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Abstract

It is well known that unit root limit distributions are sensitive to initial conditions in
the distant past. If the distant past initialization is extended to the in�nite past, the
initial condition dominates the limit theory producing a faster rate of convergence,
a limiting Cauchy distribution for the least squares coe¢ cient and a limit normal
distribution for the t ratio. This amounts to the tail of the unit root process wagging
the dog of the unit root limit theory. These simple results apply in the case of a
univariate autoregression with no intercept. The limit theory for vector unit root
regression and cointegrating regression is a¤ected but is no longer dominated by
in�nite past initializations. The latter contribute to the limiting distribution of the
least squares estimator and produce a singularity in the limit theory, but do not
change the principal rate of convergence. Usual cointegrating regression theory and
inference continues to hold in spite of the degeneracy in the limit theory and is
therefore robust to initial conditions that extend to the in�nite past.

Keywords: Cauchy limit distribution, cointegration, distant past initialization, in�-
nite past initialization, random orthonormalization, singular limit theory.
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1. Introduction

Early research on unit root limit theory revealed that initial conditions could play
an important role in the �nite sample performance of tests and the form of the limit
distribution. The latter role was evident in continuous record asymptotics (Phillips,
1987) and unit root asymptotics developed under distant past initializations (Phillips
and Lee, 1996; Uhlig, 1995). The importance of initial conditions in a¤ecting size
and power in inference has been particularly emphasized in recent work (Elliott, 1999;
Müller and Elliott, 2003; Elliott and Müller, 2006; Harvey, Leybourne and Taylor,
2007).
For many economic time series that wander randomly like integrated processes,

the precise initialization of the sample observations that are used in inference typically
has nothing to do with and, in principle at least, should not a¤ect the underlying
stochastic properties of the time series. Moreover, the stochastic properties of the
initiating observation must often be expected to be analogous to those of the terminal
observation. Accordingly, just as the time series may wander according to a stochas-
tic trend, the initialization itself may be regarded as the outcome of a similar random
wandering process that may have originated in the distant past. In developing as-
ymptotics that embody these properties, it is therefore of some interest to determine
the e¤ects of such conditions on the form of the limit theory and on econometric
inference.
The present contribution points out that if a distant past initialization is extended

to the in�nite past, as is frequently the case in stationary series, then the unit root
limit theory is dominated by the initial condition. This outcome is equivalent to the
tail of the unit root process wagging the dog of the unit root limit theory, an analogy
given in an early draft of this paper (Phillips, 2006). Thus, even though an invariance
principle still operates, the tail of the process determines the form of the limit theory.
In such cases, initial conditions are evidently of great signi�cance.
To �x ideas, consider the simple unit root autoregression

xt = �xt�1 + ut; t 2 f1; :::; ng ; � = 1; (1)

driven by stationary innovations ut: In order for the process xt to be uniquely de�ned
by the stochastic di¤erence equation (1) an initial condition is required. In most
cases this initial condition is taken to be a constant or a random variable with a
speci�ed distribution �see e.g. White (1958) and Anderson (1959). However, other
possibilities may be considered. Much of the theory for the stationary case (j�j < 1) is
based on the Wold decomposition xt =

P1
j=0 �

jut�j which entails an initial condition
of the form x0 =

P1
j=0 �

ju�j for (1), so that x0 and xt are comparable in distribution
and order of magnitude. When � = 1 the in�nite series in this initialization for x0
diverges almost surely. We can nonetheless consider an initial condition that is of the
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form

x0 (n) =

�nX
j=0

u�j; (2)

where �n is an integer-valued sequence increasing to in�nity with the sample size.
Clearly, the sequence �n determines how many past innovations are included in the
initial condition, with larger values of �n associated with the more distant past. As
shown below, under suitable assumptions on the innovation sequence, ��1=2n x0 (n) has
a limiting form that dominates the rate of convergence and the asymptotic distri-
bution of �̂n when �n=n ! 1. The limit distribution of �̂n is then Cauchy and
bears more similarity to autoregressions with explosive or mildly explosive roots (c.f.
Phillips and Magdalinos, 2007a, 2007b) than it does to conventional unit root limit
theory. Andrews and Guggenberger (2007) found that a similar result applies for
autoregressions with roots very close to unity and in�nite past initializations.
On the other hand, when (1) is a vector autoregression, an in�nite past initializa-

tion for the process gives rise to a singularity in the asymptotic form of the sample
moment matrix. This degeneracy is analyzed in the paper by characterizing the
degeneracy and rotating the regression coordinates in a direction orthogonal to the
initial condition. These reductions produce a limit theory for the least squares esti-
mator that has the usual n-rate of convergence but a di¤erent analytic form.
In cointegrated models involving integrated processes where initial conditions are

in the in�nite past, a similar degeneracy occurs in the limiting sample moments.
Nonetheless, the usual mixed normal limit theory for estimation of the cointegrating
matrix still applies and inference may proceed as usual in such situations. The e¤ect of
in�nite past initializations is therefore moderated in multiple regressions when there
are some unit roots. These results are relevant in practice and con�rm that there is
some robustness in cointegrating regression theory to very distant initializations. In
this respect, scalar unit root limit theory and cointegration theory are again quite
distinct.
The paper is organized as follows. Section 2 outlines the models used and formu-

lates initial conditions into three categories (recent, distant, and in�nitely distant)
determined by the inherent order of magnitude of the initialization and the extent
to which the initialization reaches into the past. Our primary interest in this pa-
per is in the third category, where in�nite past initializations are permitted. Some
preliminary results for unit root autoregressions and vector autoregressions as well
as the new limit theory for in�nitely distant past realizations are presented in Sec-
tion 2. Section 3 develops the corresponding limit theory for cointegrated systems
and explores the implications for inference. Section 4 discusses extensions to models
with deterministic trend. Proofs are given in the Appendix. Throughout the paper
standard weak convergence and unit root limit theory notation is employed.
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2. Limit Theory under Extended Initializations

2.1 Model and assumptions

Consider an RK-valued integrated process generated by

xt = Rxt�1 + ut; t 2 f1; :::; ng ; R = IK ; (3)

where ut is a sequence of zero mean, weakly dependent disturbances and x0 = x0 (n)
is an initialization based on past innovations that is possibly dependent on the sample
size n: The latter dependence enables x0 to have analogous properties to those of the
sample trajectory values fxt : t = 1; :::; ng: The following conditions facilitate the
development of a limit theory based on the Phillips - Solo (1992) framework.

Assumption LP Let F (z) =
P1

j=0 Fjz
j; where F0 = IK and F (1) has full rank.

