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Abstract

This paper analyzes the issues related to the estimation of common time trend breaks in large
panel data. The break parameters are speci�ed to be local to zero. In that case, the common
components creating strong cross equation dependence can be consistently estimated without
knowing the break date. Subtracting these common components estimates from the original
observations removes the cross equation correlation asymptotically. The common break date
estimate obtained by minimizing the sum of squared residuals over all permissible break dates
after the subtraction of the common components estimates achieves a faster rate of conver-
gence than the one obtained without the subtraction. The limiting distribution of the common
break date estimate is provided so that con�dence intervals can be formed. Some Monte Carlo
simulation results are reported to support the asymptotic results.
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1 Introduction

Exploiting panel structure for time series analysis has become very popular and successful in econo-

metrics, especially in the area of unit root and cointegration tests. Such an e¤ort is relatively scarce

but growing in the area of structural breaks. The purpose of this paper is to propose a new esti-

mation method for a common structural break in time series panel data.

A distinct feature of time series panel data is that there is not necessarily a cross sectional

relationship among individuals but they still possess in common a certain aspect of their time

series properties, for example, the sum of the autoregressive coe¢ cients or the timing of a structural

break. Panel data naturally o¤ers a more e¢ cient method of inference for this common aspect.

The e¢ ciency gain is often the greatest when the cross sectional units are independent. However,

numerous empirical studies have reported there exist common factors in many time series panels

such as multicountry or multistate data. Common factors typically create strong cross equation

dependence and make inference more challenging.

Kim (2010) proposed an estimation procedure for a common deterministic trend break in large

panels with strong cross equation dependence. The estimation method proposed is simply to

minimize the sum of squared residuals for all permissible break dates. Kim (2010) reports the

rate of convergence and the limiting distribution of this simple common break date estimate under

various sets of assumptions on the error process. One of the main results in Kim (2010) is that,

in the presence of strong cross equation dependence, the rate of convergence of the common break

date estimate is only as fast as the one obtained with one time series.

This paper continues from where Kim (2010) has stopped. Hence, the model will be essentially

the same, that is, the dependent variable in each equation consists of a deterministic trend and an

error component. The deterministic trend is assumed to have a change in the slope, intercept or

both. The error process has the common factor structure so that the cross equation correlation is

of very strong form.

However, we modify the model in two important ways in this paper. First, we assume that the

break date in each equation is a random draw from a common distribution and thus it can vary

across equations. The identical break date assumption in Kim (2010) is only a special case of the

current setup. Since the individual break date varies across equations, its mean is referred to as

the common break date, and the main focus of paper is on the estimation of this mean.

The second modi�cation speci�es the break parameters (i.e. changes in the intercept and slope

parameters) to be local to zero. Under this local to zero parameterization, the trend breaks are

small enough not to interfere with the estimation of the common components but large enough for
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the estimation of the common break date. In particular, we take the principal component estimate

analyzed by Bai and Ng (2002, 2004) and Bai (2003). We show that these estimates for the common

components are consistent even if the breaks in the trend functions are ignored in the estimation

procedure, and thus can e¤ectively eliminate the strong cross sectional dependence when subtracted

from the original observations. The common break date estimate obtained after the subtraction

achieves a faster rate of convergence than the one obtained without the subtraction.

Another implication of the local break assumption is that our asymptotic results may not

be suitable when the breaks are large. However, this does not diminish the usefulness of the

new procedure. If the breaks are large, the common components estimates will not be consistent

anymore and cannot remove the cross sectional dependence properly. However, subtraction of the

common components estimates preserves the break date, and the common break date estimate

from the data after subtraction still performs well, since the breaks are anyway large. Also, our

Monte Carlo simulation results suggest that the new procedure o¤ers meaningful improvements

over a wide range of break parameters, although the advantage is especially pronounced for small

to medium size breaks with which Kim�s (2010) simple estimator may show less than mediocre

performance.

The limiting distribution of the new break date estimate resembles that of Kim (2010) in that

it is normal when only a slope change is allowed and somewhat non-standard when both intercept

and slope changes are allowed. However, the biggest di¤erence is that the limiting distribution of

the common break date estimate depends on the distribution from which the individual break dates

are drawn. Hence, this limiting distribution can be used with an assumption on the distribution of

the individual break date, including the one that all break dates are identical.

We suggest a convenient way to form asymptotically valid con�dence intervals based on the

limiting distributions derived in the paper. The validity of the limiting distributions depends on

the adequacy of the local to zero break assumption. When the breaks are indeed large, alternative

limiting distributions can be derived. However, the con�dence interval formed following our sugges-

tion is asymptotically valid regardless of the magnitude of the breaks. Hence, empirical researchers

do not need to know if the local to zero assumption is proper or not for a given panel of data.

The remainder of the paper is organized as follows. Section 2 presents the models and assump-

tions. Section 3 contains the details of the proposed estimation procedure and the main theoretical

results including the asymptotic distribution of the common break date estimate. Section 4 shows

some Monte Carlo experiment results. Section 5 o¤ers a brief empirical illustration. Section 6

concludes. All proofs and technical derivations are collected in the appendix.
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2 Models and Assumptions

We consider the models that are analyzed in Kim (2010). The dependent variable in each equation

consists of a deterministic time trend and an error component:

yti = dti + uti, (i = 1; : : : ; N and t = 1; : : : ; T )

The deterministic trend is assumed to have a break and we consider three cases:

dti =

8>>><>>>:
�i + �it+ 
iBti

�i + �it+ �iCti + 
iBti

�i + �it+ �iCti

Model I (Joint Broken Trend)

Model II (Local Disjoint Trend)

Model III (Mean Shift)

where

Cti =

8<: 0

1

if t � Ti
if t > Ti

and Bti =

8<: 0

t� Ti

if t � Ti
if t > Ti

.

Note that the break dates Ti i = 1; : : : ; N , can be di¤erent across equations, but we assume

that they are drawn from the same distribution.

Assumption 1 For each i, the true break date Ti is such that Ti = T0 + �Ti where �Ti is an

integer valued random variable identically and independently distributed with zero mean and �nite

variance �2b , and the break fraction �0 = T0=T 2 [�; 1� �], � 2 (0; 1=2) is �xed for all T .

The mean of the individual break date, T0 will be referred to as the common break date, and

is the main object of interest in this paper. Kim (2010) assumed that the break dates are exactly

identical in all equations. This is equivalent to the case where �2b = 0 in our model, and thus the

current assumption is more general. The motivation for this generalization is that even if all breaks

are caused by one common event, the time lag from the onset of the cause to the actual occurrence

of a trend change can vary across equations. Another implication of the above assumption is that

all the breaks occur at the same time if they are viewed as a fraction of the entire time span, that

is, supi jTi=T � �0j
p! 0, as (N;T )!1 and N=T 2 ! 0.

The trimming of the location of �0 by � is a simple device to ensure that the regressor matrix

be of full column rank and � can be arbitrarily small in practice. Kim (2010) points out an

identi�cation issue in Model II that if �i = �
i or 0, there are two break dates that can generate
exactly the same time trend. We assume in the following that �i is neither �
i nor 0.

The error component uti is such that

uti = h
0
iFt + eti (1)
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where Ft is a r � 1 vector of latent common factors, hi is a factor loading and eti is an individual
speci�c error. We make the following assumptions on the error component:

Assumption 2 (i) The vector of common factors Ft is such that Ft = C(L)wt where wt �
iid(0; Ir), Ejjwtjj4 <1 and C(L) =

P1
j=0CjL

j with
P1
j=0 j jjCj jj < M and det(C(z)) 6= 0 for all

jzj � 1.
(ii) For each equation i, the individual speci�c error eti is such that eti = di(L)"ti where di(L) =P1
j=0 dijL

j with di0 = 1,
P1
j=0 j jdij j < M and di(z) 6= 0 for all jzj � 1. Furthermore, eti is

independent across i and for each i, "ti � iid(0; �2i ) where �8i < M .
(iii) Ft and eti are independent.

This set of assumptions is identical to the one in Kim (2010) except that it requires higher

moments of wt and "ti to exist for the estimation of common components. We also make the

following assumptions for the break parameters and the factor loadings. De�ne H = [h1; : : : ; hN ],

� = (�1; : : : ; �N ) and 
 = (
1; : : : ; 
N ).

Assumption 3 (i) 
 = N�1=2 _
 and � = N�1=2 _�.

(ii) ��0 ! _A�� 6= 0, 

0 ! _A

 6= 0, �
0 ! _A�
, N�1HD�"D _

0 ! SH _
, N�1HD�"DH 0 !

