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Abstract

This paper details the differential and numeric properties of two measures of entropy,

Shannon entropy and Kullback-Leibler distance, applicable for the unit root hypoth-

esis. It is found that they are differentiable functions of the degree of trending in

any included deterministic component and of the correlation of the underlying in-

novations. Moreover, Shannon entropy is concave in these, and thus maximisable.

Kullback-Leibler is instead convex, and thus minimizable. It is explicitly confirmed,

therefore, that it is approximately linear trends and negative unit root moving aver-

age innovations which minimize the efficacy of unit root inferential tools. Moreover,

applied to the Nelson and Plosser macroeconomic series the effect that the inclusion,

or not, of a linear trend, for example, is explicitly quantified.



1 Introduction

Despite tremendous progress in understanding the properties of unit root time series

and tests thereof, analytic results in closed form are extremely rare. Exceptions are

the distributional results of Abadir (1993), Phillips and Ploberger (1994) and more

recently, Phillips and Magdalinos (2007). To see why detailing analytic properties

may be important, consider the set-up standard in the literature, with data yt de-

pending upon a deterministic component dt, an error ut and stationary innovation ζt,

according to

yt = dt + ut, ut = αut−1 + ζt, t = 1, 2, .., T. (1)

Extensive numerical evidence in the literature has demonstrated that both the

trending characteristics of dt and the correlation properties of ζt can have a significant

impact upon the properties, notably the power, of standard unit root tests. See,

amongst many others, Durlauf and Phillips (1988), Perron (1989), Perron (1989),

Zivot and Andrews (1992), Elliott, Rothenberg and Stock (1996), Leybourne, Mills

and Newbold (1998), Phillips and Xiao (1998, §4) and Harvey, Leybourne and Taylor

(2007).

The breadth of plausible model configurations continually expands, for example

now incorporating multiple breaks in the trend, non-linear or slowly varying trends, as

in Phillips (2001). Consequently, we increasingly require analytic results, better able

to cope with the increasing demands that consideration of such diverse configurations

will imply. This paper details the differential and numeric properties of two measures

of entropy applicable for the unit root problem. Specifically, Shannon entropy and

relative entropy, i.e. the Kullback-Leibler distance, are derived for the GLS detrended

data, the basis for the most often used statistical procedures. We show that these

measures are differentiable functions of the degree of trending in dt and, parametrizing

ζt as a moving average, of the moving average parameters. Moreover, it is shown that

Shannon Entropy is concave and hence maximizable and Kullback-Leibler is convex

and minimizable in both these model features.

This paper seeks to complement recent findings which provide explicit measures of

the efficacy of statistical inference for non-stationary or unit root time series. Phillips

(1998) showed that regressing a unit root time series on a sequence of polynomial

trends will be ultimately successful, generalizing the concept of the spurious regression
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of Granger and Newbold (1974) and Phillips (1986). Phillips and Ploberger (2003)

derive a distance between a fitted empirical model and the true generating process

and show that including nonstationary regressors implies a higher loss. Marsh (2007)

found that the information contained in any statistic invariant to a linear trend was

zero at the unit root.

The results here imply that there are model configurations which explicitly limit

the discriminatory power any inferential tool has, as measured by entropy. Specif-

ically, it is found that trends which are approximately linear and approximately a

negative unit root moving average minimize relative entropy (or maximize Shannon

entropy). These results thus both confirm the outcomes of the published experimental

evidence and provide the possibility of predicting that of future study. In addition, by

estimating both entropic quantities for the often studied Nelson and Plosser (1982)

data set we can measure the precise effect that choices of model configuration has on

applied studies.

Indeed it is found that for the series Unemployment, Velocity and Industrial pro-

duction the decision of whether or not to include a trend, such as in the procedure

detailed in Harvey, Leybourne and Taylor (2007), has a profound effect on the en-

tropy of the empirical model. Most striking is that for industrial production if a trend

is not included relative entropy is zero (and smallest amongst the series), while if a

trend is included relative entropy is 9.6 (and second largest amongst the series). This

is clearly useful information to have, not necessarily regarding the actual choice of

model, but in ascribing confidence in the resulting outcomes of tests in the chosen

model.

The plan for the paper is as follows. The next section details the assumptions

under which entropy can be explicitly derived, and derives and comments upon the

measures. Section 3 details the differential properties while Section 4 details the

numerical properties, and applies the measures for the Nelson and Plosser (1982)

series highlighting the practical importance of the results. Conclusions are followed

by an appendix which contains all the proofs and all tables and graphs used in the

analysis.
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2 Preliminary Results

In this section we formalize the class of models under consideration and derive both

Shannon Entropy (SE) and Relative Entropy, i.e. the Kullback-Leibler distance (KL).

The purpose of the paper is to provide and analyze explicit representations for En-

tropy applicable for tests of the unit root hypothesis, formally testing in (1),

H0 : α = 1 vs. H1 : |α| < 1.