For each s 2 Z, us has Wold representation

us = F (L) "s =
1X
j=0

Fj"s�j;
1X
j=0

j2 kFjk2 <1; (4)

where ("s)s2Z is a sequence of independent and identically distributed (0;�) random
vectors with � > 0.

We employ the usual notation 
 = F (1)�F (1)0 for the long run variance of us and
� =

P1
h=1E

�
utu

0
t�h
�
, � =

P1
h=0E

�
utu

0
t�h
�
for the one sided long run covariance

matrices.
Under (3), we may decompose xt as

xt = x0 (n) + Yt; (5)

where Yt :=
Pt

j=1 uj is an integrated process with initial condition Y0 = 0. The
asymptotic behavior of xt is governed by the order of magnitude of the initialization
x0 (n) ; which in turn depends on the behavior of �n as n!1:

Assumption IC The initial condition x0 (n) of the stochastic di¤erence equation
(3) is given by (2) with u�j satisfying Assumption LP and (�n)n2N an integer valued
sequence satisfying �n !1 and

�n
n
! � 2 [0;1] as n!1: (6)

The following cases are distinguished:

(i) If � = 0; x0 (n) is said to be a recent past initialization.

(ii) If � 2 (0;1) ; x0 (n) is said to be a distant past initialization.
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(iii) If � =1; x0 (n) is said to be an in�nite past (or in�nitely distant) initialization.

The above rates for the sequence �n are considered in view of the di¤ering impact
of the initial condition on the time series xt and least squares regression theory on
(3). Recent past initializations where � = 0 satisfy x0 (n) = Op

�
�
1=2
n

�
= op

�
n1=2

�
and do not contribute to the limiting distribution of the least squares coe¢ cient es-
timator R̂n =

Pn
t=1 xtx

0
t�1
�Pn

t=1 xt�1x
0
t�1
��1

; in the same way that constant initial
conditions are asymptotically negligible. Thus, the limit distribution of the standard-
ized and centred estimator n(R̂n� IK) is invariant to recent past initialization of the
process and has the standard form given in Phillips and Durlauf (1986). Distant past
initializations have asymptotic order x0 (n) = Op

�
n1=2

�
and are of the same order of

magnitude as the partial sum process in the functional limit theory that drives unit
root asymptotics. In consequence, the standard approach to unit root limit theory
applies but with an additional contribution from the initial condition, as shown in
Phillips and Lee (1996) for the near-integrated case.
The e¤ect of in�nite past initializations on unit root limit theory is materially

di¤erent and seems not to have been considered in the published literature, although
some results may be familiar1. The present paper makes several contributions to
this subject. First, we show that an in�nite past initialization dominates the unit
root limit theory, giving rise to a Cauchy limit distribution for the normalised and
centred least squares estimator and a limit normal distribution for the t statistic in
the univariate case. These results, which are analogous to those for an explosive
Gaussian autoregression, hold under an invariance principle. Second, for multivariate
integrated regressors the e¤ects are shown to be more complex in nature but simpler in
terms of their implications. The complexity arises because in�nite past initializations
produce an asymptotic degeneracy that gives rise to a singular least squares regression
limit theory. This singularity carries over to cointegrating regression limit theory,
where the e¤ects are important for inference because they ensure robustness of the
standard limit theory to in�nite past initial conditions, thereby simplifying the e¤ects
of initialization on inference. In this respect, there are some major di¤erences between
the e¤ects of �large�initial conditions on unit root limits and cointegration regression
theory.

2.2 Recent and distant past initializations

The following result summarizes limit theory for R̂n covering recent and distant past
initializations and is largely already familiar.

1For instance, the scalar case has been given in Yale time series lectures for some years and, as
mentioned above, Andrews and Gugenberger (2007) recently considered a very near to unity scalar
limit theory with in�nite past initializations.
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Theorem 1 Under model (3) and Assumptions LP and IC with � 2 [0;1)

n
�
R̂n � IK

�
)
�Z 1

0

dBB+0� + �

��Z 1

0

B+� B
+
�
0
��1

; as n!1 (7)

where B, B0 are independent K-vector Brownian motions with variance matrix 
;
B+� (s) = B (s) +

p
�B0 (1) and � =

P1
h=1E

�
utu

0
t�h
�
:

Remark A

(i) Under recent past initializations, � = 0 and the usual least squares regression
theory (Phillips and Durlauf, 1986; Phillips, 1988a) applies. Similar results
have been obtained (see Müller and Elliott (2003) and the references therein)
for nearly integrated processes with coe¢ cient matrix Rn = IK + C=n, C =
diag(ci) < 0, and an initial condition of the form x0 (n) =

P1
j=0R

j
nu�j: Of

course, when C = 0 this in�nite series diverges. The integrated processes of
this paper could be nested into a local to unity framework by choosing a more
�exible distant past initialization of the form

x0 (n) =
�nX
j=0

Rjnu�j where �n=n! � 2 (0;1) ;

with Rn = IK +C=n; as in Phillips and Lee (1996). Theorem 1 then specializes
that limit theory to the case where C = 0. In this sense, Theorem 1 is not new
and is included for the sake of completeness.

(ii) The Brownian motions B0 and B in Theorem 1 are independent limit processes
corresponding to partial sums that involve past and sample period innovations,
respectively. These processes are de�ned by the functional laws

�0n (s) :=
F (1)

�
1=2
n

b�nscX
j=0

"�j ) B0 (s) and �n (s) :=
F (1)

n1=2

bnscX
t=1

"t ) B (s)

given in (25) and (35) below. The composite process B+� (s) in Theorem 1
then depends on both the limiting sample trajectory B (s) and the componentp
�B0 (1) which carries the e¤ect of the initial conditions.

(iii) Theorem 1 is readily extended to include the case where a nonparametric bias
correction (Phillips, 1987) is made to the estimate R̂n involving a consistent
estimator �̂ of the one sided long run covariance matrix � that is constructed
in the usual manner from regression residuals. Expression (7) in the limit
theory is adjusted accordingly, eliminating the term in the numerator of the
matrix quotient that involves �: Evidently, the critical values corresponding to
this limit theory di¤er from those delivered by standard unit root tabulations
when � > 0, partly explaining the size distortions from distant initializations
that can occur in such cases.
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2.3 In�nite past initializations: scalar autoregression

The main contribution of the present work is the development of a limit theory under
in�nitely distant initializations, as presented in Theorems 2 and 3 below and in the
cointegration limit theory that follows in Sections 3 and 4. We start with the scalar
case.

Theorem 2 When K = 1 and Assumptions LP and IC hold with � = 1, the
following limit theory applies as n!1 :

(i)
p
�nn

�
R̂n � 1

�
) C, where C is a standard Cauchy variate.

