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Abstract

This paper presents a family of simple nonparametric tests of the autoregressive unit root

hypothesis. The tests are constructed as a ratio of the sample variance of the observed series and

that of a fractional partial sum of the series, and the family is indexed by one parameter, d, to

determine the order of the (fractional) partial summation. However, there are several important

di¤erences between this parameter and the choice of, e.g., lag length in augmented Dickey-Fuller

regressions or bandwidth in Phillips-Perron type tests. (i) Each member of the family with d > 0

is consistent. (ii) The asymptotic distribution depends on d, and thus re�ects the parameter

chosen to implement the test. (iii) Since the asymptotic distribution depends on d and the test

remains consistent for all d > 0, it is possible to locate a member of the family which has the

highest (within the family) power against relevant alternatives. The usual Phillips-Perron or

Dickey-Fuller type tests, possibly with GLS detrending, have tuning parameters (bandwidth,

lag length, etc.), i.e. parameters which change the test statistic but are not re�ected in the

asymptotic distribution, and thus have none of these three properties. When d is small, the

asymptotic local power of the proposed nonparametric test is relatively close to the parametric

power envelope, particularly in the case with a linear time-trend. Furthermore, simulations

demonstrate that the proposed test has good �nite sample properties in the presence of both

linear and nonlinear short-run dynamics, and even rivals the (nearly) optimal parametric GLS

detrended augmented Dickey-Fuller test with lag length chosen by an information criterion.

JEL Classi�cation: C22.

Keywords: Augmented Dickey-Fuller test, fractional integration, GLS detrending, nonparamet-

ric, nuisance parameters, tuning parameters, power envelope, unit root test, variance ratio.
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1 Introduction

The problem of testing for an autoregressive unit root is one of the most intensely studied testing

problems in time series econometrics over the last two decades; seminal contributions to this

literature include Dickey & Fuller (1979, 1981), Phillips (1987a), Phillips & Perron (1988), and

Elliott, Rothenberg & Stock (1996). For general reviews see, e.g., Stock (1994) or Phillips &

Xiao (1998). Remarkably, research on testing for unit roots has been characterized by parallel

developments in theoretical and empirical econometrics, and the relevance and importance of

this problem to empirical research is undeniable.

Recently, important progress has been made towards constructing unit root tests with better

size and power properties. Examples include the point optimal tests and augmented Dickey-

Fuller (ADF) tests with GLS detrending of Elliott et al. (1996), and the use of improved data

dependent lag selection information criteria as in Ng & Perron (2001). See Haldrup & Jansson

(2006) for a review focusing on power properties. The seminal contribution of Elliott et al.

(1996) developed a theory of optimal testing in the framework of unit root tests, leading to

the construction of parametric power envelopes for such tests, i.e. bounds on the possible

power of parametric unit root tests under di¤erent conditions allowing for serial correlation,

deterministic components, etc.

Nevertheless, all these tests share similar shortcomings. In particular, in the presence of

serial correlation nuisance parameters appear in the asymptotic distribution unless the tests

are modi�ed to cope with the serial correlation. The ADF type tests, including the ADF-GLS

tests of Elliott et al. (1996), are parametric and require the selection of a lag length for the aug-

mentation to handle serial correlation. Similarly, the Phillips-Perron tests of Phillips (1987a)

and Phillips & Perron (1988), although handling the serial correlation by a nonparametric

correction, require the selection of bandwidth and kernel for the estimation of the long-run

variance. The performance of the tests depend highly on the choice of lag length or bandwidth

parameters, both in terms of �nite sample power and size properties (although data depen-

dent lag selection information criteria may improve the tests in this respect, see Ng & Perron

(2001)), but also asymptotically since the consistency of the tests requires that the lag length

or bandwidth parameters expand at particular rates relative to the sample size.1 Furthermore,

the asymptotic distributions of these test statistics are independent of the lag length, band-

width, or kernel employed to construct the tests, and thus do not re�ect the particular choice

of these parameters. That is, the tests are characterized by parameters (lag length, bandwidth,

1For example, Agiakloglou & Newbold (1996) study the trade-o¤ between size and power in Dickey-Fuller

tests when data-dependent rules are used for the choice of lag order, and Leybourne & Newbold (1999b, 1999b)

examine the behavior (e.g. with respect to the nuisance parameter issue) of both Dickey-Fuller and Phillips-

Perron tests under the null and alternative hypotheses.
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etc.) which change the value of the test statistics but are not re�ected in the corresponding

asymptotic distributions, and hence, in particular, not re�ected in the critical values for the

test statistics �such parameters are referred to as tuning parameters.