To do so it is assumed that the deterministic component, dt, and the underlying

innovations, ζt, satisfy:

Assumption 1 (i) (ζt)
T
t=1 is a stationary Gaussian process generated according to

ζt =
m[
j=1

φjεt−j + εt, εt ∼ iidN(0,σ2),

so that the coefficients φj are such that the roots of the polynomial φ(z) =

1 + zφ1 + ...z
mφm lie outside the unit circle.

(ii) The deterministic component dt is linear in a set of fixed or strongly exoge-

nous variables, xt = (x1t, ..., xkt), with

dt = x1tβ1 + x2tβ2 + ..+ xktβk,

where the βi, i = 1, 2, .., k are unknown parameters.

Under Assumption 1 we are able to characterize the model in terms of a General-

ized Linear Regression Model (GLRM). To do so define the following T × 1 vectors,
y = (yt)

T
t=1 and ε = (εt)

T
t=1, and let X = (x1, x2, ..., xT )

� and β = (β1, ...,βk)
� . Now

let L(j) define a lower triangular matrix with 1
�
s on the jth lower diagonal and 0�s

elsewhere, so that we can construct the matrices

∆α = I − αL(1) and Kφ = I +
m[
j=1

L(j)φj.

As a consequence, Assumption 1 implies the Gaussian GLRM given by

y = Xβ +∆−1α Kφε, (2)

so that

y ∼ N �Xβ,σ2Σφ(α)
�
, (3)
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where

Σφ(α) = ∆−1α KφK
�
φ

�
∆−1α

��
.

From (3) we have a log-likelihood for y,

L (α) = log (f(y;α))

= − 1

2σ2
(y −Xβ)� (Σφ(α))

−1 (y −Xβ)− 1
2
ln detΣφ(α)− T

2
ln
�
2πσ2

�
.

and so given the following definitions of SE and KL,

SE(α) = −Eα[L (α)] = −
]
y

L (α) f(y;α)dy

and

KL(α) = E1 [L(1)− L (α)] =
]
y

(L(1)− L (α)) f(y; 1)dy,

we have the standard results for multivariate Gaussian variates, that

SE(α) =
1

2

�
ln detΣφ(α) + T

�
1 + ln

�
2πσ2

���
(4)

and

KL(α) =
1

2

�
Tr
�
(Σφ(α))

−1Σφ(1)
�
+ ln

|Σφ(α)|
|Σφ(1)| − T

�
. (5)

Although neither quantity depends upon the unknown vector β (nor does KL

depend upon the unknown scalar variance σ2), neither do they depend upon the

deterministic component, dt. Given the wealth of numerical evidence cited in the

introduction which points to a clear dependence of the properties of unit root tests,

particularly the degree of trending in dt, measuring the entropy in the data itself

cannot be informative about those properties. Here, instead, we will derive Entropy

for the data after it has been detrended. Currently the favoured method of detrending

is via a GLS estimation of β, see for example Elliott, Rothenberg and Stock (1996).

Analogous results for OLS detrended data may also be derived via the methods

described below.

To proceed, define

z = K−1
φ ∆1y, W = K−1

φ ∆1X and M = I −W (W �W )−1W �, (6)

so that

β̂GLS = (W
�W )−1W �z,
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Entropy will then be analyzed for the quantity,

w = z −W (W �W )−1W �z =Mz.

where M is the symmetric idempotent matrix of rank T − k given by

M = I −W (W �W )−1W �.

Although w is not a feasible statistic its properties are highly relevant for the

problem, in the sense that it is precisely the statistic that we would construct if we

had knowledge of the nuisance parameters, φ. A feasible version can be calculated via

ŵ = M̂z,

where M̂ = I − Ŵ (Ŵ �Ŵ )−1Ŵ � and Ŵ = K−1
φ̂
∆1X, with φ̂ a consistent estimator for

φ. The given results would then apply asymptotically to ŵ.

Defining the following matrices,

Ωφ(α) = Cov[z] = K−1
φ T1T

−1
α KφK

�
φ(T

−1
α )�T �1(K

−1
φ )

�,

and

A = C �Ωφ(α)C,

where C is an T × (T − k) matrix satisfying

CC � =M and C �C = IT−k, (7)

then in the following Lemma, the Likelihood, Shannon Entropy and Kullback-Leibler

are given for the detrended data w.

Lemma 1 Under Assumption 1; (i) the distribution of w is Singular-Normal, with

Log-Likelihood

L(α) = −1
2
y�C �A−1Cy − n

2
log
�
2πσ2

�− 1
2
log

n[
i=1

λi, (8)

where n = T − k, the λi are the non-zero ordered eigenvalues of A.
(ii) Shannon Entropy and Kullback-Leibler are given by

SE =
1

2

%
n[
i=1

logλi + n
�
1 + ln

�
2πσ2

��&
,

KL =
1

2

%
n[
i=1

�
λ−1i + log λi

�− n& .
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Remarks:

(i) Although not constructed via a formal invariance argument, KL does not

depend upon either of the nuisance parameters β or σ2. SE does, of course depend

upon σ2. For the purposes of this paper we are not treating the moving average

parameters φ as nuisance, in the sense that we wish to explicitly measure their impact

upon these measures of entropy.