(ii) Letting ŝ2n = n
�1Pn

t=1

�
xt � R̂nxt�1

�2
, the t-statistic satis�es

�Pn
t=1 x

2
t�1
�1=2

ŝn

�
R̂n � 1

�
) 


�2
W (1) ; (8)

where �2 = E (u2t ) and W is standard Brownian motion:

Remark B

(i) Part (ii) follows immediately from part (i) and the fact that ŝ2n = n
�1Pn

t=1 u
2
t +

Op (n
�1)!p E (u

2
t ) : Theorem 2 shows that integrated processes with in�nitely

distant initializations do not conform with the usual unit root asymptotics. The
asymptotic behavior of the least squares estimator presents more similarities to
explosive rather than unit root regression theory in the form of the limiting
distribution, its symmetry, and the rate of convergence. The latter can be
made to grow arbitrarily fast according to how far in the past of the innovation
sequence the initial condition x0 (n) is allowed to reach. If the sequence �n
is allowed to increase at an exponential rate, the least squares estimator of
Theorem 2 may achieve or even exceed the explosive consistency rate.

(ii) The limit behavior of the t-statistic also resembles the standard stationary and
Gaussian explosive cases. When the innovation sequence ut is independent,

 = E (u21), so the t-statistic has a standard normal limit distribution. An-
drews and Guggenberger (2007) derived a related result by considering local
to unity autoregressions with an in�nite past initialization based on i.i.d. in-
novations. The present result extends that theory to the unit root case with
weakly dependent innovations. Obviously, both (i) and (ii) can be used for
inference, and in the case of the t statistic consistent estimation of 
 and �2

can be accomplished by standard methods.
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(iii) It is worth pointing out that the e¤ect of the dominating initial condition in
Theorem 2 is analogous to the e¤ect of the initial condition and initial shocks
in an explosive autoregression. In that case the initial condition and shocks also
play a dominant role in determining the form of the signal, which behaves like
the square of a one dimensional random variable whose distribution depends on
the distribution of the shocks in the pure explosive case but not in the mildly
explosive case - see Phillips and Magdalinos (2007a). In the present case, the
centred least squares estimator again behaves like the ratio of two independent
random variables, one determined by the past (through B0) and one by the
future (through B). Unlike the explosive case, the limit theory involves an
invariance principle because the dominating initial condition e¤ect arises from
the functional limit law (26).

(iv) The heuristic explanation for the result in Theorem 2(i) is that when � =1 the
behavior of the time series xt=[nr] is overtaken by the one dimensional normal
random variable B0; which is not dependent on r; the limiting point in the sam-
ple trajectory corresponding to t. So the limiting trajectory of the process over
the sample period is dominated by the in�nitely distant initialization. Hence,
upon suitable scaling, the numerator of the centred least squares estimate is a
product of independent normals and the denominator is the square of one of
these normals, thereby producing a Cauchy limit distribution for the centred
coe¢ cient. Upon random normalization in the case of the t ratio, the e¤ect of
the in�nitely distant initialization cancels from the numerator and denomina-
tor, producing a Gaussian limit. In both cases, the tail of the unit root process
wags the trajectory of the process and in doing so de�nes the limit theory when
� =1 .

2.4 In�nite past initializations: vector autoregression

When the initialization is in the in�nite past (� =1), the sample moment matrix is
shown in (41) to behave asymptotically as

��1n n
�1

nX
t=1

xt�1x
0
t�1 ) B0 (1)B0 (1)

0 as n!1;

where B0 � BM (
) obtained from the functional law (25), so the limit is singular if
K � 2. A similar situation occurs in explosively cointegrated systems with repeated
roots, i.e. systems with a (possibly mildly) explosive coe¢ cient matrix that does not
have distinct latent roots � see Phillips and Magdalinos (2007b) and Magdalinos and
Phillips (2007) for details. The asymptotic singularity of the sample moment matrix
may be treated by rotating the regression coordinate system to isolate the e¤ects of
the dominant component (here the initialization x0 (n)). This coordinate rotation is
analogous to that used in Park and Phillips (1988) and Phillips (1989) for systems

7



with cointegrated regressors, but in the present case the rotation matrix is a random
matrix in the limit, corresponding to the random limit of x0 (n) ; a feature that causes
some technical complications.
To �x ideas, de�ne

H (n) =
x0 (n)�

x0 (n)
0 x0 (n)

�1=2 ; (9)

and consider aK�(K � 1) random orthogonal complementH? (n) toH (n) satisfying
H? (n)

0H (n) = 0 and H? (n)
0H? (n) = IK�1 almost surely. Although H? (n) is not

unique its outer product is uniquely de�ned by the well known identity (e.g., 8.67 in
Abadir and Magnus, 2005)

H? (n)H? (n)
0 +H (n)H (n)0 = IK a:s: (10)

Then M (n) = [H (n) ; H? (n)] is a K �K orthogonal matrix which may be used to
transform xt into a vector with the property that all but one of the regressors has a
zero initialization. Speci�cally, de�ne

zt :=M (n)0 xt =

�
H (n)0 xt
H? (n)

0 xt

�
=:

�
z1t
z2t

�
: (11)

Then, using (5), we can write z2t = H? (n)
0 x0 (n) + H? (n)

0 Yt = H? (n)
0 Yt; which

implies that z2t has initial condition zero, and

z1t = H (n)0 xt = H (n)
0 (x0 (n) + Yt) =

�
x0 (n)

0 x0 (n)
�1=2

+H (n)0 Yt

=
�
x0 (n)

0 x0 (n)
�1=2�

1 +Op

�r
n

�n

��
; (12)

under in�nite past initialization (� = 1). Thus, for large n; z1t behaves like the
quantity

�
x0 (n)

0 x0 (n)
�1=2

and is independent of t as n
�n
! 0: Thus, the new coordi-

nate system reveals that in one direction the time series behaves like an integrated
process originating at the origin (i.e., H? (n)

0 Yt), whereas in the other direction the
time series behaves like a �constant� (over t) intercept but one that has a random
diverging value as n!1; viz.

�
x0 (n)

0 x0 (n)
�1=2 � �1=2n �

B0 (1)
0B0 (1)

	1=2
:

The di¤ering behavior of these components leads to a singular regression limit
theory that corresponds to a unit root limit theory of reduced dimension (K � 1) in
one direction and an explosive limit theory in the other. The outcome is presented
in the following result.

Theorem 3 For the multivariate integrated process generated by (3) with K � 2
under Assumptions LP and IC with � = 1, the following limit theory applies as
n!1 :

n
�
R̂n � IK

�
) 	(B;B0) :=

�Z 1

0

dBB0 + �

�
H?