Existing unit root tests that are free of tuning parameters include the variable addition test

of Park & Choi (1988), see also Park (1990), and the nonparametric test of Breitung (2002).

The test of Breitung (2002) is a generalization of the KPSS unit root test of Shin & Schmidt

(1992), who note that the calculation of their �̂� (0) test may be done �without the necessity to

choose a rule for determining l [bandwidth parameter].�Thus, Shin & Schmidt (1992) explicitly

recognized, although only in passing, the importance and usefulness of tuning parameter free

tests of the unit root hypothesis. Breitung (2002) demonstrated by simulations the superiority

of his test relative to the variable addition test of Park & Choi (1988), so the below comparisons

to existing tuning parameter free tests focus on the nonparametric Breitung (2002) test.

This paper presents a family of simple nonparametric tests of the autoregressive unit root

hypothesis, which are free of tuning parameters and avoid many of the issues related to nui-

sance parameters while maintaining highly competitive power properties relative to parametric

tests. The nonparametric tests are constructed as a ratio of the sample variance of the observed

series and that of a fractional partial sum of the series. Recently, long memory and fractional

integration has been attracting increasing attention from both theoretical and empirical re-

searchers in economics and �nance, see e.g. Baillie (1996) or Robinson (2003) for reviews. In

this paper, fractional integration techniques are exploited to construct a family of tests for an

autoregressive unit root.2

The proposed procedure is nonparametric and does not rely on the speci�cation of a par-

ticular data generating process or model. This feature in particular distinguishes the approach

from the well known fully parametric testing approaches, e.g. the ADF test. Of course, this

aspect is a consequence of the nonparametric nature of the variance ratio test statistic, and is

naturally of great importance in practical applications where the speci�cation of the short-run

dynamics is always a matter of some ambiguity and concern, since misspeci�ed short-run dy-

namics leads to inconsistent estimation of the remainder of the model and hence to erroneous

inferences on the order of integration. There is also no need to specify a bandwidth and kernel

as in the Phillips-Perron type approach. The family of tests is indexed by one parameter, d, to

determine the order of the fractional partial summation. However, there are several important

di¤erences between this parameter and the choice of tuning parameters in ADF regressions (lag

length) or Phillips-Perron type tests (bandwidth and kernel). First of all, for any member of

2 In the fractional integration literature, tests of the unit root hypothesis against alternatives of fractional

integration have been developed which admit standard asymptotics, see e.g. Robinson (1994) and Tanaka (1999).

This paper excludes such alternatives since the unit root hypothesis is nested within the class of autoregressive

alternatives.
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the family with d > 0, the nonparametric test is consistent. Secondly, the asymptotic distribu-

tion depends on d, and thus re�ects the parameter chosen to implement the test. Thirdly, and

consequently, since the asymptotic distribution depends on d and the test remains consistent

for all d > 0, it is possible to locate a member of the family which is �tailored�to maximize the

power against relevant alternatives. The usual ADF/ADF-GLS or Phillips-Perron type tests

have none of these three properties. Instead, they are characterized by tuning parameters.

When d is small, the asymptotic local power of the proposed nonparametric test is rela-

tively close to, but naturally below, the parametric power envelope of Elliott et al. (1996). In

particular, in the case with a linear time trend the asymptotic local power of the nonparametric

variance ratio test with a low value of d is close to the parametric power envelope.