(ii) Crucially, however, both SE and KL depend on both the deterministic com-

ponent and also the correlation structure of the innovations. This dependence is not

altogether transparent, since it follows from the properties of the eigenvalues of the

singular covariance matrix MΣφ(α)
−1M. The following section will detail the differ-

ential properties of the λi, and thence both measures of entropy, as functions of both

the parameters φ and also the degree of trending in dt.

(iii) Since w is a zero-mean singular Normal random variable its distribution

is characterized entirely by its covariance matrix, MΣφ(α)
−1M. Consequently any

measure of distance, such as KL, or entropy measure in general, for the unit root

problem, is going to be function only of that covariance. By choosing to detrend via

the GLS estimator and normalizing via z = K−1
φ ∆1y, we greatly simplify subsequent

derivations and their interpretation since under the null hypothesis of a unit root we

have,

pdf(w|H0) = pdf(Z), where Z ∼ N(0,σ2I).

That is, we standardize so that Entropy is measured relative to that of a Gaussian

random variable having scalar covariance. Although OLS detrending could easily be

employed instead, the simplifications offered by the current framework would be lost.

(iv) Of some interest in the recent literature has been the impact of a non-zero

initial condition on the properties of unit root tests, see for example Elliott and

Müller (2007). Here a non-zero, possibly even divergent, observed value may be

incorporated, via the set up in Marsh (2007), by allowing for one column of X to be

the vector (y0, ...., 0)
� . Consequently, the observed initial value can be simply regressed

out. Although this approach is not efficient, since the information about α contained

in the dependence of y1 on y0 is discarded, it does allow us to abstract from this

issue to concentrate upon the effect of the deterministic component and innovation

correlation.
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(v) In the following section it will be shown that KL is (quasi) convex in the

parameters φ and also the degree of trending in dt. Thus for a given value of α under

the alternative they are minimizable with respect to these parameters. Following

Gibbs and Su (2002) other measures of distance on the space of density functions are

bounded above by KL. Specifically, if we define the Total Variation by

TV =
1

2

]
w

|pdf(w|H0)− pdf(w|H1)| dw,

and the Hellinger distance by

HD =
1

2

]
w

���spdf(w|H1)−spdf(w|H0)���2 dw,
then

TV ≤
u
KL

2
and HDw ≤

√
KL.

Consequently, byminimizingKLwe inevitably make both Total Variation and Hellinger

distance small as well, even if we are not formally minimizing them.

3 Properties of entropy measures for unit roots

In this section we will explore both the differential and numerical properties of both

measures of entropy, as functions of the salient model features. While the depen-

dence upon the moving average parameters is explicit,it is currently only implicit

for the characteristics of the deterministic component. To proceed we will parame-

trize the trending characteristics of the deterministic component as in the following

assumption.

Assumption 2 With d = (d1, .., dT ) = Xβ, we assume that the ith column of X is

Xi = Xi(p) = (1, 2
p, .., tp, .., T p)�,

so that the set of regressors includes a polynomial time trend indexed by the

scalar parameter p, satisfying:

(i) For every p > 0, X has full column rank,

(ii) No column of X, Xj with j 9= i, grows faster than Xi(p) in t.

Under Assumption 2, we can focus upon the impact of polynomial time trends

upon the distance. In particular, we will examine the impact of the most strongly
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trending regressor, for the sake of interpreting the result rather than anymathematical

imperative. We must exclude p = 0, since we assume the presence of a constant, in

any case.

Thus we can parameterize both SE and KL as functions of both p and φ (as

well as the autocorrelation coefficient α, and for SE also σ2) as SE (α, p,φ,σ2) and

KL(α, p,φ). Here we require the differential properties of these functions. The non-

zero eigenvalues of the covariance of w are simply the eigenvalues of the matrix

A = C �Σφ(α)C, where C is the singular value decomposition of M . The following

Theorem establishes differentiability and gives the first differentials with respect to p

and φ.

Theorem 1 Let C be the singular value decomposition of the symmetric idempotent

CC � =M = I −W (W �W )−1W � and let C0 and W0 define points in RT×n and RT×k,
then;

(i) if W is differentiable in a neighbourhood of W0, C is differentiable in a neighbour-

hood of C0,

(ii) defining the respective derivatives with respect to p and any element of φ, φj say,

by ∂p(.) and ∂φj(.),we have,

∂pC = W (W �W )−1(dpW )�C

∂φjC = W (W �W )−1(dφjW )
�C. (9)

Theorem 1 establishes that C is differentiable in both the trend parameter p and

moving average parameters φ. We are thus in a position to state the main theorem

of this paper and demonstrate that both measures of entropy are themselves differ-

entiable functions of p and φ. Moreover, both are shown to be (quasi) convex in their

arguments and are thus, in principle, minimizable.