�
H 0
?

Z 1

0

BB0H?

��1
H 0
?; (13)
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p
n�n

�
R̂n � IK

�
H (n))

�
B0 (1)

0B0 (1)
��1=2 �

B (1)�	(B;B0)
Z 1

0

B

�
; (14)

where H? is a K� (K � 1) random orthogonal complement to B0 (1) satisfying (24),
B and B0 are independent K-vector Brownian motions with variance matrix 
 and
B (s) = B (s)�

R 1
0
B (s) ds:

Remark C

(i) Theorem 3 reveals that the least squares estimator has the usual n-rate of con-
vergence and that the initialization contributes to the asymptotic distribution
(through H?H 0

?) but does not dominate the limit theory. Thus, the e¤ect of
an in�nite past initial condition on multivariate unit root regression theory
is moderated by higher dimensional e¤ects in comparison with the univariate
case. The result of Theorem 3 bears some similarity to regression theory un-
der distant past initializations, where both the initial condition and the sample
moments of the integrated process contribute to the limiting distribution of
the least squares estimator without one dominating the other. Of course, in
the direction H (n) where the initialization dominates, the limit theory is ac-
celerated to the rate

p
n�n: When K = 1; (14) reduces to the result for the

scalar case given in Theorem 2(i) because in this case H? (n) = H? = 0;

H (n) = sign (x0 (n))) sign (B0 (1)) ;
�
B0 (1)

0B0 (1)
	1=2

= jB0 (1)j ; and then
(14) is simply

p
�nn

�
R̂n � 1

�
) C.

(ii) Interestingly, the unit root limit theory given in (13) and (14) involves the
demeaned process B (s) even though there is no intercept in the regression.
The demeaning e¤ect arises because, as shown in (12), in the direction of the
initial condition, the time series is dominated by a component that behaves like
a �constant� (i.e., H (n)0 xt � B0 (1)

0B0 (1) f1 + op (1)g), which produces the
demeaning e¤ect of an intercept in the limit theory.

(iii) The limiting distribution in Theorem 3 is singular, since the matrix

H?

�
H 0
?

Z 1

0

BB0H?

��1
H 0
?

has rank equal to K � 1. This is a manifestation in the limit theory of the
asymptotic singularity of the sample moment matrix in the original regression
coordinates.

(iv) The matrix H?
�
H 0
?
R 1
0
BB0H?

��1
H 0
? is invariant to the coordinate system

de�ning H?. Thus, the limit theory of Theorem 3 is also invariant to the choice
of coordinates.
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(v) When � is estimated nonparametrically and a corresponding bias corrected
estimate R̂+n constructed, then the limit theory for this estimate is given by
expression (13) with � = 0: This limit theory is analogous to that of a �rst order
vector autoregression with a �tted intercept and K � 1 unit roots. The reason
for the �tted intercept in this correspondence is that the implicit regression
on z1t in the new coordinate system is equivalent to regression on a constant
because z1t = H (n)

0 xt behaves like x0 (n) asymptotically.

3. Cointegration under Extended Initialization

This section considers the cointegrated system

yt = Axt + uyt; xt = xt�1 + uxt; t 2 f1; :::; ng ; (15)

where ut =
�
u0yt; u

0
xt

�0
is an m + K-vector of innovations satisfying Assumption LP,

A is an m � K matrix of cointegrating coe¢ cients, xt is a K-vector of integrated
time series and the system is initialized at some x0 (n) =

P�n
j=0 ux;�j that satis�es

Assumption IC. Under LP, the functional law n�1=2
Pbn�c

j=1 uj ) B (�) applies with B
an m+K-vector Brownian motion with variance matrix 
. We partition the limiting
Brownian motion and the various matrices associated with its variance conformably
with ut as follows: B =

�
B0y; B

0
x

�0
, F (1) =

�
Fy (1)

0 ; Fx (1)
0�0,


 =

�

yy 
yx

xy 
xx

�
and � =

�
�yy �yx

�xy �xx

�
:

Finally, we let B0 denote a K-vector Brownian motion with variance matrix 
xx
de�ned by the functional law ��1=2n

Pb�n�c
j=0 ux;�j ) B0 (�).

We will be concerned with the e¤ect of the initialization on the limit theory of
cointegration estimators and tests. These e¤ects are demonstrated in terms of the
FM regression procedure (Phillips and Hansen, 1990) and the same results apply for
other commonly used cointegration procedures. Of course, under IC(i), or recent past
initializations, the limit theory is well known to be invariant to the e¤ects of x0 (n) :
Under IC(ii), the e¤ects are manifest in the mixture process in the limit theory, so
that

n
�
Â+ � A

�
)MN

�
0;
yy:x 


Z 1

0

B+� B
+
�
0
�
; (16)

where Â+ is the FM regression estimator, 
yy:x = 
yy�
yx
�1xx
xy is the conditional
long-run covariance matrix of uyt given uxt; and B+� (s) = Bx (s) +

p
�B0 (1) as in

Theorem 2, so that Bx and B0 are independentK-vector Brownian motions with vari-
ance matrix 
xx: Result (16) follows in a straightforward way using results obtained
in the proof of Theorem 2. Since

R 1
0
B+� B

+
�
0 is the weak limit of the standardized

sample moment matrix n�2
Pn

t=1 xtx
0
t; as shown earlier, the limit theory (16) leads
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to the usual inferential theory based on the estimate Â+: Thus, the conventional
approach to inference in cointegrated systems is robust to both recent and distant
initializations. We therefore focus our attention in this section on in�nitely distant
initial conditions.
The FM regression estimator has the explicit form Â+ =

�
Ŷ +0X � n�̂+

yx

�
(X 0X)�1 ;

where X = [x01; :::; x
0
n]
0 ; Ŷ + =

�
ŷ+1

0; :::; ŷ+n
0�0 is an n � m matrix of observations of

corrected variates ŷ+t = yt � 
̂yx
̂�1xx�xt; where 
̂yx
̂�1xx and �̂+
yx are consistent esti-

mates of 
yx
�1xx and �
+
yx = �yx � 
yx
�1xx�xx; all of which may be constructed in

the familiar fashion using semiparametric lag kernel methods with residuals from a
preliminary cointegrating least squares regression on (15). The limit theory for Â+

under in�nitely distant initial conditions as given in IC(iii) is as follows.

Theorem 4 Under model (15) and Assumptions LP and IC(iii) with � = 1, we
have, as n!1

n
�
Â+ � A

�
)MN

 
0;
yy:x 
H?

�
H 0
?

Z 1

0

BxB
0
xH?