SHH 6= 0 and 
D�"D
0 ! _S

 6= 0, where �" = diagf�21; : : : ; �2Ng and D = diagfd1(1); : : : ; dN (1)g.
(iii) maxf _�21; : : : ; _�

2
Ng = O(1), maxf _
21; : : : ; _
2Ng = O(1).

(iv) Let ��1 = limN N
�1PN

i=1(
��
2
i + �

2
b _

2
i )�i and ��2 = limN N

�1PN
i=1 �


2
i�i where ��i is the i

th

element of (I �H 0(HH 0)�1H) _�
0
, �
i is the i

th element of (I �H 0(HH 0)�1H) _
0 and �i is any �nite

size matrix whose (p; q) element is the autocovariance of eti at p� q lag.
(v) hi is such that N�1H _
0 ! AH _
 6= 0, N�1HH 0 ! AHH 6= 0, and N�1H _�

0 ! AH _� 6= 0,

where AH
, AHH , and AH _� are some �xed matrices.

(vi) N�1PN
i=1 _


4
i ! _A



, N�1PN

i=1 _

3
ihi ! AH _
 _
 _
, and N�1PN

i=1 _

2
ihih

0
i ! AH _
 _
H

The break parameters 
 and � are local to zero at rate
p
N . This is di¤erent from Kim (2010)

where the break parameters are �xed constants.

Now, we write each equation in a matrix form as

Yi
(T�1)

= di
(T�1)

+ Ui
(T�1)

= di
(T�1)

+ F
(T�r)

hi
(r�1)

+ Ei
(T�1)

where Yi = (yi1; : : : ; yiT )0, di = (d1i; : : : ; dTi)0 and Ui = (u1i; : : : ; uTi)0. The entire system is written

as

Y = d+ U = d+ FH + E

where Y = [Y1; : : : ; YN ], d = [d1; : : : ; dN ], U = [U1; : : : ; UN ], H = [h1; : : : ; hN ], F = [F1; : : : ; FT ]
0,

and E = [E1; : : : ; EN ].
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3 Estimation of the Common Break Date

The common break date estimate analyzed in Kim (2010) is obtained by simply minimizing the

sum of squared residuals for all permissible break dates. Denote by Tb a generic break date and

by � = Tb=T a generic break fraction. Now, we de�ne regressors. � = (1; : : : ; 1)0, � = (1; : : : ; T )0,

C(Tb) = (C1(Tb); : : : ; CT (Tb))
0, and B(Tb) = (B1(Tb); : : : ; BT (Tb))0 where

Ct(Tb) =

8<: 0

1

if t � Tb
if t > Tb

and Bt(Tb) =

8<: 0

t� Tb

if t � Tb
if t > Tb

.

Also, de�ne XTb to be the collection of these regressors, that is,

XTb =

8>>><>>>:
[�; � ; B(Tb)]

[�; � ; C;B(Tb)]

[�; � ; C(Tb)]

Model I

Model II

Model III

Then, the simple break date estimate T̂0 is the date that minimizes the sum of squared residuals:

T̂0 = argmin
Tb

SSR(Tb) and �̂ = T̂0=T (2)

where SSR(Tb) = tr [Y 0(I � PTb)Y ] and PTb = XTb(X 0
Tb
XTb)

�1X 0
Tb
.

One of the main results in Kim (2010) is that common factors with factor loadings correlated

with the slope parameters, in the sense that AH _
 6= 0 and AH _� 6= 0, slow down the rate of

convergence of the break date/fraction estimate. In particular, the rate of convergence in the

presence of such common factors is only as fast as the one achieved with one time series.

The main idea of this paper is to use the fact that the local breaks speci�ed in Assumption 3 are

large enough for the purpose of break date/fraction estimation but small enough not to interfere

with the estimation of the common components. Hence, we �rst estimate the common components

with ignoring the existing trend breaks, and then subtract these common components estimates

from the original observations to eliminate the cross equation dependence. The break date is

estimated from these observations less the common components estimates. The exact procedure is

as follows.

1. Take a di¤erence and subtract the individual sample mean of the data: ��yti = yti � yt�1i �
(yTi�y1i)=(T�1) for t = 2; : : : ; T and i = i; : : : ; N . Let the data matrix after �rst di¤erencing
and demeaning be ��Y . That is, ��Y = [��yti], which is (T � 1)�N .
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2. Estimate the common factors: Compute f̂ = [f̂2; : : : ; f̂T ]0, the principal component estimate

for f = [f2; : : : ; fT ]0 where ft = Ft � Ft�1 � (FT � F1)=(T � 1). This is
p
T � 1 times the r

eigenvectors corresponding to the �rst r largest eigenvalues of the (T � 1) � (T � 1) matrix
��Y��Y 0. Let the partial sums of f̂t be

F̂t =

tX
s=2

f̂s, t = 2; 3; : : : (3)

Then, F̂ = [F̂2; : : : ; F̂T ]0 is the estimate for the common factor matrix F = [F2; : : : ; FT ]0.

3. Estimate the factor loadings: Under the normalization f̂ 0f̂=(T�1) = Ir, the estimated loading
matrix is Ĥ 0 = (T � 1)�1��Y 0f̂ .

4. Subtract F̂ Ĥ, the common components estimate from Y = [yti] for t = 2; : : : ; T and i =

i; : : : ; N , the original series without the �rst observations.

5. Estimate the break date by minimizing the sum of the squared residuals over the possible

break dates: eT0 = argmin
Tb

SSR(Tb) and e� = eT0=T (4)

where SSR(Tb) = tr
h
Ŷ 0(I � PTb)Ŷ

i
and Ŷ = Y � F̂ Ĥ.

Because the estimation procedure described above ignores the existing break, the consistency

results established in Bai and Ng (2004) are not directly applicable. In particular, Step 1 does not

eliminate all deterministic components because of the breaking trends. However, we show that the

estimated factors are consistent for the true factors scaled by a nonsingular rotation matrix R, if

a deterministic term ��t;T , which is some linear combination of the neglected breaking trends, is

subtracted from them. This result does not require the break parameters to be local to zero. Let

CN;T = minf
p
N;
p
Tg.

Lemma 1 Let ��dt = (��dt1; : : : ;��dtN )0 with ��dti = dti� dt�1i� (dTi� d1i)=(T � 1) and f̂t be
the principal component estimate for ft de�ned in Step 2 above. Suppose that Assumptions 1 and

2 hold. Then, there exist a square matrix R with rank r and a r � 1 vector ��t;T , each element of
which is some linear combination of ��dt, such that as N , T !1,

1

T

TX
t=2




(f̂t ���t;T )�R0ft


2 = Op �C�2N;T� .
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One implication of the above lemma is that the common factor estimate f̂t includes a de-

terministic term ��t;T , so does F̂t, the partial sum of f̂t. De�ne �T = [�2;T ; : : : ; �T;T ]
0 with

�t;T =
Pt
j=2��j;T . Then, we naturally write the new data Ŷ as

Ŷ = d+ U � F̂ Ĥ = d̂+ Û (5)

where

d̂ = d� �T Ĥ

Û = E + FH � (F̂ � �T )Ĥ

The decomposition that will play a key role is:

SSR(Tb)� SSR(T0)

= tr
h
d̂0(PT0 � PTb)d̂

i
+ 2 tr

h
d̂0(PT0 � PTb)Û

i
+ tr

h
Û 0(PT0 � PTb)Û

i
� (X̂X̂) + 2(X̂Û) + (Û Û) (6)

The consistency and the rate of convergence of the common break date estimate can be shown

by expressing the orders of magnitude of the three terms (X̂X̂), (X̂Û) and (Û Û) in terms of

jTb � T0j. Then, the usual argument for consistency �rst supposes that the break date estimate is
not consistent at a certain rate. Then, the term (X̂X̂), that is always positive, becomes of strictly

greater order of magnitude than the other terms, and thus the inequality

SSR( eT0)� SSR(T0) � 0 (7)

cannot hold with probability one as the sample size grows. Because the inequality in (7) must be

true by de�nition, the supposition is a contradiction and the consistency follows.

In the appendix, we show that

(PT0 � PTb)d̂ = (PT0 � PTb)dMĤ0 (8)

where MĤ0 = I � Ĥ 0(ĤĤ 0)�1Ĥ. Then, it follows that

(X̂Û) = tr
h
d̂0(PT0 � PTb)(E + FH � (F̂ � �T )Ĥ)

i
= tr

�
d0(PT0 � PTb)EMĤ0

�
+ tr

�
d0(PT0 � PTb)FHMĤ0

�
(9)

In the above equation, the second term would not exist, if there are no common factors. Hence,

as long as the estimate for factor loadings Ĥ is consistent at a fast enough rate so that the second
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term is of smaller order than the �rst, the e¤ect of the common components can be eliminated

asymptotically.

When the break parameters are local to zero, the neglected break is indeed small enough so

that the factors and loadings are consistently estimated. The relevant results are stated in the next

lemma.

Lemma 2 Let f̂t be the principal component estimate for ft de�ned in Step 2 above. Suppose that

Assumptions 1, 2, and 3 hold. Then, as N , T !1,

1

T

TX
t=2




f̂t �R0ft


2 = Op �C�2N;T� ,
and, if N=T 2 ! 0,

1p
N
(Ĥ �R�1H) _
0 = op(1) and

1p
N
(Ĥ �R�1H) _�0 = op(1)

We also need consistency of F̂t, the partial sum of f̂t, for Ft. Bai and Ng (2004) show a similar

result with no neglected trend break (See their Lemma 2 and the subsequent comment). However,

this convergence result is not tight enough for our purpose, since it is established without making

use of the fact that Ft and eti do not have a unit root. The following lemma states the convergence

of F̂t in the presence of neglected trend breaks with assuming Ft has no unit root.