Theorem 2 Let SE and KL be defined as in Lemma 1, and assume also that As-

sumption 2 holds, then;

(i) both SE and KL are differentiable, and therefore continuous, with respect to p,

with derivatives given by

∂KL

∂p
= Tr

�
A−1 (∂pW )

� (W �W )−1W �Σφ(α)C
�
In −A−1

��
(10)

∂SE

∂p
= Tr

�
A−1 (∂pW )

� (W �W )−1W �Σφ(α)C
�
, (11)
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where

∂pW = ∆1(∂pX) = ∆1 (0, .., 0, ∂pXi(p), 0, .., 0) .

(ii) both SEw and KLw are differentiable, and therefore continuous, with respect to

φ =
�
φj
�m
j=1
, with derivatives given by

∂KL

∂φj
= Tr

�
A−1

�
dφjW

��
(W �W )−1W �Σφ(α)C

�
In −A−1

��
(12)

∂SE

∂φj
= Tr

�
A−1

�
dφjW

��
(W �W )−1W �Σφ(α)C

�
, (13)

where

dφjW = −K−1
φ L

(j)W.

(iii) KL(α, p,φ) is quasi-convex and SE(α, p,φ,σ2) is quasi-concave over both p and

φ and therefore any solutions in p, consequently any solution in p to (10) and in φ to

(12) are at minima, while solutions to (11) and (13) are at maxima.

Theorem 2 establishes that the measures of entropy are continuous, differentiable

and convex functions of the model parameters p and φ. Even before finding values

of p and φ which minimize entropy in particular examples it is now unequivocally

established that we can measure the precise effect that different model configurations

have on our ability to, statistically, discriminate between processes having unit roots

and those which are driven by a stationary autoregression.

In the following section these results will be both illustrated numerically and also

applied to investigate the effect of model configuration for the Nelson and Plosser

(1982) series of macroeconomic data.

4 Numerical Analysis

4.1 The effects of deterministic trending and innovation au-

tocorrelation

According to Theorem 2, both SE and KL are convex functions of the degree of

trending and the moving average parameters. We can therefore, in principle find
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values of these parameters that minimize entropy, for each value of α under the

alternative. To illustrate, suppose first that we consider a simplified version of (1)

with no error autocorrelation, viz.

(1− αl)(yt − β1 − β2t
p) = εt ; εt ∼ iidN(0,σ2), t = 1, .., T, (14)

where l is the lag-operator. We may solve both

∂KL

∂p

����
p=p∗KL

= 0 and
∂SE

∂p

����
p=p∗SE

and plot the solutions p∗KL and p
∗
SE for different sample sizes (T = 25, 50, and 100),

giving Figures 1a and 1b, in the Appendix. Notice, that for moderate sample sizes,

and for alternatives ‘close’ to the null neither measures of entropy have stationary

points, exactly, at a linear time trend.

In practice trends of the form dt = β1 + β2t
0.85 are seldom employed, of course.

Consequently, Tables 1a and 1b, in the appendix, evaluate KL and SE in the follow-

ing model,

(1− αl)(yt − dt) = εt ; εt ∼ iidN(0,σ2), (15)

with different dt representing different deterministic components. In comparison, it

is clear that a linear trend implies much smaller relative entropy (larger Shannon

entropy) than other reasonable trends, such as either a square root or squared trend.

Consider now the time series regression;

(1− αl) (yt − β1 − I (τT ) β2t) = εt ; εt ∼ iidN(0,σ2) (16)

where I (τT ) is the indicator function taking values 1 if t ≥ τT and 0 otherwise.

Thus τ indexes the timing of a break in the linear trend in the regression. The

values τ = 0, 1 indicate respectively the cases of a full trend and no trend. Zivot

and Andrews (1992) and Leybourne, Mills and Newbold (1998) have also numerically

analyzed the impact of the timing of breaks in a possible trend. Generally, the earlier

the trend starts the lower the power against a fixed value of α under the alternative.

Those Monte Carlo findings correspond exactly with the explicit results given here.

KL is evidently a decreasing function of τ while SE is increasing.

From an applied perspective the deterministics dt are a choice made by the mod-

eler to attempt to capture the trending behaviour of the data, specifically to ensure
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invariance with respect to those trends. On the other hand, the correlation structure

of the innovations are a property of the underlying statistical process. That does not

mean, however, that understanding the effect that particular autocorrelation struc-

tures have is not important.

For the purposes of numerical analysis, we again consider a simplified version of

(1), namely

(1− αl)(yt − β1 − β2t) = (1 + φ1l)εt ; εt ∼ iidN(0,σ2), (17)

so that the yt follows an ARIMA(0, 1, 1) process under the null. As α varies we

can calculate the minimum and maximum arguments of KL and SE, φ̄KL1 and φ̄
SE
1

respectively, for sample sizes of T = 25, 50, and 100 for model (17). These values are

plotted in Figures 2a and 2b, in Appendix II. As we should expect it is large negative

values of φ1, which make the distance small. Again, the result is that it is not quite

an MA(1) with a negative unit root which minimizes the distance. Although, as in

the case with a linear trend, there is some uniformity in that the values of either

φ̄
KL
1 or φ̄SE1 is not particularly sensitive with respect to α. That is, we are not merely

measuring a common factor effect because there can either be a common factor under

the null or the alternative, but not both.

