00 100.00 100.00 100.00
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Table 9: Single Variance Shift Model: Empirical Size and Power
t
�
d̂1
�

tW
�
d̂1
�

� � T jd0 1 1 0:95 0:90 0:85 0:80 0:75 0:70 0:65 0:60

250 6.06 5.63 19.57 46.03 73.40 91.07 97.99 99.65 99.97 100.00
0:1 5 500 5.86 5.18 29.19 69.25 93.81 99.50 99.96 100.00 100.00 100.00

1000 6.39 5.64 45.58 91.18 99.79 100.00 100.00 100.00 100.00 100.00

250 25.63 8.39 14.87 24.42 35.59 48.56 61.89 72.56 81.53 88.46
0:2 500 25.42 6.39 16.10 30.52 48.51 65.15 80.40 90.25 95.67 98.39

1000 24.46 6.01 19.44 42.09 68.30 86.94 96.02 99.14 99.81 99.99

250 12.25 6.44 16.50 34.72 56.21 76.33 89.36 96.18 98.86 99.56
0:5 5 500 11.84 5.64 22.08 51.43 80.12 94.67 99.12 99.93 99.98 100.00

1000 11.53 5.29 32.68 75.44 96.34 99.82 99.99 100.00 100.00 100.00

250 12.00 6.32 16.14 34.51 56.95 76.59 89.47 96.35 98.64 99.59
0:2 500 11.22 5.37 22.67 52.04 80.47 94.68 99.02 99.90 100.00 100.00

1000 11.77 5.52 32.60 74.99 96.48 99.84 100.00 100.00 100.00 100.00

250 25.64 8.43 14.60 23.50 34.56 46.99 60.75 71.85 80.47 87.21
0:9 5 500 24.92 6.75 16.24 29.37 47.37 64.94 79.45 89.64 94.79 97.83

1000 24.70 6.35 18.96 41.31 66.70 86.26 95.80 98.94 99.79 99.96

250 6.23 5.73 19.68 46.13 73.72 91.39 97.78 99.63 99.93 99.99
0:2 500 5.59 4.95 28.86 69.89 93.89 99.36 99.96 100.00 100.00 100.00

1000 6.10 5.40 45.48 91.23 99.70 100.00 100.00 100.00 100.00 100.00

Table 10: Double Variance Shifts Model: Empirical Size and Power
t
�
d̂1
�

tW
�
d̂1
�

� � T jd0 1 1 0:95 0:90 0:85 0:80 0:75 0:70 0:65 0:60

250 5.93 5.37 19.52 46.38 73.80 91.39 98.06 99.61 99.96 100.00
0:05 5 500 5.64 4.95 29.01 69.69 94.02 99.37 99.96 100.00 100.00 100.00

1000 6.16 5.35 45.47 90.97 99.71 100.00 100.00 100.00 100.00 100.00

250 25.10 8.04 14.91 23.45 34.64 48.30 61.27 72.01 81.02 88.32
0:2 500 25.02 6.83 15.68 30.37 47.82 65.47 80.21 90.14 95.54 98.20

1000 25.09 6.09 19.80 42.46 67.28 87.23 95.83 98.90 99.81 99.98

250 25.24 8.34 14.45 24.04 36.09 49.24 62.07 72.75 82.17 89.12
0:45 5 500 25.01 6.58 15.64 30.64 47.70 66.10 80.30 90.35 95.54 98.26

1000 25.73 5.79 19.26 42.06 67.94 86.61 95.95 98.87 99.83 99.99

250 5.94 5.34 19.99 46.42 73.39 90.93 97.84 99.61 99.95 100.00
0:2 500 6.09 5.50 28.99 69.77 93.80 99.45 99.95 100.00 100.00 100.00

1000 6.10 5.39 45.43 91.06 99.77 100.00 100.00 100.00 100.00 100.00
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Table 11: Trending Variances Model: Empirical Size and Power
t
�
d̂1
�

tW
�
d̂1
�

m � T jd0 1 1 0:95 0:90 0:85 0:80 0:75 0:70 0:65 0:60

250 7.54 5.62 18.87 42.61 67.75 87.21 96.41 99.12 99.88 99.98
1 5 500 7.58 5.56 26.85 64.10 90.59 98.68 99.90 100.00 100.00 100.00

1000 7.73 5.53 41.30 87.40 99.31 99.99 100.00 100.00 100.00 100.00

250 8.04 6.02 18.78 42.61 69.02 87.45 96.06 99.26 99.77 99.99
0:2 500 7.12 5.03 27.34 64.58 90.75 98.62 99.86 100.00 100.00 100.00

1000 7.63 5.36 41.00 86.99 99.33 100.00 100.00 100.00 100.00 100.00

250 10.45 5.84 17.63 37.36 60.31 80.45 92.60 97.58 99.36 99.81
2 5 500 10.57 5.83 23.59 55.88 84.03 96.47 99.56 99.95 99.99 100.00

1000 10.39 5.57 35.68 79.98 97.85 99.92 99.99 100.00 100.00 100.00

250 7.13 5.94 19.34 44.36 71.97 89.46 97.12 99.53 99.90 99.99
0:2 500 6.27 4.74 28.47 67.35 92.73 99.17 99.90 100.00 100.00 100.00

1000 6.70 5.54 43.60 89.40 99.56 100.00 100.00 100.00 100.00 100.00
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