��1
H 0
?

!
; (17)

p
n�n

�
Â+ � A

�
H (n))MN

 
0;
yy:x

R 1
0
V (s)2 ds

B0 (1)
0B0 (1)

!
; (18)

where B and B0 are independent K-vector Brownian motions with variance matrix

xx, H? is a K � (K � 1) random orthogonal complement to B0 (1) satisfying (24),
Bx (s) = Bx (s) �

R 1
0
Bx (s) ds is demeaned Bx; By:x = By � 
yx
�1xxBx is Brownian

motion with covariance matrix 
yy:x independent of Bx and B0; and

V (s) = 1�Bx (s)
0H?

�
H 0
?

Z 1

0

BxB
0
xH?

��1
H 0
?

�Z 1

0

Bx

�
:

Remark D

(i) The limit distribution of Â+ is mixed Gaussian, just as in the case of recent
and distant initial conditions, and the dominating rate of convergence is order
n as usual. The dominating limit theory (17) is invariant to the in�nitely
distant initialization. Nonetheless, the initialization does a¤ect the limit theory
because the limit distribution (17) is singular and a faster convergence ratep
n�n applies in the direction of the in�nitely distant initial condition. In

that direction the limit theory is also mixed Gaussian and the mixing variate
depends on the squared norm kB0 (1)k2 = B0 (1)

0B0 (1) of the standardized
limiting initialization. Thus, while the initialization does have an e¤ect on the
limit theory, it is of secondary importance.
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(ii) As in Theorem 3, the limit theory (17) involves the demeaned process Bx (s)
corresponding to the regressor xt: Again, the demeaning is caused by the fact
that in the direction of the initial condition, the time series xt is dominated by a
component that behaves like a �constant�- in this case H (n)0 xt � B0 (1)0B0 (1)
- which acts like an intercept in the limit theory. Therefore, one material impact
of the in�nitely distant initialization is that the regression equation behaves as
if there is a �tted intercept.

4. Extensions to Models with Drift

The above discussion has considered unit root and cointegration regression models
without intercept and trend. Introducing drift to these models provides a practical
extension that produces some further new results. It will be su¢ cient to use the
cointegrating regression model to illustrate the e¤ects of drift in both the sample
observations and the initial conditions. One aspect of the results �an increase in
the degeneracy of the limit theory stemming from a drifted initialization � is not
immediate.
We take model (15), assume K > 3; and replace the generating mechanism of the

regressors by

xt = �t+ x�t ; t = 1; :::; n (19)

x�t =
tX
j=1

uxj + x
�
0; x�0 (n) =

�nX
j=0

ux;�j + ��n (20)

in which case x0 = x�0 (n) is the outcome of a random wandering process with drift
so that its stochastic order is Op (�n) ; which is analogous to that of xt: In this event,
the sample data X 0 = [x1; :::; xn] satisfy

X = � n�
0 + �nx

�0
0 + S;

where S 0 = [S1; :::Sn] with St =
Pt

j=1 uxj; � n=(1; :::; n)
0 ; and �n = (1; :::; 1)0 : As

usual, unit root regression with a �tted trend and intercept removes the e¤ects of
the initialization x�0 and the trend coe¢ cient �; and conventional theory applies with
appropriate e¤ects of the detrending being manifest in the limit theory, as shown in
Park and Phillips (1988) across a variety of models. Similar considerations apply in
the present case but with an additional complication arising from the form of the
initialization (20).
We illustrate by taking the case of FM regression applied to (15) with xt generated

as in (19). Here the limit theory is given by

n
�
Â+ � A

�
)MN

 
0;
yy:x 
H?

�
H 0
?

Z 1

0

BxB
0
xH?

��1
H 0
?

!
; (21)
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where Bx is the detrended process

Bx (r) = Bx (r)�
�Z 1

0

BxZ
0
��Z 1

0

ZZ 0
��1

Z 0 (r) ; Z (r) = (1; r)0 , (22)

so that the limit theory is entirely analogous in form to that given in (17). However, in
the present case, the additional complication stems from the fact that the directional
matrix H? has structure and rank that re�ect the presence of the time trend and the
space spanning the in�nitely distant initialization. The latter is a¤ected by the rate
at which �n ! 1 in relation to n and the various components of the initialization,
which we now brie�y discuss.
Observe that under (20) the drift in the initialization determines the primary

limit so that ��1n x
�
0 (n) !p �. Expanding the probability space as needed for the

strong invariance principle B0n := �
�1=2
n

Pb�n�c
j=0 ux;�j !a:s B0 (�) to hold, with B0 �

BM(
xx) ; the large sample behavior of the initial condition has the form

x�0 (n) =
�nX
j=0

ux;�j + ��n = ��n +B0n
p
�n

= [�;B0 (1)]

�
�np
�n

�
f1 + oa:s (1)g ;

so that x�0 (n) is spanned by the two columns of the matrix Cn = [�;B0n] and in the
limit by the matrix C = [�;B0 (1)] where � and B0 (1) are a:s: linearly independent
vectors. The components � and B0n of the initialization vector x�0 (n) have divergence
rates �n and �

1=2
n corresponding to the two components in (20). So, because of (19)

there will be a time trend in the regression and because of the e¤ect of the initial
condition there is e¤ectively a (random) intercept in the regression since �n is large.

When �n is very large relative to the trend, in particular if �
1=2
n

n
! 1; then x�0 (n)

is the dominating force in the asymptotics and both components of x�0 (n) �gure in
the limit theory. To resolve the limit, we transform coordinates using the matrix
[Cn; Cn?] ; where Cn? is a complementary matrix of vectors orthogonal to C; giving�

C 0n
C 0n?

�
xbn�c =

24 C 0n� bn�c+ C 0nCn � �np
�n

�
+ C 0nSbn�c

C 0n?� bn�c+ C 0n?Sbn�c

35 :
If �n is such that

p
�n
n
! 1; the largest e¤ect is in the direction Cn; so that both

components � and B0n are relevant. The next largest e¤ect comes in the direction
C 0n?� and then �nally the dominating e¤ect on the limit theory for Â

+ with slowest
asymptotics comes in the direction orthogonal to [Cn; C 0n?�] : That rate is Op (n)
and the limit theory for Â+ is just as given in Theorem 4 by (17) or (21) above.
However, in this case H? is of reduced dimension K � (K � 3) and is a random

13



orthogonal matrix spanning the orthogonal complement of the limit matrix [C;C 0?�] :
The dimension reduction to K � 3 in the columns of H? comes about because of
the e¤ect of the linear trend in xt and the initialization x�0 (n) which lies in the two
dimensional space spanned by C in the limit. The process Bx in (21) is the detrended
process (22). Again, inference proceeds as usual in the presence of initializations such
as (20).
Thus, initialization with drift in a cointegrated system does not a¤ect the prac-

ticalities of inference even when the initialization is in the in�nite past. But initial-
ization does in�uence the form of the asymptotic theory in a subtle manner in terms
of its dimensionality and its support whose orientation involves a random component
that is determined by in�nitely distant initialization e¤ects.