To summarize the theoretical and numerical properties of KL, in particular; it is

analytic and minimizable in the model features as parametrized here. Moreover, the

numerical results are strongly supportive of current numerical studies, in that it is,

more-or-less, linear trends and negative unit root moving averages which minimize

our distance, and thus power. In the following sub-section we’ll use this knowledge

to examine how model specification affects entropy in practice.

4.2 Illustration (Nelson & Plosser Data)

Having detailed the differential and numeric properties of KL and SE, in this section

we will demonstrate the practical usefulness of the measure within the context of

testing for a unit root in the Nelson and Plosser (1982) series of macroeconomic time

series. We will consider the two model specifications,

M1 : (1− αl) (yt − β1) = φ1εt−1 + φ2εt−2 + εt (18)

M2 : (1− αl) (yt − β1 − β2t) = φ1εt−1 + φ2εt−2 + εt, (19)
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where again εt ∼ iidN(0,σ2), l is the lag-operator and t = 1, ..., T. Estimation of

these two models, and evaluation of KL and SE at the estimated parameter values

will highlight the effect that imposition of a linear trend has on our ability to perform

unit root inferences. In order to consistently estimate both M1 and M2 we will also

need to additionally assume that the process {ut} is specifically that of an invertible
MA(2).

The Nelson and Plosser data has been much analyzed with in the literature with

authors coming to different conclusions about the existence of unit roots within some

of the series, for example the differing perspectives of Phillips (1991) and Dejong

and Whiteman (1991). Heuristically, at least, it seems that altering the trending

behaviour of the regressors, for example the inclusion of a linear trend, or the timing

of any breaks in that trend, can alter the outcome of a test. Here, to illustrate the

practical relevance of the results of the previous two section, we will focus upon the

simple issue of the effect of whether, or not, we include a linear trend in our fitted

model.

In the context of either model,M1 orM2, the entropic measures are functions of α,

and φ = (φ1,φ2)
� and also, only for Shannon entropy, σ2. Let θ1 = (α,φ1,φ2)

� and θ2 =

(θ�1,σ
2), and let θ̂1 and θ̂2 be their respective consistent estimators. Since Theorem

2 establishes that these are (infinitely) differentiable functions of these parameters,

then via the mean value theorem we have

KL (θ1) = KL
�
θ̂1
�
+
�
θ1 − θ̂1

�� dKL (θ1)
dθ1

����
θ1=θ̄1

SE (θ2) = SE
�
θ̂2
�
+
�
θ2 − θ̂2

�� dSE (θ2)
dθ2

����
θ2=θ̄2

,

where θ̄1 and θ̄2 are mean values. Consequently, we may consistently estimate KL

and SE, via

gKL = KL
�
θ̂1
�
= KL (θ1) + op(1)fSE = SE

�
θ̂2
�
= SE (θ2) + op(1).

For each series in the Nelson and Plosser (1982) data set, the maximum likelihood

estimator for θ1 and θ2 was computed and the estimated measures of entropy calcu-

lated. In order to validate, to some extent, the assumption of an MA(2) innovation
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process, for each model the first-order residual correlation,

rm =
s
T − km

ST
km+1

ε̂tε̂t−jST
km+1

ε̂2t
,

where km is the total number of parameters in Mm, m = 1, 2. The maximum value

of |rm| obtained in any estimated model was 1.815, which is not significant according
to standard asymptotic critical values at the 5% significance level.

Recorded in Table 3 in the Appendix, for each series, is the sample size, and

for both M1 and M2 the estimated autoregressive coefficient, α̂m and the estimated

entropic measures, gKLm and fSEm, again for m = 1, 2. Notice that since estimated

Shannon entropy depends upon the estimated variance the values for fSEm are compa-
rable only within the context of each individual data set. Also it should be highlighted

that the purpose of Table 3 is to illustrate the practical usefulness of the measures of

entropy, not to determine which of M1 or M2 is more appropriate for any series, nor

to determine whether or not the series actually are unit root processes.

For the majority of series the effect of including a trend is actually relatively

benign. Generally it is the case that including a trend implies an estimated model a

little further from a unit root, whether measured by either the estimated coefficient

or the Kullback-Leibler divergence. Equally, again generalizing, including a trend

implies a slightly higher Shannon entropy. It is, of course, the exceptions and the

more extreme results to this which are of interest. The exceptions are found for

Velocity and for the CPI. For velocity inclusion of a trend implies a fitted model

very close to a unit root, while not including it implies a model which ranks 4th

in terms of distance from the unit root. Similar is true for CPI, although in the

explosive direction when a trend is not included. As one would expect, perhaps,

Unemployment does not have a unit root. Importantly though, notice that although

the estimated coefficient is closer to unity in M1, the fitted model is ‘further’ from a

unit root process than is the case for M2. Finally, Industrial Production has a fitted

model indistinguishable from a unit root when no trend is included, in stark contrast

to the fitted model for M2.
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5 Conclusions

This paper has derived and analyzed two measures of entropy applicable for the unit

root problem, namely Shannon entropy and Kullback-Leibler distance for the GLS

detrended data. Specifically, both are shown to be differentiable functions of parame-

terizations of the important model features; the degree of deterministic trending and

innovation autocorrelation. Kullback-Leibler is convex, and so minimizable, in these

parameters while Shannon entropy is concave, and thus maximizable. Theoretically,

therefore, there are particular trends and correlations which limit the efficacy of any

statistical method. It was then confirmed that, as predicted by the many experiments

in the literature, it is (approximately) linear trends and negative unit root moving

average innovations which do this.