Lemma 3 Let F̂t be de�ned in (3) and fat;T g be an array of constants such that

max
1�t�T

jat;T j < M <1

for all T . Suppose that Assumptions 1, 2, and 3 hold. Then, there exists a square matrix R

with rank r and �t;T , each element of which is some linear combination of a constant, t, and

dt = (dt1; : : : ; dtN )
0, such that as N , T !1,

1p
T

TX
t=2

at;T (F̂t �RFt � �t;T ) = Op
�
C�1N;T

�
Based upon Lemmas 1, 2 and 3, we derive the orders of magnitude of (X̂X̂), (X̂Û) and (Û Û).

Lemma 4 Under Assumptions 1, 2, and 3, we have for all generic Tb:

(X̂X̂) (X̂Û) (Û Û)

Model I jTb � T0j2O(T ) jTb � T0jOp(T 1=2) jTb � T0jOp(T�1N)

Model II jTb � T0j3O(1) jTb � T0j3=2Op(1) jTb � T0j1=2Op(T�1=2N)

Model III jTb � T0jO(1) jTb � T0j1=2Op(1) jTb � T0j1=2Op(T�1=2N)

8



Now, we present the �rst main result of this paper in the next theorem. It states the rate of

convergence of the break date estimate eT0 for each model as well as that of the simple break date
estimate T̂0 for comparison purpose.

Theorem 1 Let the break date estimates T̂0 and eT0 be de�ned in (2) and (4). Suppose that As-
sumptions 1, 2, and 3 hold. Then, as (T , N)!1, we have the following results.

(i) In Model I (Joint Broken Trend), if N=T ! 0 < � <1,

j eT0 � T0j = Op(T�1=2) and jT̂0 � T0j = Op(T�1=2N1=2).

(ii) In Model II (Local Disjoint Trend), if N2=T = O(1),

j eT0 � T0j = Op(1) and jT̂0 � T0j = Op(N1=3).

(iii) In Model III (Mean Shift), if N2=T = O(1),

j eT0 � T0j = Op(1) and jT̂0 � T0j = Op(N).

Remark 1 In Model I, the additional condition N=T ! 0 < � <1 can be relaxed to N=T = O(1),

if all break dates are the same.

The rate of convergence of the common break date estimate eT0 does not depend on the number
of equations N , while that of the simple break date estimate T̂0 is decreasing in N . When there is

strong cross equation dependence, the break date estimate T̂0 becomes more and more imprecise in

the sense that the rate of convergence gets slower as more equations are added into the system. One

intuitive explanation for this is that, because the break parameters and the factor loadings vary

together, that is, AH _
 6= 0 and AH _� 6= 0, the trend breaks are covered up by the common factors
similarly in all equations. Hence, each additional equation does not deliver much information on the

common break date whereas the break parameters shrink to zero making the break date estimation

more di¢ cult. On the other hand, subtraction of the consistent common components estimates

from the original data essentially eliminates the strong cross equation correlation and makes each

equation more informative about the break date, thereby allowing the break date estimate to keep

its precision despite the shrinking break parameters. This is exactly the bene�t of using eT0 over
T̂0. In the next theorem, we state the limiting distribution of e� = eT0=T .
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Theorem 2 Suppose that Assumptions 1, 2, and 3 hold. De�ne

�A�� = lim
N
N�1 _�MH0 _�

0
= _A�� �A0H _�A

�1
HHAH _�

�A

 = lim
N
N�1 _
MH0 _
0 = _A

 �A0H _
A�1HHAH _


�A
� = lim
N
N�1 _
M 0

H0 _� = _A
� �A0H _
A�1HHAH _�
�S

 = lim

N
N�1 _
MH0D�"DMH0 _
0

= _S

 �A0H _
A�1HHSH _
 � S
0
H _
A

�1
HHAH _
 +A

0
H _
A

�1
HHSHHA

�1
HHAH _


Q



 = _A



 � 2A0H _
 _
 _
A�1HHAH _
 +A
0
H _
A

�1
HHAH _
 _
HA

�1
HHAH _


where MH0 = IN �H 0(HH 0)�1H. Then, as (T , N)!1, we have the following results.

(i) Model I (Joint Broken Trend): If N=T ! 0 < � <1,

T 3=2(e�� �0) d! N

 
0;

4 �S


(1� �0)�0 �A2



+
�2bQ





� �A2



!

(ii) Model II (Local Disjoint Trend) and Model III (Mean Shift): Let ��1 and ��2 be as de�ned in

Assumption 3. Then, N1 = (N�m+1;1; : : : ; Nm;1)0 and N2 = (N�m+1;2; : : : ; Nm;2)0 are multivariate

normal such that N1 = B1W and N2 = B2W with W � N(0; I2m), ��1 = B1B01 and ��2 = B2B02.

De�ne the stochastic process V �(m) to be such that V �(0) = 0, V �(m) = V1(m) for m < 0 and

V �(m) = V2(m) for m > 0. Then, if N2=T ! 0,

T (e�� �0) d! m1
I = argmin

m
V �(m)

where, for Model II,

V1(m) =
0X

k=m+1

h�
�A�� + �

2
b
_A



�
+ �A

k

2 + 2 �A
�k
i
[1� 2P (�Ti + 1 � k)]

�2
0X

k=m+1

(N1;k + kN2;k) for m = �1;�2; : : :

V2(m) =
mX
k=1

h
( �A�� + �

2
b
_A

) + �A

k

2 + 2 �A
�k
i
[1� 2P (�Ti � k)]

+2
mX
k=1

(N1;k + kN2;k) for m = 1; 2; : : :
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and, for Model III,

V1(m) =

0X
k=m+1

�A�� [1� 2P (�Ti + 1 � k)]� 2
0X

k=m+1

N1;k for m = �1;�2; : : :

V2(m) =

mX
k=1

�A�� [1� 2P (�Ti � k)] + 2
mX
k=1

N1;k for m = 1; 2; : : : .

These limiting distributions not only involve various model parameters but also depend on the

distribution of the individual break date. This is very unfortunate because the distribution of the

individual break date cannot be estimated from the estimates of the individual break dates. The

main reason is that the individual break date estimates are obtained from only one time series and

they do not converge fast enough. Nevertheless, these limiting distributions can still be used with

an assumption on the distribution of the individual break date, including the one that all break

dates are identical.

Regression Coe¢ cients The regression coe¢ cients (�i, �i, �i, 
i) can be estimated by applying

the least squares procedure to each equation based on the estimated individual break date, the date

that minimizes the sum of squared residuals of each individual series. A standard result pertaining

to non-trending variables is that the least squares estimate has the same limiting distribution

whether one uses the true break date or the estimated one. This result obviously applies to Model

III.

For Models I and II, Theorem 6 of Perron and Zhu (2005) shows that this type of invariance

does not hold. More precisely, the least squares estimate for (�i, �i, 
i) in Model I has two di¤erent

limiting distributions depending on whether the true or the estimated break date is used, although

the rate of convergence remains the same in both cases. The exact expressions for these limiting

distributions can be found in Theorem 6 of Perron and Zhu (2005). In Model II, the least squares

estimate for (�i, �i, 
i) has the same limiting distribution in both cases. In fact, this limiting

distribution is the same as the one obtained under Model I with the estimated break date. In

contrast, the least squares estimate for �i is not consistent in Model II with the estimated break

date while it is consistent at rate
p
T with the true break date. An important consequence is that

an asymptotically valid con�dence interval for the individual break date cannot be formed since

the limiting distribution of the individual break date estimate in Perron and Zhu (2005) depends

on �i.

Now, suppose that the break dates are identical in all equations. Then, the regression coe¢ cients

(�i, �i, �i, 
i) can be estimated based on the common break date estimate eT0 instead of the
individual break date estimate. In this case, it can be shown in Model I that the limiting distribution
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of the least squares estimate for (�i, �i, 
i) using eT0 becomes the same as the one under the true
break date due to the faster rate of convergence of eT0. In other words, the common break date
estimate eT0 can be treated as if it were the true break date at least for the purpose of the regression
coe¢ cients estimation.

Using Theorem 6 in Perron and Zhu (2005), it can be shown that the least squares estimate for

�i obtained based on eT0, say e�i, is such that
e�i � �i = 
im1

I + op(1),

which means that the inconsistency of e�i is due to a term that is multiplicative of the slope change

parameter 
i. It follows that e�i � �i = Op(N�1=2) under the local to zero assumption. Given that

we require N2=T ! 0, this should be viewed as considerably slower than the
p
T rate obtained with

the true break date. Also, because _�i =
p
N�i, �A�� cannot be consistently estimated, on which the

limiting distribution of eT0 depends. Therefore, the lack of asymptotically valid con�dence intervals
for T0 in Model II remains unsolved even with a large panel of data.