5. Appendix

This section provides proofs of theorems in the text together with some auxiliary
results. We start with the following preliminary results. The notation is the same as
that used in the text.

Lemma A1. Joint convergence in distribution of 
�0n (1) ; �n (1) ; n

�3=2
nX
t=1

Yt�1; n
�2

nX
t=1

Yt�1Y
0
t�1

!
as n ! 1 is equivalent to convergence in distribution of each component, where
�0n (s) := F (1)�

�1=2
n

Pb�nsc
j=0 "�j; �n (s) := F (1)n

�1=2Pbnsc
t=1 "t; and Yt :=

Pt
j=1 uj:

Proof. Joint convergence of �0n (1) and �n (1) holds trivially by independence. We
will show that the last two components are asymptotically equivalent to continuous
functionals of the partial sum process �n (�) on the Skorohod space D [0; 1]

K . The
lemma will then follow by the continuous mapping theorem and independence of
�n (�) and �0n (�).
The BN decomposition yields, for each s 2 [0; 1] ;

Un (s) :=
1

n1=2

bnscX
t=1

ut = �n (s)�
1

n1=2
�
~"bnsc � ~"0

�
; (23)

where ~"t =
P1

j=0
~Fj"t�j with ~Fj =

P1
k=j+1 Fk: Using (23) and the fact that Y0 = 0,

n�3=2
Pn

t=1 Yt�1 can be written as

n�3=2
nX
t=1

Yt�1 =

Z 1

0

Un (s) ds =

Z 1

0

�n (s) ds�
1

n1=2

Z 1

0

~"bnscds+ op (1)

=

Z 1

0

�n (s) ds+ op (1) ;

14



since n�1=2
R 1
0
~"bnscds!L1 0. Similarly, by (23)

n�2
nX
t=1

Yt�1Y
0
t�1 =

Z 1

0

Un (s)Un (s)
0 ds =

Z 1

0

�n (s) �n (s)
0 ds+ op (1) ;

since n�1=2
R 1
0
~"bnsc~"

0
bnscds!L1 0 and

E

 1

n1=2

Z 1

0

�n (s) ~"
0
bnscds

 � 1

n1=2

Z 1

0

E
�n (s) ~"0bnsc ds

� 1

n1=2

Z 1

0

E
�
k�n (s)k

~"bnsc� ds
� 1

n1=2

Z 1

0

E
�
k�n (s)k

2�1=2E �~"bnsc2�1=2 ds
� E

�
k~"1k2

�1=2
E
�
k"1k2

�1=2 1

n1=2

Z 1

0

bnsc
n
ds = O

�
n�1=2

�
:

Lemma A2. In the setup of Sections 2.4 and 3, there exists a K� (K � 1) random
orthogonal complement, H?, to B0 (1) satisfying

H 0
?B0 (1) = 0 and H?H

0
? = IK �

�
B0 (1)

0B0 (1)
��1

B0 (1)B0 (1)
0 a:s: (24)

De�ne B (s) = B (s) �
R 1
0
B (s) ds; Z1 = [z10; z11; :::; z1n�1]

0, the n � (K � 1) matrix
Z2 =

�
z020; z

0
21; :::; z

0
2n�1

�0
; and

�1n = (Z
0
1Z1)

�1
Z 01Z2; Q1 = In � Z1 (Z 01Z1)

�1
Z 01:

The following hold as n!1 and n
�n
! 0 :

(i) �1n = Op
�p

n
�n

�
= op (1) ;

(ii) n�1
Pn

t=1 utz
0
1t�1�1n = �n (1)

�
1

n3=2

Pn
t=1 Yt�1

�0
H? (n) + op (1) ;

(iii) H? (n) (n�2Z 02Q1Z2)
�1
H? (n)

0 ) H?

�
H 0
?
R 1
0
BB0H?

��1
H 0
?:

Proof of (24). We begin by establishing the existence of an orthogonal complement
satisfying (24) in the setup of Section 2.4. In view of Assumption LP the asymptotic
behavior of the initial condition x0 (n) follows by standard methods (Phillips and
Solo, 1992). In particular, letting B0 � BM (
), we have the functional law

�0n (s) = F (1)
1

�
1=2
n

b�nscX
j=0

"�j ) B0 (s) ; as n!1 (25)
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which, together with the BN decomposition, yield

��1=2n x0 (n) = �
0
n (1) + op (1)) B0 (1) : (26)

By (9) and (26) we obtain

H (n) =
�0n (1)�

�0n (1)
0 �0n (1)

�1=2 + op (1)) H :=
B0 (1)�

B0 (1)
0B0 (1)

�1=2 : (27)

Since kHk = 1, the random matrix IK�HH 0 is positive semide�nite with rankK�1.
Therefore, by a standard decomposition result for positive semide�nite matrices (cf.
8.21 in Abadir and Magnus, 2005) there exists a K � (K � 1) random matrix H?
such that, a:s:,

H?H
0
? = IK �HH 0 = IK �

�
B0 (1)

0B0 (1)
��1

B0 (1)B0 (1)
0

and H 0
?H? is a diagonal matrix of rank K � 1 containing the positive eigenvalues of

IK � HH 0. Since IK � HH 0 is idempotent, all its positive eigenvalues are equal to
1, implying that H 0

?H? = IK�1 a:s. Combining the latter with H?H
0
? = IK �HH 0

implies that H 0
?H = 0, so the matrix H? is an orthogonal complement to H (and

hence to B0 (1)).
Having established the existence of an orthogonal complement H? satisfying (24),

we can use (10) to write the limiting distribution of the outer product H? (n)H? (n)
0

as

H? (n)H? (n)
0 = IK �

�0n (1) �
0
n (1)

0

�0n (1)
0 �0n (1)

+ op (1)) H?H
0
?: (28)

For the setup of Section 3, we can use an identical argument, replacing �0n (s) by
�0xn (s) (de�ned in (51)) and 
 by 
xx.