The results also have practical importance. In the context of the Nelson and

Plosser (1982) data set, the entropic measures can be estimated via the fitted model.

By calculating them for two models, one in which only a constant is included the other

with also a trend, the impact of model specification can be explicitly measured. For

several series the results are dramatic, notably Velocity and Industrial Production.

Consequently, in the context of actual unit root testing having some measure of

the impact of the chosen model would compliment the outcome of any coefficient

estimator or unit root test.
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Appendix
I. Proofs

Proof of Lemma 1

Part (i): We have w =My, and M is square, symmetric and idempotent of rank

n = T − k, and hence it has singular Normal distribution, with mean and variance

E[w] = µ =MW = 0 ; V [w] = σ2Ω = σ2MΣφ(α)M.

The density function of w is therefore given by

f(w;α) =
exp

�− 1
2σ2
w�Ω−w

�
(2πσ2)n/2

sTn
i=1 λi

, (20)

where the λi, i = 1, 2, .., n are the ordered non-zero eigenvalues ofMΣφ(α)M and Ω−

denotes a generalized inverse of Ω.

To find a suitable Ω−, write

MΣφ(α)M = CC �Σφ(α)CC
� = CAC �,

where the T × n matrix C is the singular value decomposition of M defined in (7).

Consequently, note that

ΩCA−1C �Ω = CAC �CAC �CA−1C �CAC � = CAC � = Ω

CA−1C �ΩCA−1C = CA−1C �CAC �CA−1C = CA−1C ��
CA−1C �Ω

��
= (CC �)� =M � =M = CC � = ΩCA−1C ��

ΩCA−1C �
��

= (CC �)� =M � =M = CC � = CA−1C �Ω,

so that CA−1C � satisfies the four conditions which define the unique Moore-Penrose

inverse of Ω, i.e. we can use,

Ω− = Ω+ = CA−1C �.
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Since the singular value decomposition is unique only up to orthogonal transfor-

mation, and since the matrix A is symmetric, it has a spectral decomposition of

A = RΛR�, Λ = diag {λ1,λ2, ...,λn}

where R�R = RR� = In and R = (r1, r2, ..rn) is the matrix of eigenvectors, which

then satisfy the equations

Ari = λiri, i = 1, 2, .., n,

that is the λi are the eigenvalues of A. Moreover, we can also assume, without loss of

generality that in addition to (7), C also satisfies,

C �AC = C �ΛC and C �A−1C = C �Λ−1C.

The log-likelihood based on w is thus given by

L(α) = − 1

2σ2
w�Ω−w − n

2
ln
�
2πσ2

�− 1
2

n[
i=1

lnλi

= − 1

2σ2
w�CA−1C �w − n

2
ln
�
2πσ2

�− 1
2

n[
i=1

lnλi,

= − 1

2σ2
y�CA−1C �y − n

2
ln
�
2πσ2

�− 1
2

n[
i=1

lnλi,

as required, since C �w = C �My = C �CC �y = C �y.

Parts (ii) & (iii) follow from straightforward application of the definitions given

in (5) and (4) to an n× 1 Gaussian random vector,

z = C �y ∼ N(0,σ2A).

Proof of Theorem 1

Since W = K−1
φ T1X, then immediately W is differentiable with respect to φj.

Now under Assumption 2, since p > 0, then the rank of X is constant, and so X is

differentiable with respect to p. Consequently, the rank ofW is constant and therefore

W is also differentiable with respect to p, with differential ∂W = K−1
φ T1(∂X). In fact

W is an analytic (matrix) function of both p and φ.

To establish differentiability of C (with respect to either parameter) we note that

C is defined as the singular value decomposition of MW = IT −W (W �W )−1W �, and
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is therefore the unique solution (up to orthogonal transformation), in RT×n, to the

equations

MW = CC � and C �C = In. (21)

We first show that (21) implies and is implied by

W �C = 0 and C �C = In. (22)

To do this note that

MW = CC � ⇐⇒ (IT −MW )C = 0, (23)

and define

PW = I −MW =W (W �W )−1W � =WW+ =
�
W+

��
W �,

where W+ denotes the Moore-Penrose inverse of which exists and is unique since the

rank of W is constant under Assumption 2. Rewriting (23) as (W+)�W �C = 0, then

since

W+ = (W �W )+W � and W =W (W �W )+(W �W ),

we have �
W+

��
W �C = 0⇐⇒ (W �W )+W �C = 0,

which leads to

(W �W )+W �C = 0⇐⇒ (W �W )(W �W )+W �C = 0⇐⇒W �C = 0,

as required.