Con�dence Intervals for the Common Break Date When the break dates are the same

in all equations or the distribution from which the break dates are drawn is known, the limiting

distributions for Models I and III provided in Theorem 2 can be used to form a con�dence interval

for T0. Note that the intercept and slope change parameters of Ŷ in (5) are �MĤ0 and 
MĤ0 instead

of � and 
. Hence, �A�� and �A

 can be estimated relatively easily. Let e
 and e� be the least squares
estimates of the slope and intercept change parameters of Ŷ respectively in Models I and III. Then,

we have

e
e
0 =
1

N
_
MĤ0 _


0 + op(1) = �A

 + op(1) (10)

e�e�0 =
1

N
_�MĤ0

_�
0
+ op(1) = �A�� + op(1). (11)

For Model I, �S

 = limN N�1 _
MH0D�"DMH0 _
0 should be estimated, which involves the longrun

variances of all N individual speci�c errors. It can be done by estimating N longrun variances

separately, but a more convenient method is available when we realize �S

 is the longrun variance

of the cross sectional sum of the error components weighted by the slope change parameters. From

(5), the weighted cross sectional sum of the error components is given by

ÛMĤ0

0 = EMĤ0


0 + FHMĤ0

0 =

1p
N
EMĤ0 _


0 +
1p
N
FHMĤ0 _


0

12



The second term is irrelevant since N�1=2HMĤ0 _

0 = op(1) as shown in (A.17). Note that the ith

element of the �rst term is
1p
N

X
i

eti�
i + op(1)

where �
i is the i
th element of (I �H 0(HH 0)�1H) _
0, and its longrun variance is �S

 . In practice,

conditional on eT0, detrend Ŷ . Let euti be the corresponding residual. Then, compute the longrun
variance of the weighted sum

NX
i=1

eutie
i (12)

where e
i is the least squares estimate of the slope change parameter in the ith column of Ŷ . This
longrun variance estimate is a natural estimate for �S

 .

For Model III, ��1 = limN N
�1PN

i=1
��
2
i�i should be estimated. Using a similar argument to

Model I, it can be estimated as the covariance matrix of the weighted sum

NX
i=1

eutie�i (13)

where e�i is the least squares estimate of the intercept change parameter in the ith column of Ŷ .
Upon the estimate of ��1, the process V �(m) can be simulated and the quantiles of m1

I can be

found.

Large Trend Breaks Since the asymptotic results presented above depend on the local to zero

speci�cation for the break parameters, they may not be suitable when the trend breaks are large.

However, it is important to note that Lemma 1 is valid regardless of the magnitudes of breaks,

so are the expressions in (6), (8) and (9). The factor loadings estimate Ĥ is not consistent when

the breaks are large. Then, we can see from (6), (8) and (9) that the subtraction of the common

components estimates does not eliminate the cross sectional dependence but it does not alter the

true break date either. In other words, the subtraction step yields another set of panel data which

has a common trend break exactly at the same date as before but still has strong cross equation

dependence. In that case, the common break date estimate eT0 performs similarly to the simple
estimate T̂0. The asymptotic properties of eT0 should be analyzed in the presence of strong cross
equation dependence, now. Kim (2010) provides the relevant results with assuming all break dates
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are the same. Suppose that

eAH
 = p lim
N;T

1

N
HMĤ0


0

eA

 = p lim
N;T

1

N

MĤ0


0

eA�� = p lim
N;T

1

N
�MĤ0�

0

Then, for Model I,

T 3=2(e�� �0) d! N

�
0;

4

(1� �0)�0A2


eA0H
C(1)C(1) eAH
�

where C(1) is the longrun variance of the common factors as de�ned in Assumption 2. Note thate
e
0 in (10) now gives e
e
0 � N � eA

 .
Also, the cross equation sum of the error components weighted by the slope change parameters is

such that

ÛMĤ0

0 = EMĤ0


0 + FHMĤ0

0

= EMĤ0

0 +N � F eAH
 .

Here the �rst term is irrelevant since it is only a sum of N independent terms and the longrun vari-

ance estimated from the weighted sum in (12) is asymptotically N2 � eA0H
C(1)C(1) eAH
 . Therefore,
if a con�dence interval is formed as illustrated for the local break case, it is still asymptotically

valid even for large breaks1. Now suppose that

eAH� = p lim
N;T

1

N
HMĤ0�

0

eA�� = p lim
N;T

1

N
�MĤ0�

0

and de�ne the stochastic process S�(m) such that S�(0) = 0, S�(m) = S1(m) for m < 0 and

S�(m) = S2(m) for m > 0. Then, for Model III,

T (�̂� �1)
d! m1 = argmin

m
S�(m)

where

S1(m) = eA�� jmj � 2 0X
k=m+1

F 0t eAH�, m = �1;�2; : : :

S2(m) = eA��m+ 2 mX
k=1

F 0t eAH�, m = 1; 2; : : : .

1Note the scaler N will cancel out in the expression of the asymptotic variance.
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This result means that the limiting distribution of the break date estimate depends on the distri-

bution of common factors. This is an important di¤erence from the local break case where the

limiting distribution depends on normal variates only. Nevertheless, a practical choice is to assume

Ft is multivariate normal. In that case, the cross equation sum of the error components weighted

by the intercept change parameter is such that

ÛMĤ0�
0 = EMĤ0�

0 +N � F eAH�.
Here the �rst term is again irrelevant asymptotically and the covariance matrix estimated from the

weighted sum in (13) asymptotically corresponds to that of N �F eAH�. Also, e�e�0 in (11) is such that
e�e�0 � N � eA��

Therefore, the procedure to simulate the process V �(m) will essentially simulateN times the process

S�(m), and the con�dence interval will remain asymptotically valid even for large trend breaks if

the common factors are multivariate normal.

4 Monte Carlo Simulation

The �rst experiment is to compare the two break date estimates, eT0 and T̂0 de�ned in (2) and (4).
The data is generated according to the models described in Section 2:

yti = dti + uti, (i = 1; : : : ; N and t = 1; : : : T )

uti = h0iFt + eti.

The time dimension T is set at 100, 200, 300, and 500, and the cross section dimension N is set

at 20, 50, and 100. The common factor is such that Ft = 0:6Ft�1 + wt with wt � iid N(0; 1) and
the factor loading hi is independently drawn from U(0; 2). The pre-break intercepts and slopes are

set at zero (�i = �i = 0, for all i), since the Monte Carlo results are exactly invariant to these

parameter values. More speci�cally, the deterministic component dti is speci�ed to be

dti =

8>>><>>>:

iBti

�iCti + 
iBti

�iCti

Model I

Model II

Model III.

The mean break date T0 is always 0:5T . The individual break date Ti = T0 + �Ti and �Ti is

drawn from N(0; 2) and rounded to the nearest integer. In Model I, 
i is set at 0:1, 0:3, 0:5, and

0:7 for all i. In Model II, �i and 
i are the same and are set at 0:1, 0:4, 0:7, and 1:4 for all i.
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In Model III, �i is set at 1:0, 1:4, 2:0, and 5:0 for all i. The individual speci�c error eti is mildly

autocorrelated. eti = �iet�1i + "ti, "ti � iid N(0; 1) where �i is drawn from U(0; 0:5). For each N

value, one set of f(hi;�Ti; �i), i = 1; : : : ; Ng is kept for all T values and Monte Carlo repetitions.
In all experiments, the number of replications is 2,000. The root mean squared errors (RMSE) ofeT0 and T̂0 are reported in Table 1.

Before we discuss the results, we note that the break parameters are selected ex post so that

we can cover from small to large breaks. By small breaks, we mean those breaks with which the

RMSE of the simple break date estimate T̂0 is above 15% of the time span T so that the break date

estimate may not be informative enough. By large breaks, we mean those breaks with which the

RMSE of the simple break date estimate T̂0 is less than two so that the break date is estimated

extremely precisely even without eliminating the cross sectional dependence.

A few observations are noteworthy. First, the RMSE of eT0 is always smaller than that of T̂0, as
expected from the asymptotic result in the previous section. The di¤erence is especially pronounced

for small breaks. The asymptotic result showing the superiority of eT0 depends on the small break
assumption, but this simulation result shows that eT0 still provides meaningful improvement even
with fairly large breaks. Second, the RMSE of eT0 is clearly decreasing as N increases, while no

such pattern appears for T̂0. This is because the �xed break parameters in the simulation actually

correspond to larger breaks as N increases from the standpoint of the asymptotic framework. The

rate of convergence of eT0 is not dependent of N in Theorem 1, but the RMSE of eT0 is decreasing
as we provide larger breaks. On the other hand, the RMSE of T̂0 remains very similar as N

increases, because the deteriorating performance of T̂0 due to its rate of convergence decreasing

in N is compensated by larger breaks. Third, both the common break date estimates, eT0 and T̂0
perform better in Model I than in II or III. This is a re�ection of the faster rate of convergence of

these estimates in Model I.