Proof of Lemma A2 (i). First, note that, by (5),

1

�
1=2
n n3=2

nX
t=1

xt�1Y
0
t�1 =

x0 (n)

�
1=2
n

1

n3=2

nX
t=1

Y 0t�1 +
1

�
1=2
n n3=2

nX
t=1

Yt�1Y
0
t�1

=
x0 (n)

�
1=2
n

1

n3=2

nX
t=1

Y 0t�1 +Op

�r
n

�n

�
: (29)

Thus, since, by (27) and (28), H (n) and H? (n) are Op (1), (26) yields

Z 01Z2 = H (n)
0
nX
t=1

xt�1Y
0
t�1H? (n) = Op

�
�1=2n n3=2

�
:

The result for �1n follows since (Z 01Z1)
�1 = Op (�

�1
n n

�1).
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Proof of Lemma A2 (ii). By (41) and (27)

1

n�n
Z 01Z1 = H (n)

0 1

�nn

nX
t=1

xt�1x
0
t�1H (n) = �

0
n (1)

0 �0n (1) + op (1) ; (30)

which, together with (29), (26) and (27), yields

�1n =

�
Z 01Z1
n�n

��1
H (n)0

1

n�n

nX
t=1

xt�1Y
0
t�1H? (n)

=

�
Z 01Z1
n�n

��1
H (n)0

"r
n

�n

x0 (n)p
�n

1

n3=2

nX
t=1

Y 0t�1 +Op

�
n

�n

�#
H? (n)

=

r
n

�n

�
�0n (1)

0 �0n (1)
��1=2 1

n3=2

nX
t=1

Yt�1

!0
H? (n) + op

�r
n

�n

�
: (31)

Thus, by (39) and (27) we obtain

1

n

nX
t=1

utz
0
1t�1�1n

=

�
�0n (1)

0 �0n (1)
��1=2

p
n�n

nX
t=1

utx
0
t�1H (n)

 
1

n3=2

nX
t=1

Yt�1

!0
H? (n)

+op

 r
n

�n

1

n

nX
t=1

utx
0
t�1

!

=
�
�0n (1)

0 �0n (1)
��1=2

�n (1) �
0
n (1)

0H (n)

 
1

n3=2

nX
t=1

Yt�1

!0
H? (n) + op (1)

= �n (1)

 
1

n3=2

nX
t=1

Yt�1

!0
H? (n) + op (1) : (32)

Proof of Lemma A2 (iii). We �rst show that

n�2Z 02Q1Z2 = H? (n)
0 TnH? (n) + op (1) ; (33)

where Tn denotes the random matrix

Tn =
1

n2

nX
t=1

Yt�1Y
0
t�1 �

 
1

n3=2

nX
t=1

Yt�1

! 
1

n3=2

nX
t=1

Yt�1

!0
:
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By an application of (10) we can write

Z 02Z1

�
1=2
n n3=2

Z 01Z2

�
1=2
n n3=2

= H? (n)
0
Pn

t=1 Yt�1x
0
t�1

�
1=2
n n3=2

H (n)H (n)0
Pn

t=1 xt�1Y
0
t�1

�
1=2
n n3=2

H? (n)

= H? (n)
0
Pn

t=1 Yt�1x
0
t�1

�
1=2
n n3=2

Pn
t=1 xt�1Y

0
t�1

�
1=2
n n3=2

H? (n)

�H? (n)0
Pn

t=1 Yt�1x
0
t�1

�
1=2
n n3=2

H? (n)H? (n)
0
Pn

t=1 xt�1Y
0
t�1

�
1=2
n n3=2

H? (n)

= H? (n)
0
Pn

t=1 Yt�1x
0
t�1

�
1=2
n n3=2

Pn
t=1 xt�1Y

0
t�1

�
1=2
n n3=2

H? (n)

�H? (n)0
Pn

t=1 Yt�1Y
0
t�1

�
1=2
n n3=2

H? (n)H? (n)
0
Pn

t=1 Yt�1Y
0
t�1

�
1=2
n n3=2

H? (n)

= H? (n)
0
Pn

t=1 Yt�1x
0
t�1

�
1=2
n n3=2

Pn
t=1 xt�1Y

0
t�1

�
1=2
n n3=2

H? (n) +Op

�
n

�n

�
;

where H? (n)
0Pn

t=1 xt�1Y
0
t�1 = H? (n)

0Pn
t=1 Yt�1Y

0
t�1 because of (5) and the fact that

H? (n)
0 x0 (n) = 0. Thus, (29) and (26) yield

Z 02Z1

�
1=2
n n3=2

Z 01Z2

�
1=2
n n3=2

= �0n (1)
0 �0n (1)H? (n)

1

n3=2

nX
t=1

Yt�1
1

n3=2

nX
j=1

Y 0j�1H? (n)
0 + op (1) ;

and (33) follows by (30) and the identity Z 02Z2 = H? (n)
0Pn

t=1 Yt�1Y
0
t�1H? (n) since

1

n2
Z 02Q1Z2 =

1

n2
Z 02Z2 �

�
Z 01Z1
n�n

��1
Z 02Z1

�
1=2
n n3=2

Z 01Z2

�
1=2
n n3=2

=
1

n2
Z 02Z2 �H? (n)

0 1

n3=2

nX
t=1

Yt�1
1

n3=2

nX
j=1

Y 0j�1H? (n) + op (1)

= H? (n)
0 TnH? (n) + op (1) :

Having established (33), the limiting distribution of

H? (n)
�
n�2Z 02Q1Z2

��1
H? (n)

0 = H? (n)
�
H? (n)

0 TnH? (n)
��1

H? (n)
0 + op (1)

is derived as follows. By Lemma A1,
�
�0n (1) ; Tn

�
) (B0 (1) ; T ) ; where T =

R 1
0
BB0:

So (28) implies that �
H? (n)H? (n)

0 ; Tn
�
) (H?H

0
?; T ) : (34)

Thus, the Skorohod representation theorem implies that there exist random matrices�
Ln; ~Tn

�
and

�
L; ~T

�
de�ned on the same probability space for all n 2 N such that
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�
Ln; ~Tn

�
=d
�
H? (n)H? (n)

0 ; Tn
�
and

�
Ln; ~Tn

�
!a:s:

�
L; ~T

�
as n ! 1. By (34),�

L; ~T
�
=d (H?H

0
?; T ). Denote by M

+ the Moore-Penrose inverse of a matrix M .

Since the rank of both Ln ~TnLn and L ~QL is K�1 a:s:, Theorem 2 of Andrews (1987)
yields

H? (n)
�
H? (n)

0 TnH? (n)
��1

H? (n)
0 =

�
H? (n)H? (n)

0 TnH? (n)H? (n)
0�+

=d

�
Ln ~TnLn

�+
!a:s:

�
L ~TL

�+
=d (H?H

0
?TH?H

0
?)
+

= H? (H
0
?TH?)

�1
H 0
?;

which proves part (iii) of the lemma.