To continue, define the matrix valued function h : RT×k×RT×n → RT×n of C and
W by

h(C,W ) =

 W �C

C �C − IT−k

 ,
then following a similar argument to Magnus and Neudecker (1988), Theorem 8.7, h

is differentiable on RT×k × RT×n. Letting the point C0,W0 in RT×k × RT×n satisfy

h(C0,W0) = 0,

and further

det[J0] = det

%
h(C,W )

dC

����
C0,W0

&
= det

 W �
0

2C �0

 9= 0,
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since by definition W �C = 0, then the conditions for the Implicit Function Theorem

are met (see Theorem A.3, Section 7, Magnus & Neudecker (1988)). Consequently,

there exists a neighbourhood in RT×k, V (W0) and a unique (up to orthogonal trans-

formation) matrix valued function C : V (W0)→ RT×n for which the following state-
ments hold:

(a) C is differentiable on V (W0)

(b) C(W0) = C0, and

(c) W �C = 0 and C �C = IT−k for all W ∈ V (W0),

which concludes the proof of part (i).

For part (ii) we require an explicit relationship between the differential of C and

that of W. From (22) we have

W �C = 0,

so that denoting the differentials ofW and C by ∂W and ∂C respectively (suppressing

for the moment which variable we are differentiating with respect to), we have

(∂W )�C +W �(∂C) = 0,

giving

(W �)+W (∂C) = (W �)+(∂W )�C.

Consider the matrix defined by

P = (W �)+W + CC � = PW +MW = IT−k,

and so

∂C = P (∂C) =
�
(W �)+W + CC �

�
(∂C) = (W �)+W (∂C),

since C �(∂C) = 0. Consequently, the relevant expression for the differential of C is

∂C = (W �)+(∂W )�C =W (W �W )−1(∂W )C,

which then gives the expressions in (9).

Proof of Theorem 2

For part (i), and from Lemma 1, we can write

SE =
1

2

�
ln |A|+ n �1 + ln �2πσ2��� ,

KL =
1

2

�
Tr[A−1] + ln |A|− n� ,
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where A is a function of p. In order to establish differentiability we utilize Cauchy’s

rule of invariance for (possibly) matrix valued functions of matrix arguments. If F is

differentiable at D and G is differentiable at E = F (D), then the composite function,

defined by

H(D,U) = G ◦ F,
is differentiable for all n×m matrices U and

∂H(D,U) = ∂G(E; ∂F (D;U)).

From Theorem 2, C is differentiable with respect to p and so differentiability of A

immediately follows, and consequently of ∆EC(α). Since also A = C �Σα,φC, we have

∂pA = [∂pC
�Σα,φC + C

�Σα,φ∂pC] , (24)

so that substitution of (9) into (24), yields

∂pA =
∂A

∂p
= −C �[D +D�]C, (25)

where D = (∂pW )(W
�W )−1W �Σα,φ. Finally, noting the following standard differen-

tials,
∂ ln |A|
∂p

= Tr
�
A−1 (∂pA)

�
, and ∂pA

−1 = −A−1 (∂pA)A−1

so that

∂KL

∂p
=
1

2

�
Tr
�
(∂pA)A

−1 �I −A−1��� and ∂SE

∂p
=
1

2

�
Tr
�
(∂pA)A

−1�� , (26)

substituting (25) into (26) and rearranging proves part (i).

For part (ii) differentiability is established in exactly the same way as in part (i).

The required derivatives are

∂KL

∂φj
=
1

2

�
Tr
k�

∂φjA
�
A−1

�
I −A−1�l� and ∂KL

∂φj
=
1

2

�
Tr
k�

∂φjA
�
A−1

l�
,

(27)

For this case the derivative of A is

∂φjA = (∂φjC)
�Σα,φC + C

�(∂φjΣα,φ)C + C
�Σα,φ(∂φjC), (28)

however, from the definition of Σα,φ, ∂φjΣα,φ = 0, so that the second term in (28)

vanishes. From (9), we have

∂φjC =W (W
�W )−1(∂φjW )C,
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where

∂φjW = ∂φj(K
−1
φ T1X) = −K−1

φ L
(i)K−1

φ T1X

= −K−1
φ L

(i)W,

so that

∂φjC = −PW (L(i))�(K−1
φ )

�C,

and hence

∂φjA = C
�(H +H �)C, (29)

where H = K−1
φ L

(i)PWΣα,φ, so that substituting (29) into (27) gives the required

derivative.

For part (iii), notice that A and hence A−1 are positive definite matrices of rank

n. Consequently, following Magnus and Neudecker (1999, p. 152), the kth derivatives

(guaranteed to exist by Theorem 1) of the matrix functions A−1 and ln |A| , with
respect to p, are given by

∂kA−1

∂pk
= (−1)k k! �A−1 (∂pA)�kA−1,

and
∂k ln |A|
∂pk

= (−1)k−1 (k − 1)!Tr
k�
A−1 (∂pA)

�kl
,

with very similar expressions for the derivatives with respect to the φj. As a conse-

quence the second derivatives of entropy are given by

∂2KL

∂p2
=

1

2
Tr
k�
A−1∂pA

�2 �
2A−1 − I�l

and
∂2SE

∂p2
= −1

2
Tr
k�
A−1∂pA

�2l
,

again with very similar expressions for the derivatives with respect to the φj.