The second experiment is to see the �nite sample performances of the con�dence intervals

formed following the illustrations in the previous section. The data is generated the same as

in the �rst experiment except that the break dates are identical in all equations. For Model I,

the longrun variance is estimated by applying a heteroskedasticity and autocorrelation consistent

covariance matrix estimate with the Quadratic Spectral window where the bandwidth parameter

is selected using Andrews�s (1991) data dependent method with AR(1) approximation. For Model

II, the covariance matrix is estimated assuming that the weighted sum of the errors has an AR(1)

structure. For both Models I and III, the con�dence interval is forced to have a length of at least

two periods.

The coverage rates and the relative average lengths are reported in Table 2. The numbers in
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parenthesis stand for the ratio of the average lengths of the con�dence intervals for T̂0 and eT0.
For example, when 
i = 0:1, T = 100 and N = 20 in Model I, (2:70) means that the average

length of the con�dence interval for T̂0 is 2.7 times larger than that for eT0. A few observations are
noteworthy again. First, the coverage rates for eT0 are always greater than their counterparts for
T̂0, while the average lengths are far shorter, which shows a clear advantage of using eT0. However,
this does not mean that the distribution of eT0 is better approximated than that of T̂0. In fact,
the distributions of the two estimates are approximated using exactly the same tool. The better

coverage rates are simply a consequence of more precision obtained through elimination of the cross

sectional dependence. Second, the coverage rates are actually greater than the nominal 95% rate

for large breaks. This is due to the fact that we forced the intervals to be at least two periods long.

When the reported coverage rates are one in the table, the associated average length of con�dence

intervals are very close to two.

5 Empirical Illustration

A common trend break is estimated from the personal income data obtained from the Regional

Economic Information System, Bureau of Economic Analysis, U.S. Department of Commerce. The

data spans from 1960.I to 2009.I and covers 51 U.S. states. Hence, T = 197 and N = 51. We assume

that the personal income follows Model I. In order to decide the number of common factors, we

used ICp1, ICp2, and ICp3, the three information criteria suggested by Bai and Ng (2002) with the

maximum number of factors being 13. The �rst and third criteria selected 11 and 13 respectively

while the second one selected 3. Hence, we are somewhat inclined towards large numbers of common

factors, but we will report the estimated break date for a range of numbers of common factors.

Table 3 below reports the results.

The estimated break date in the U.S. aggregate personal income is 1987.Q3 with the con�dence

interval being from 1985.Q2 to 1989.Q2. From the panel of state by state personal income, the

simple common break date estimate T̂0 is 1985.Q4, which still in the mid 80�s. In fact, the two

con�dence intervals include the other estimate. However, the picture is completely di¤erent when

the common components are eliminated. When the number of speci�ed common factors is seven

or greater, the common break date estimate eT0 is in the mid 70�s, which corresponds to the date
of productivity slowdown due to the oil shock. Also, note that the con�dence interval are tighter

when we specify large numbers of common factors.

Table 3. Common Trend Break in the U.S. Personal Income, 1960.I�2009.I
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Estimated Break Date 95% Con�dence Interval

U.S. aggregate Personal Income 1987.Q3 [1985.Q2, 1989.Q2]

State by State Personal Income T̂0 1985.Q4 [1984.Q1, 1987.Q3]

eT0 r = 3 1983.Q4 [1982.Q4, 1984.Q4]

5 1982.Q3 [1981.Q2, 1983.Q4]

7 1974.Q4 [1973.Q2, 1976.Q2]

9 1974.Q3 [1973.Q1, 1976.Q1]

11 1973.Q2 [1973.Q1, 1973.Q3]

13 1975.Q3 [1975.Q2, 1975.Q4]

6 Conclusion

This paper analyzes the issues of estimating a common local break in time trends for large panels.

A novel feature of this paper is that we model the break parameters to be local to zero. Then,

the common components can be consistently estimated even if the broken trends are ignored in the

estimation procedure. These common components estimates remove the cross sectional dependence

when subtracted from the original observations. Hence the common break date estimate obtained

after the subtraction achieves a faster rate of convergence than the one obtained without the

subtraction. Another novel feature is that the break date in each equation is assumed to be a

draw from a common distribution and thus varies across equations. This is a generalization from

the identical break date assumption used in Kim (2010). Randomly drawn break date does not

change the rate of convergence of the proposed common break date estimate. However, the limiting

distribution of the common break date estimate depends on the individual break date distribution.

This is an unattractive feature for practitioners because the individual break date distribution

cannot be estimated from the estimates of the individual break dates due to their slow rate of

convergence. Nevertheless, the limiting distribution of the common break date estimate can be

used to form con�dence intervals if the individual break date distribution is known.
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<Appendix>

We assume there are T + 1 observations (t = 0; 1; : : : ; T ) for simplicity. Recall that ��yti =
yti�yt�1i�T�1(yTi�y0i) for t = 1; : : : ; T and i = i; : : : ; N . Also, let ft = Ft�Ft�1�T�1(FT �F0),
zti = eti � et�1i � T�1(eTi � e0i) and ��dti = C�ti
i for Model I, D

�
ti�i + C

�
ti
i for Model II and

D�ti�i for Model III, where D
�
ti = Dt(Ti) � T�1, Dt(Ti) = 1 if t = Ti + 1, 0, otherwise, and

C�ti = Cti�1+�i with �i = Ti=T . Then we can write ��yti = ��dti+f 0thi+zti, and ��Y = [��yti]
and ��d = [��dti], which are T �N . E(�) denotes the mathematical expectation.

Let VNT be the r � r diagonal matrix of the �rst r largest eigenvalues of (NT )�1��Y��Y 0
in decreasing order and R0 = V �1NT f̂

0(fH + ��d)H 0=(NT ). Then, f̂ 0f̂ = Op(T ), f̂ 0f = Op(T ),
N�1ĤĤ 0 = VN;T = Op(1), and R = Op(1). These results are rather straightforward and will
be used without proofs. Furthermore, note that f 0zH 0 =

PT
t=1 ftz

0
tH

0 = Op(
p
TN) and f 0z _
0 =PT

t=1 ftz
0
t _

0 = Op(

p
TN).

>From the equality that f̂ = (NT )�1��Y��Y 0f̂V �1NT , we have the following key equality.

f̂t �R0ft = V �1NT

1

NT

24 f̂ 0��d��dt + f̂ 0fH��dt + f̂ 0z��dt

+f̂ 0��dzt + f̂ 0fHzt + f̂ 0zH 0ft + f̂ 0zzt

35 (A.1)

Proof of Lemma 1: Collect the �rst three terms in (A.1) and let

��t;T =
1

NT
V �1NT

h
f̂ 0��d��dt + f̂

0fH��dt + f̂
0z��dt

i
=

1

NT
V �1NT f̂

0 [��d+ fH + z]��dt

=
1

NT
V �1NT f̂

0��Y��dt

=
1

N
V �1NT Ĥ�

�dt = (ĤĤ
0)�1Ĥ��dt (A.2)

Note that

1

T

TX
t=1




f̂t �R0ft ���t;T


2 �


V �1NT



2 1

N2T 3

TX
t=1




f̂ 0��dzt + f̂ 0fHzt + f̂ 0zH 0ft + f̂
0zzt




2
� 2



V �1NT



2 1

N2T 3

TX
t=1

�


f̂ 0��dzt


2 + 


f̂ 0fHzt + f̂ 0zH 0ft + f̂
0zzt




2�

= 2


V �1NT



2 1

N2T 3

TX
t=1




f̂ 0��dzt


2 +Op(C�2N;T )
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where the last equality is shown in Bai and Ng (2002). Then, without loss of generality, for Model
II,




f̂ 0��dzt


 =







TX
s=1

f̂s

NX
i=1

(C�si
i +D
�
si�i) zti







�

"
TX
s=1




f̂s


2#1=2 " TX
s=1

(
NX
i=1

(C�si
i +D
�
si�i) zti)

2

#1=2
= Op(

p
T )Op(

p
TN)

= Op(T
p
N) (A.3)

because

E(
NX
i=1

(C�si
i +D
�
si�i) zti)

2 =

NX
i=1

(C�si
i +D
�
si�i)

2 Ez2ti = O(N),

where 
is and �is are treated as �xed constants. Therefore,

1

N2T 3

TX
t=1




f̂ 0��dzt


2 = Op(N�1)

and the claim in the lemma follows.

Derivation of (8): We show this equation for Model II only. The other models are only a special
case. From (A.2), ��t;T = (ĤĤ 0)�1Ĥ��dt, and

�t;T = (ĤĤ 0)�1Ĥ
tX
s=1

��ds = (ĤĤ
0)�1Ĥ

tX
s=1

0BBBBBBBBBB@

D�s1�1 + C
�
s1
1

...

D�si�i + C
�
si
i

...

D�sN�N + C
�
sN
N

1CCCCCCCCCCA

= (ĤĤ 0)�1Ĥ

0BBB@
...�

Cti � t
T

�
�i + (Bti � (1� �i)t) 
i

...