Proofs of Theorems 1 and 2

The limit theory for sample moments involving trajectories of xt may incorporate
elements from both initial conditions and sample period observations depending on
the behavior of �n as n!1: Decompose xt as xt = x0 (n) + Yt; as in (5). Recalling
that Y0 = 0, the limit behavior of Yt and its sample moments is standard (Phillips
and Durlauf, 1986), viz.,

n�1=2
bnscX
t=1

ut = �n (s) + op (1) ; �n (s) := F (1)n
�1=2

bnscX
t=1

"t ) F (1)�1=2W (s) ; (35)

and

n�3=2
nX
t=1

Yt�1 )
Z 1

0

B; n�2
nX
t=1

Yt�1Y
0
t�1 )

Z 1

0

BB0; n�1
nX
t=1

utY
0
t�1 )

Z 1

0

dBB0+�;

(36)
where B = F (1)�1=2W � BM (
) ; 
 = F (1)�F (1)0, � =

P1
h=1E

�
utu

0
t�h
�
and W

is standard K-vector Brownian motion. By virtue of the independence of the "t, the
processes

��1=2n

b�nscX
j=0

u�j = �
0
n (s) + op (1) and n�1=2

bnscX
t=1

ut = �n (s) + op (1) (37)

are asymptotically independent for all s 2 [0; 1] ; and so the Brownian motions B0
and B are also independent.
The e¤ect of the initial condition on the asymptotic behavior of the sample mo-

ments of xt can be obtained by comparing the convergence rate of x0 (n) with that
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of the sample moments of Yt. First,

1

n

nX
t=1

utx
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where B+� (s) = B (s) +
p
�B0 (1) ; giving the limit result for recent (� = 0) and

distant (0 < � < 1) past initializations. For in�nite (� = 1) past initializations,
(38) requires rescaling so that
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and the sample moments involving Yt are asymptotically negligible under the revised
standardization, thereby eliminating the components that produce the usual unit root
limit theory. Instead, the asymptotic behavior of the sample covariance

Pn
t=1 utx

0
t�1

is determined exclusively by the in�nite past initialization x0 (n) and partial sums of
ut:
For � 2 [0;1) the sample moment matrix of xt has the expanded form
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giving the limit result for recent and distant past initializations. Under in�nite (� =
1) past initializations the sample moment matrix has a faster rate of convergence
that is driven by the behavior of x0 (n). In particular,
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producing a singular limit for the sample moment matrix unless (3) is a scalar au-
toregression (K = 1). In the scalar case, (39) and (41) yield
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where C is a standard Cauchy variate, giving the scalar result of Theorem 2. In this
case where � =1, the tail of the process from the origination of xt wags the dog in
the limit theory of estimator. The distribution depends on the past through B0 and
the sample through B:
Combining (38) and (40) we have the least squares regression limit theory for (3)

under recent or distant past initializations

n
�
R̂n � IK

�
)
�Z 1

0
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0
��1

;

as stated in Theorem 1.

Proof of Theorem 3

In the new coordinates given by (11), we have

n
�
R̂n � IK

�
=

 
1

n

nX
t=1

utz
0
t�1

! 
1

n2

nX
t=1

zt�1z
0
t�1

!�1
M (n)0

=

 
1

n

nX
t=1

utz
0
t�1

!�
n�2Z 01Z1 n�2Z 01Z2
n�2Z 02Z1 n�2Z 02Z2

��1 �
H (n)0

H? (n)
0

�
; (42)

where
�1n = (Z

0
1Z1)

�1
Z 01Z2 and Q1 = In � Z1 (Z 01Z1)

�1
Z 01:

Set Z = [Z1; Z2]: Standard partitioned inversion gives
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and (42) becomes
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By (27) and (28) we know that both H (n) and H? (n) are bounded in probability.
Thus, recalling that the e¤ect of the initial condition is present only in z1t�1, we have
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The asymptotic behavior of the remaining terms of (44) is given in Lemma A2 above.
Consideration of these terms leads to the following simpli�cation
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Joint convergence in distribution of the various elements in (46) needs to be proved.
The proof of Lemma A2 (iii) yields
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which together with (28), imply that the right side of (46) is a continuous function of 
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Joint convergence of the �rst four terms has been established in Lemma A1. The
sample covariance n�1

Pn
t=1 utY

0
t�1 does not admit a neat integral representation like

the other two sample moments. The stochastic component of its limiting distribution
is nonetheless driven by the partial sum process Un (�) in (23) and joint convergence
of n�1

Pn
t=1 utY

0
t�1 and other sample moments of Yt is well documented (c.f., Phillips,

1988b). Thus, it is enough to show that n�1
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t�1 � � is asymptotically in-

dependent of �0n (�). To see this, note that n�1
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ergodic theorem and a simple calculation. Using the BN decomposition and summa-
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since n�1
Pn

t=1 "t~"
0
t�1 ! 0 in L2 by a martingale LLN. This establishes the required

asymptotic independence.
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Since joint convergence of the various terms of (46) applies, (36), (35) and Lemma
A2 (iii) give
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For (14), using the fact that
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where we have used (30), (31), (36), Lemma A2 and joint convergence developed in
Lemma A1 and (47).

Proof of Theorem 4

Setting uy:xt = uyt � 
yx
�1xx�xt and Uy:x =
�
u0y:x1; :::; u

0
y:xn

�0
as the corresponding

data matrix, we have
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and, letting Ux := �X = [u0x1; :::; u
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Writing (48) in the rotated coordinates (11) and using the inversion formula (43), we
have
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In order to analyze the components of (49), note that, by an identical argument
to Lemma A2, both
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Since n=�n ! 0, this shows that the �rst term of (49) is op (1) as n ! 1. For the
second term of (49), since �1n = Op
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A similar argument on the third term of (49) yields 
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Corresponding to the notation of Lemma A1, let Yxt :=
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for J 2 fx; yg, and
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as in (47) and using Lemma A2(iii).
Substituting (52), (53) and (54) into (50) and using joint convergence of the

various elements as in the proof of Theorem 3, we obtain
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producing the stated result (17). Mixed normality holds because the limit process
By:x is independent of both Bx and B0:
It remains to show (18). From (49) we have
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using similar arguments for the remainder terms as those used in the derivation of
(50). Using (30) and the fact that
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and using the above, (31), (33) and Lemma A2, the second term of (55) can be written
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For the third term of (55), since �̂+
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Applying (56), (57) and (58) to (55) and using the joint weak convergence of the
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random elements of Proposition A1, we obtain
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as required for (18). Again, mixed normality holds because By:x is independent of
both Bx and B0:
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