As an immediate consequence we have that

∂2SE

∂p2
≤ 0

and so SE(α, p,φ) is (Quasi) concave in p and so any solution in p, to either

∂SE(α, p,φ)

∂p
= 0,
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is at a maximum. For KL, since, both Tr[A−1] and Tr[A] are minimized at A = In,

then

Tr
��
2A−1 − I�� > 0⇒ ∂2KL

∂p2
≥ 0,

and so KL(α, p,φ) is (Quasi) convex in p and so any solution in p, to

∂KL(α, p,φ)

∂p
= 0,

is at a minimum.

Similarly, given a value of polynomial trending p and for any value of α both

KL(α, p,φ) and SE(α, p,φ) are respectively convex and concave functions of each

φj, and so solutions to

∂KL(α, p,φ)

∂φj
= 0 or

∂SE(α, p,φ)

∂φj
= 0,

are also at a minimum and maximum, respectively.

Figures and Tables

Fig.1a: p∗KL for model (14) for

T = 100 (–), T = 50 (- - -) and T = 25 (· · ·).
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Fig.1b: p∗SE for model (14) for

T = 100 (–), T = 50 (- - -) and T = 25 (· · ·).
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Table 1a: KL in (15) for different trends

ρ

dt
.975 .850 .925 .900 .875 .850 .825 .800

β1 + β2t
2 .186 .878 2.05 3.58 5.42 7.53 9.91 12.6

β1 + β2t .057 .406 1.15 2.29 3.80 5.63 7.79 10.3

β1 + β2
√
t .071 .423 1.19 2.41 4.06 6.11 8.55 11.4

β1 + β2 log(t) .344 .987 2.12 3.84 6.15 9.03 12.5 16.4

Table 1b: SE − 140 in (15) for different trends
ρ

dt
.975 .850 .925 .900 .875 .850 .825 .800

β1 + β2t
2 -.271 .161 .500 .790 1.05 1.28 1.49 1.70

β1 + β2t -.092 .391 .740 1.02 1.27 1.49 1.69 1.87

β1 + β2
√
t -.163 .327 .670 .940 1.17 1.37 1.55 1.71

β1 + β2 log(t) -.496 -.073 .245 .493 .698 .874 1.03 1.17
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Table 2a: KL in (16) for different breakpoints τ .

ρ

τ
.975 .850 .925 .900 .875 .850 .825 .800

0.2 1.11 3.28 5.53 7.68 9.84 12.1 14.6 17.3

0.4 .612 1.51 2.52 3.77 5.31 7.14 9.29 11.7

0.6 .337 .874 1.69 2.85 4.34 6.17 8.31 10.8

0.8 .203 .629 1.40 2.53 4.03 5.86 8.01 10.5

Table 2b: SE − 140 in (16) for different breakpoints τ .
ρ

τ
.975 .850 .925 .900 .875 .850 .825 .800

0.2 -.851 -.678 -.472 -.258 -.047 .155 .349 .530

0.4 -.685 -.374 -.088 .169 .403 .619 .818 1.00

0.6 -.538 -.157 .158 .427 .666 .884 1.09 1.26

0.8 -.429 -.011 .317 .592 .833 1.05 1.26 1.43

Fig.2a: φ̄KL1 derived for model (17) and

for T = 100 (–), T = 50 (- - -) and T = 25 (· · ·).
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Fig.2b: φ̄SE1 derived for model (17) and

for T = 100 (–), T = 50 (- - -) and T = 25 (· · ·).
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Table 3: Estimated Values for α, KL and SE in (18) and (19)

applied in the Nelson & Plosser data set.

M1 M2

T α̂1 gKL1 fSE1 α̂2 gKL2 fSE2
Real GNP 80 1.001 .0031 -111.4 0.991 .0018 -110.1

Nom. GNP 80 1.008 .1036 -79.95 0.990 .0023 -79.46

GNP Per.Cap. 80 1.002 .0085 -109.2 0.993 .0011 -107.9

Bond 89 1.000 .0001 85.82 0.949 .3020 83.95

Nom. Wage 89 1.006 .0809 -122.2 0.989 .0033 -121.1

Real Wage 89 1.000 .0001 -165.8 0.998 .0001 -163.9

Unemp. 99 0.755 52.38 56.51 0.751 15.80 57.98

Employ. 99 1.001 .0011 -135.5 0.998 .0001 -134.5

Money 100 1.003 .0231 -166.2 0.975 .0553 -164.7

S&P500 118 1.009 .3048 -44.41 0.930 1.519 -45.91

Velocity 120 0.959 4.862 -161.4 1.011 .0077 -157.3

I. Prod. 129 1.000 .0000 166.9 0.854 9.622 168.8

CPI 129 1.021 1.942 -236.9 0.983 .0353 -236.3
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