1CCCA
since �t;T =

Pt
j=2��j;T . Hence, for any generic Tb,

(I � PTb)�T Ĥ = (I � PTb)dĤ 0(ĤĤ 0)�1Ĥ

and (8) follows from noting that PT0 � PTb = (I � PTb)� (I � PT0). �
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Proof of Lemma 2: Without loss of generality, consider only Model II.

1

T

TX
t=1

k��t;T k2 =
1

T

TX
t=1





 1N V �1NT Ĥ�
�dt





2 (A.4)

� 1

N2



V �1NT



2 


Ĥ


2 1
T

TX
t=1

k��dtk2

=
1

N2



V �1NT



2 


Ĥ


2 1
T

TX
t=1

NX
i=1

��d2ti

� 2

N3



V �1NT



2 


Ĥ


2 1
T

TX
t=1

NX
i=1

(D�si _�i)
2 +

2

N3



V �1NT



2 


Ĥ


2 1
T

TX
t=1

NX
i=1

(C�si _
i)
2

= Op(N
�1)

and therefore
1

T

TX
t=1




f̂t �R0ft


2 = Op(C�2N;T ).
For the second result, note that

Ĥ �R�1H =
1

T
f̂ 0
�
fR� f̂ +��

�
R�1H +

1

T
f̂ 0z +

1

T
f̂ 0��d� 1

T
f̂ 0��R�1H,

and thus we show that

(Ĥ �R�1H) _
0 =
1

T
f̂ 0
�
fR� f̂ +��T

�
R�1H _
0 +

1

T
f̂ 0z _
0 (A.5)

+
1

T
f̂ 0��d _
0 � 1

T
f̂ 0��TR

�1H _
0

= Op(NC
�2
N;T ) +Op(

p
NC�1N;T ) +Op(

p
NC�1N;T ) +Op(

p
NC�1N;T )

First note that the second term in (A.5) is such that



 1

NT
f̂ 0z _
0





 �




 1

NT

�
f̂ � fR

�0
z _
0




+ 



 1

NT
Rf 0z _
0






�

 
1

NT

TX
t=1




f̂t �R0ft


2!1=2 1

NT

TX
t=1

k _
ztk2
!1=2

+ kRk




 1

NT
f 0z _
0






= Op(N

�1=2C�1N;T ) +Op(N
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For the third term in (A.5),
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because

1

T

TX
t=1

f̂tC
�
ti =

1

T

TX
t=1

R0ftC
�
ti +

1

T

TX
t=1

(f̂t �R0ft)C�ti

� Op(T
�1=2) +

 
1

T

TX
t=2




f̂t �R0ft


2!1=2 1
T

TX
t=1

(C�ti)
2

!2
= Op(T

�1=2) +Op(C
�1
N;T ) = Op(C

�1
N;T ) (A.7)
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The result for the fourth term in (A.5) can be shown in a similar manner.
For the �rst term in (A.5), note that
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from Lemma 1 and (A.4). Also, we have
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from Lemma B.2 of Bai (2003) and the fact that
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which is true from (A.3) combined with the local to zero break parameters. Now, the �rst term in
(A.5) is such that
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from Lemma 1, (A.8) and (A.9). Therefore, if N=T 2 = o(1),
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N
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0 = op(1)

and similarly
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Proof of Lemma 3: The partial sum of the fourth term in (A.1) is
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Here, e0i and T�1(eTi�e0i)t can be ignored since they are a constant term and a linear time trend.
Then, from (A.7),
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Similarly, the partial sum of the �fth term in (A.1) less a constant term and a linear time trend is
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The partial sum of the sixth term in (A.1) less a constant term and a linear time trend is�
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Then, it follows that
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N;T ) similarly to (A.6).

For the last term in (A.1), let 
N (s� k) = E�e0s�ek=N and RN (s� k) = Ee0sek=N . Then


N (s� k) = RN (s� k)�RN (s� k + 1)�RN (s� k � 1) +RN (s� k)
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and
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We expand the last term in (A.1) into
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Then, the partial sum of the �rst part in (A.10) is
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The last two terms in (A.11) are constant over t and can be ignored. The �rst term in (A.11) is
such that
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The second term in (A.11) has the same order of magnitude.
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Let �i(p; q; r; s) be the fourth order cumulant of esi, Eesieti = ri(s�t), �i;N (s; t) = esieti�ri(s�t)
and �N (s; k) = N

�1=2PN
i=1 �i;N (s; t). Note that
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where the second equality follows from the independence of ei across i and for the fourth equality
see Hannan (1970) page 23.

The partial sum of the second term in (A.10) is
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In (A.12), the last two terms are constants and thus ignored. The �rst two terms in (A.12) are of
the same order of magnitude.
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The partial sums of the third and �fth in (A.10) are linear in time and thus ignored. Lastly, the
partial sum of the fourth term in (A.10) less a constant and a linear time trend is
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Proof of Lemma 4: We prove Models I and II only, since Model III can be shown easily from
Model II. We begin with introducing some more notations. Let �T = diagfT�1=2; T�3=2; T�3=2g
for Model I and diagfT�1=2; T�3=2; T�1=2; T�3=2g for Model II. De�ne e�(Tb) = (e�1(Tb); : : :e�T (Tb))0
such that B(T0)�B(Tb) = (Tb � T0)e�(Tb), that is,

if Tb > T0, e�t(Tb) �
8>>><>>>:

0

(t� T0)=(Tb � T0)
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if 1 � t � T0;
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0
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1
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1

if 1 � t � T0;

if T0 + 1 � t � T:

Also, de�ne �(Tb) = (�1(Tb); : : : ; �T (Tb))0 and �(Tb) = (�1(Tb); : : : ; �T (Tb))0 where
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0
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otherwise,

if T0 > Tb, �t(Tb) =
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0

if Tb + 1 � t � T0;

otherwise.
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Note that

Cti = Ct(T0)� [Ct(T0)� Cti] = Ct(T0)� �t(Ti) (A.13)

Bti = Bt(T0)� [Bt(T0)�Bti] = Bt(T0)��Ti e�t(Ti)e�t(Ti) =
1

�Ti
�t(Ti)� Ct(Ti)

Let �i be the regression coe¢ cients for equation i, that is,

�i =

8>>><>>>:
(�i; �i; 
i)

0

(�i; �i; �i; 
i)
0

(�i; �i; �i)
0

Model I

Model II

Model III

Then, we write each equation in a matrix form as

di
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= XT0
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�i
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� Zi
(T�1)

(A.14)

where Zi = (zi1; : : : ; ziT )0 and zit = �Ti e�t(Ti)
i for Model I, �t(Ti)�i +�Ti e�t(Ti)
i for Model II
and �t(Ti)�i for Model III, using (A.13).

The entire system is written as
d = XT0�� Z

where Z = [Z1; : : : ; ZN ] and � = [�1; : : : ;�N ].
First, consider Model I,
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MĤ0�

0(XT0 �XTb)0(I � PTb)(XT0 �XTb)�
�

�2tr
�
MĤ0�
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To show (A.15), note
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because, for the �rst part,
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= (X̂Û)1 � (X̂Û)2

29



Here,
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= (Ĥ 0 �R�1H)
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from Lemma 2. (X̂Û)2 is of strictly smaller order than (X̂Û)1, although the details of the derivation
are omitted.

Now, consider a decomposition of (Û Û):
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Û 0(PT0 � PTb)Û
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0(XT0 �XTb)�T
i

= vec
��
�TX

0
T0XT0�T

��1�0
vec

�
�TX

0
T0Û Û
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>From Kim (2010), r12 and r13 are of strictly smaller order of magnitude than r14. Also, r14 =
jTb � T0jOp(T�1N).
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Now, realize that

(�FH) = FH � (F̂ � �T )Ĥ
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= Op(
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and
1

NT 2
f̂ 0��TR

�1HH 0R�10��0T f̂ = Op(N
�1C�2N;T ).

Then, we can show that r11 is of smaller order than r14. Thus, r1 = jTb � T0jOp(T�1N). A similar
argument shows that r2 = jTb � T0jOp(T�1N) and r3 = jTb � T0jOp(T�1N). Therefore, it follows
that (Û Û) = jTb � T0jOp(T�1N).
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Now Consider Model II. The di¤erence is that there is an extra regressor. Note that from (A.13)
and (A.14)

dti � �i � �it = Ct(T0)�i +Bt(T0)
i � �t(Ti)�i ��Tie�t(Ti)
i
= Ct(T0)�i +Bt(T0)
i � �t(Ti)�i � (�t(Ti)��TiCt(Ti))
i
= Ct(T0)(�i +�Ti
i) +Bt(T0)
i � �t(Ti)(�i +�Ti
i)� �t(Ti)
i
= Ct(T0)�

a
i +Bt(T0)
i � �t(Ti)�ai � �t(Ti)
i

where �ai = (�i +�Ti
i). Now, consider a decomposition of (X̂X̂) similar to (A.15). Then,

(X̂X̂)11 (A.19)

= tr
�
MĤ0(�

a0�(Tb)
0 + 
0�(Tb)

0)(I � PTb)(�(Tb)�a + �(Tb)
)MĤ0
�

= �(Tb)
0(I � PTb)�(Tb) (
MĤ0


0)

+2�(Tb)
0(I � PTb)�(Tb) (�aMĤ0


0)

+�(Tb)
0(I � PTb)�(Tb) (�aMĤ0�

a0)

where �0(I�PTb)� = jTb � T0j
3O(1), �0(I�PTb)� = jTb � T0j

2O(1), and �0(I�PTb)� = jTb � T0jO(1).
The dominant term is �0(I � PTb)�, and we can have

(X̂X̂)11 = jTb � T0j3O(1).

Also,

(X̂X̂)12 = tr
�
MĤ0�

a0�(Tb)
0(I � PTb)Z

�
+ tr

�
MĤ0


0�(Tb)
0(I � PTb)Z

�
=

NX
i=1

�(Tb)
0(I � PTb)(�(Ti)
i + �(Ti)�ai )e�ai

+
NX
i=1

�(Tb)
0(I � PTb)(�(Ti)
i + �(Ti)�ai )e
i

where e�ai is the ith element of MĤ0�
a0 and e
i is the ith element of MĤ0


0. (X̂X̂)12 cannot be of
greater order of magnitude than (X̂X̂)11, because, for example,

�(Tb)
0(I � PTb)�(Ti) =

8>>><>>>:
�(Tb)

0(I � PTb)�(Tb)

�(Ti)
0(I � PTb)�(Ti)

0

if Ti > Tb > T0 or Ti < Tb < T0

if Tb > Ti > T0 or Tb < Ti < T0

otherwise

and thus it is bounded by �(Tb)0(I � PTb)�(Tb). It can be further shown that (X̂X̂)22 is of smaller
order of magnitude than (X̂X̂)11 and (X̂X̂)12, although we do not provide the details to conserve
the space.
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For (X̂Û), �rst write

(X̂Û)1 = tr
�
MĤ0(�

a0�(T0) + 

0�(T0)

0)(I � PTb)U
�

(A.20)

= tr
�
MĤ0(�

a0�(T0) + 

0�(T0)

0)(I � PTb)(FH + E)
�

It can be shown that
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�
MĤ0�

a0�(T0)
0(I � PTb)E

�
= jTb � T0j1=2Op(1)

tr
�
MĤ0


0�(T0)
0(I � PTb)E

�
= jTb � T0j3=2Op(1),

using Lemma A.2 in Kim (2010). Furthermore, (X̂Û)2 = tr
�
Z 0(PT0 � PTb)UMĤ0

�
is of smaller

order than (X̂Û)1 as in Model I. Hence (X̂Û) = jTb � T0j3=2Op(1).
For (Û Û), consider the decomposition in (A.18). Now, �T (XT0 �XTb) = [0; 0; �; jTb � T0je�b].

Using an approach similar to Model I, we obtain that (Û Û) = jTb � T0j1=2Op(T�1=2N). �

Proof of Theorem 1: Omitted since it is straightforward from Lemma 4. For a similar argument,
see Kim (2010).

Proof of Theorem 2: (i) Consider Model I. LetmT = T
1=2(Tb�T0) and D(C) = fTb : jTb � T0j <

CT�1=2g for a positive number C. On the set D(C), (X̂X̂)11 = Op(1), (X̂X̂)12 = Op(1), (X̂X̂)22 =
op(1), (X̂Û)1 = Op(1), (X̂Û)2 = op(1) and (Û Û) = op(1), if T=N ! 0 < � <1. From (A.15),
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and
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(I � Ĥ 0(ĤĤ 0)Ĥ)
0e�(Tb)0(I � PTb)Zi

= mT
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1
p
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2
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>From (A.16),

(X̂Û)1 = (Tb � T0)e�(Tb)0(I � PTb)E
0
= mT

�
1p
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e�(Tb)0(I � PTb)E(I � PĤ0) _

0
�
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Hence, on the set D(C),

m�
T = arg min

mT on D(C)

h
(X̂X̂)11 � 2(X̂X̂)12 + 2(X̂Û)1 + op(1)
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For the �rst term, it follows from the Joint Limit CLT (Theorem 3 in Phillips and Moon, 1999)
that
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0 d! N

�
0;
(1� �0)�0

4
�S



�
as N and T increase to in�nity. For the exact argument for this Joint Limit convergence, see Kim
(2010). The second term follows Lindeberg-Feller CLT
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Since these two terms are independent, we have
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This is arbitrarily close to the limiting distribution of T 3=2(e���0) since C can be any large number.
For (ii), Consider Model II. Let mT = (Tb� T0) and D(C) = fTb : jTb � T0j < Cg for a positive

number C. On the set D(C), from (A.19) and (A.20),

(X̂X̂)11 = �(Tb)
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For (X̂X̂)12,
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Hence,
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where ��i is the ith element of (I�H 0(HH 0)�1H) _�
0
and �
i is the ith element of (I�H 0(HH 0)�1H) _
0.

Furthermore, (UU) = op(1) if N2=T ! 0.
Let ��1 = limN N

�1PN
i=1(

��
2
i + �

2
b _

2
i )�i and ��2 = limN N

�1PN
i=1 �


2
i�i where �i is 2C � 2C

matrix whose (p; q) element is the autocovariance of eti at p � q lag. Also, de�ne N1 = B1W and
N2 = B2W where ��1 = B1B01, ��2 = B2B

0
2 and W � N(0; I2C).

Then, from the Lindeberg-Feller CLT and Cramer-Wold device,
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Therefore, on the set D(C), if N2=T ! 0,
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where the stochastic process V �(m) is such that V �(0) = 0, V �(m) = V1(m) for m < 0 and
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The limiting distribution of m�
T is arbitrarily close to that of T (e�� �0) for large C. �
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Table 1. Root Mean Squared Errors of T̂0 and eT0
a. Model I


i T N = 20 50 100

0:1 100 T̂0 15.71 15.01 15.49eT0 3.56 2.12 1.48

200 T̂0 8.64 8.26 8.72eT0 1.92 1.31 0.87

300 T̂0 6.18 5.95 6.28eT0 1.55 1.07 0.74

500 T̂0 4.57 4.58 4.56eT0 1.16 0.86 0.60

0:3 100 T̂0 3.83 3.60 3.85eT0 1.03 0.78 0.54

200 T̂0 2.47 2.40 2.39eT0 0.69 0.66 0.34

300 T̂0 1.96 1.86 1.95eT0 0.61 0.60 0.30

500 T̂0 1.52 1.51 1.47eT0 0.45 0.59 0.20


i T N = 20 50 100

0:5 100 T̂0 2.18 2.03 2.13eT0 0.67 0.63 0.33

200 T̂0 1.46 1.40 1.43eT0 0.46 0.62 0.19

300 T̂0 1.21 1.17 1.18eT0 0.35 0.55 0.11

500 T̂0 0.95 0.92 0.90eT0 0.21 0.51 0.05

0:7 100 T̂0 1.55 1.47 1.46eT0 0.52 0.63 0.25

200 T̂0 1.05 1.02 1.01eT0 0.32 0.58 0.14

300 T̂0 0.88 0.84 0.87eT0 0.22 0.54 0.08

500 T̂0 0.71 0.70 0.69eT0 0.09 0.51 0.00

1. Ti, the true break date in each equation is drawn from N(0:5T; 2) and rounded to the nearest interger.
2. The break date estimators, T̂0 and eT0 are de�ned in (2) and (4). 3. DGP: yti = 
iBti + h0iFt + eti,
Ft = 0:6Ft�1 +wt with wt � iid N(0; 1), hi is drawn from U(0; 2), eti = �iet�1i + "ti with "ti � iid N(0; 1),
and �i is drawn from U(0; 0:5). 4. For each N value, one set of f(hi; Ti; �i), i = 1; : : : ; Ng is kept for all T
values and Monte Carlo repetitions. 5. The number of replications is 2,000.
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Table 1. Root Mean Squared Errors of T̂0 and eT0 (continued)
b. Model II

�i and 
i T N = 20 50 100

0:1 100 T̂0 18.28 18.12 18.84eT0 7.60 5.88 4.75

200 T̂0 16.51 16.56 16.32eT0 6.24 5.03 4.10

300 T̂0 15.30 14.77 14.91eT0 5.68 4.65 3.80

500 T̂0 14.31 13.85 14.13eT0 5.52 4.31 3.44

0:4 100 T̂0 5.21 5.11 5.29eT0 2.13 1.78 1.54

200 T̂0 4.89 4.72 4.69eT0 1.95 1.65 1.42

300 T̂0 4.57 4.67 4.54eT0 1.87 1.60 1.37

500 T̂0 4.52 4.70 4.62eT0 1.80 1.52 1.36

�i and 
i T N = 20 50 100

0:7 100 T̂0 3.11 3.12 3.04eT0 1.47 1.31 1.19

200 T̂0 2.89 2.98 2.89eT0 1.42 1.29 1.15

300 T̂0 2.75 2.99 2.90eT0 1.42 1.29 1.14

500 T̂0 2.75 2.88 2.94eT0 1.38 1.25 1.14

1:4 100 T̂0 1.59 1.67 1.70eT0 1.13 1.04 1.01

200 T̂0 1.59 1.63 1.65eT0 1.15 1.05 1.00

300 T̂0 1.59 1.67 1.59eT0 1.14 1.05 1.01

500 T̂0 1.53 1.63 1.59eT0 1.13 1.05 1.00

1. Ti, the true break date in each equation is drawn from N(0:5T; 2) and rounded to the nearest interger. 2.
The break date estimators, T̂0 and eT0 are de�ned in (2) and (4). 3. DGP: yti = �iCti + 
iBti + h0iFt + eti,
Ft = 0:6Ft�1 +wt with wt � iid N(0; 1), hi is drawn from U(0; 2), eti = �iet�1i + "ti with "ti � iid N(0; 1),
and �i is drawn from U(0; 0:5). 4. For each N value, one set of f(hi; Ti; �i), i = 1; : : : ; Ng is kept for all T
values and Monte Carlo repetitions. 5. The number of replications is 2,000.
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Table 1. Root Mean Squared Errors of T̂0 and eT0 (continued)
c. Model III

�i T N = 20 50 100

1:0 100 T̂0 25.61 25.79 26.06eT0 17.30 11.34 6.40

200 T̂0 51.23 52.13 51.03eT0 19.82 4.65 1.43

300 T̂0 74.98 73.64 75.56eT0 11.05 1.92 1.28

500 T̂0 115.69 114.18 112.81eT0 3.16 1.66 1.13

1:4 100 T̂0 24.35 23.94 24.32eT0 9.88 3.54 1.18

200 T̂0 46.22 44.91 44.65eT0 4.51 1.31 0.98

300 T̂0 61.14 59.89 60.89eT0 1.92 1.23 0.94

500 T̂0 79.89 73.80 79.33eT0 1.85 1.17 0.90

�i T N = 20 50 100

2:0 100 T̂0 21.41 20.66 20.60eT0 2.45 1.25 0.93

200 T̂0 32.58 32.78 32.44eT0 1.37 1.08 0.82

300 T̂0 37.04 35.08 37.30eT0 1.29 1.02 0.79

500 T̂0 33.80 31.79 32.74eT0 1.24 1.02 0.75

5:0 100 T̂0 3.72 3.28 3.45eT0 0.99 1.02 0.83

200 T̂0 1.46 1.32 1.26eT0 0.93 0.89 0.72

300 T̂0 1.38 1.34 1.33eT0 0.89 0.87 0.66

500 T̂0 1.37 1.30 1.21eT0 0.86 0.87 0.63

1. Ti, the true break date in each equation is drawn from N(0:5T; 2) and rounded to the nearest interger.
2. The break date estimators, T̂0 and eT0 are de�ned in (2) and (4). 3. DGP: yti = �iCti + h0iFt + eti,
Ft = 0:6Ft�1 +wt with wt � iid N(0; 1), hi is drawn from U(0; 2), eti = �iet�1i + "ti with "ti � iid N(0; 1),
and �i is drawn from U(0; 0:5). 4. For each N value, one set of f(hi; Ti; �i), i = 1; : : : ; Ng is kept for all T
values and Monte Carlo repetitions. 5. The number of replications is 2,000.
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Table 2. Coverage Rates of Con�dence Intervals for T̂0 and eT0
a. Model I


i T N = 20 50 100

0:1 100 T̂0 0.66 0.65 0.64eT0 0.87 0.92 0.95

(2.70) (3.77) (5.25)

200 T̂0 0.84 0.84 0.84eT0 0.97 0.98 1.00

(3.24) (4.73) (5.65)

300 T̂0 0.91 0.91 0.89eT0 0.98 0.99 1.00

(3.27) (4.86) (5.20)

500 T̂0 0.94 0.94 0.94eT0 0.99 1.00 1.00

(3.22) (4.00) (7.63)

0:3 100 T̂0 0.86 0.86 0.85eT0 0.99 0.99 1.00

(2.53) (4.27) (4.99)

200 T̂0 0.94 0.94 0.94eT0 1.00 1.00 1.00

(2.68) (4.08) (4.18)

300 T̂0 0.97 0.96 0.96eT0 1.00 1.00 1.00

(3.46) (3.60) (3.67)

500 T̂0 0.98 0.98 0.99eT0 1.00 1.00 1.00

(3.05) (3.01) (3.05)


i T N = 20 50 100

0:5 100 T̂0 0.92 0.92 0.92eT0 1.00 1.00 1.00

(2.93) (3.20) (3.23)

200 T̂0 0.97 0.98 0.98eT0 1.00 1.00 1.00

(2.73) (2.70) (2.75)

300 T̂0 0.98 0.98 0.98eT0 1.00 1.00 1.00

(2.30) (2.26) (2.32)

500 T̂0 1.00 1.00 0.99eT0 1.00 1.00 1.00

(2.01) (2.00) (2.01)

0:7 100 T̂0 0.96 0.95 0.95eT0 1.00 1.00 1.00

(2.42) (2.38) (2.44)

200 T̂0 0.99 0.99 0.99eT0 1.00 1.00 1.00

(2.06) (2.04) (2.05)

300 T̂0 1.00 1.00 1.00eT0 1.00 1.00 1.00

(1.99) (1.99) (1.99)

500 T̂0 1.00 1.00 1.00eT0 1.00 1.00 1.00

(1.79) (1.74) (1.80)

1. Ti, the true break date in each equation is 0:5T . 2. The break date estimators, T̂0 and eT0 are de�ned in
(2) and (4). 3. The numbers in parenthesis are the average length of the con�dence interval for T̂0 over
that for eT0. 4. DGP: yti = 
iBti + h0iFt + eti, Ft = 0:6Ft�1 + wt with wt � iid N(0; 1), hi is drawn from
U(0; 2), eti = �iet�1i + "ti with "ti � iid N(0; 1), and �i is drawn from U(0; 0:5). 5. For each N value, one
set of f(hi; �i), i = 1; : : : ; Ng is kept for all T values and Monte Carlo repetitions. 6. The number of
replications is 2,000.
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Table 2. Coverage Rates of Con�dence Intervals for T̂0 and eT0 (continued)
b. Model III

�i T N = 20 50 100

1:0 100 T̂0 0.29 0.31 0.30eT0 0.42 0.71 0.91

(6.69) (8.74) (8.55)

200 T̂0 0.31 0.31 0.31eT0 0.72 0.89 0.98

(5.89) (11.84) (11.98)

300 T̂0 0.33 0.34 0.32eT0 0.83 0.90 0.99

(5.24) (12.84) (12.99)

500 T̂0 0.38 0.38 0.38eT0 0.90 0.95 0.99

(4.77) (13.50) (13.55)

1:4 100 T̂0 0.39 0.39 0.40eT0 0.79 0.97 1.00

(7.62) (8.22) (8.07)

200 T̂0 0.44 0.47 0.44eT0 0.91 0.99 1.00

(10.00) (11.12) (11.31)

300 T̂0 0.53 0.53 0.52eT0 0.93 1.00 1.00

(10.26) (12.25) (12.28)

500 T̂0 0.63 0.63 0.64eT0 0.95 1.00 1.00

(10.62) (13.00) (13.05)

�i T N = 20 50 100

2:0 100 T̂0 0.52 0.52 0.52eT0 0.98 1.00 1.00

(6.86) (6.94) (6.74)

200 T̂0 0.66 0.70 0.68eT0 0.99 1.00 1.00

(9.14) (8.95) (9.22)

300 T̂0 0.77 0.78 0.77eT0 0.99 1.00 1.00

(9.97) (9.73) (10.05)

500 T̂0 0.87 0.88 0.88eT0 0.99 1.00 1.00

(10.57) (10.41) (10.63)

5:0 100 T̂0 0.98 0.98 0.97eT0 1.00 1.00 1.00

(1.08) (1.05) (1.08)

200 T̂0 0.98 0.98 0.98eT0 1.00 1.00 1.00

(1.06) (1.04) (1.05)

300 T̂0 0.98 0.98 0.98eT0 1.00 1.00 1.00

(1.04) (1.03) (1.04)

500 T̂0 0.98 0.98 0.97eT0 1.00 1.00 1.00

(1.03) (1.01) (1.02)

1. Ti, the true break date in each equation is 0:5T . 2. The break date estimators, T̂0 and eT0 are de�ned in
(2) and (4). 3. The numbers in parenthesis are the average length of the con�dence interval for T̂0 over
that for eT0. 4. DGP: yti = �iCti + h0iFt + eti, Ft = 0:6Ft�1 + wt with wt � iid N(0; 1), hi is drawn from
U(0; 2), eti = �iet�1i + "ti with "ti � iid N(0; 1), and �i is drawn from U(0; 0:5). 5. For each N value, one
set of f(hi; �i), i = 1; : : : ; Ng is kept for all T values and Monte Carlo repetitions. 6. The number of
replications is 2,000.
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