To document the �nite sample properties of the methods proposed in this paper a simulation

study is conducted. The simulations demonstrate that the nonparametric variance ratio test

compares favorably to the (nearly) optimal ADF-GLS test of Elliott et al. (1996) when the

two are compared on an even footing by applying the MAIC lag augmentation selection rule

of Ng & Perron (2001). In particular, it appears that the nonparametric variance ratio test is

useful and that the �nite sample size-adjusted power of the nonparametric variance ratio test is

similar to, if not higher than, that of the ADF-GLS test of Elliott et al. (1996) in sample sizes

that are relevant for empirical research. Thus, even though the ADF-GLS test has superior

asymptotic local power properties, the need to select a tuning parameter (lag augmentation)

and estimate nuisance parameters (serial correlation) reduces the power of the Dickey-Fuller

type tests in more realistic settings.

The remainder of the paper is laid out as follows. In the next section the nonparametric

approach is introduced and the variance ratio family of tests is presented along with the as-

ymptotic distribution theory. Section 3 develops the relevant local asymptotic power analysis

and introduces a GLS detrended version of the tests. In section 4 simulation evidence is pre-

sented to document the �nite sample properties of the nonparametric test. Both sections 3 and

4 include comparisons to parametric power envelopes and (nearly) e¢ cient parametric tests.

Section 5 o¤ers some concluding remarks. All proofs are gathered in the appendix.

2 The Nonparametric Variance Ratio Test

Suppose the observed univariate time series fytgTt=1 is generated by the AR(1) model

yt = �yt�1 + ut; t = 0; 1; :::; (1)
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where y0 = 0 and ut is unobserved short-run dynamics to be de�ned precisely later.3 The unit

root testing problem is the test of the null hypothesis

H0 : � = 1 vs. H1 : j�j < 1: (2)

Consider, under the null hypothesis, the behavior of the observed time series fytgTt=1 generated
according to (1) with � = 1 and also its fractional partial sum,

~yt = �
�d
+ yt; d > 0; t = 0; 1; :::; (3)

where we have used the de�nition

��d+ xt = (1� L)�d+ xt =
t�1X
j=0

� (j + d)

� (d) � (j + 1)
xt�j =

t�1X
j=0

�j(d)xt�j

so that only values corresponding to a positive time index enters the fractional di¤erence/summation

expression. This is denoted by the subscript on the di¤erence operator, i.e. �+, which is a

truncated version of the binomial expansion in the lag operator L (Lxt = xt�1).

It is well known that under regularity conditions on ut, a functional central limit theorem

is obtained for yt and a similar (fractional) functional central limit theorem is obtained for ~yt,

i.e.

T�1=2y[Ts] ) �yW0 (s) ; 0 � s � 1; (4)

T�1=2�d~y[Ts] ) �yWd (s) ; 0 � s � 1; (5)

as T !1 for some �y to be speci�ed later. Here, [�] denotes the integer part of the argument,
�)�means weak convergence in D [0; 1] endowed with the Skorohod J1 topology, and Wd is

the type II fractional standard Brownian motion of order d (> �1=2), see e.g. Marinucci &
Robinson (1999, 2000). The fractional standard Brownian motion of type II can be de�ned as

a Holmgren-Riemann-Liouville fractional integral,

Wd (r) = 0, a.s., r = 0; (6)

Wd (r) =
1

� (d+ 1)

Z r

0
(r � s)d dW0 (s) , r > 0: (7)

Note that with this de�nition W0 is the standard Brownian motion.
3The initial condition can be replaced by other well-known conditions that yield the same functional central

limit theorem (4). Note that, if it is known that y0 is likely to be small then, in the fully parametric setup, this

knowledge will generate more discriminatory power for the unit root problem by applying the ADF-GLS tests

of Elliott et al. (1996), see Müller & Elliott (2003). In that sense, the zero initial condition poses the greatest

challenge for the proposed nonparametric test when compared to the ADF-GLS tests in simulations below.
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It follows that the rescaled sample variances of yt and ~yt satisfy

T�2
TX
t=1

y2t ) �2y

Z 1

0
W0 (s)

2 ds (8)

T�2(1+d)
TX
t=1

~y2t ) �2y

Z 1

0
Wd (s)

2 ds (9)

as T !1, under the unit root null hypothesis (2). Thus, by forming the variance ratio,

� (d) = T 2d
PT
t=1 y

2
tPT

t=1 ~y
2
t

; (10)

the nuisance parameter �2y is eliminated from the limiting distribution and there is no need to

estimate serial correlation parameters. The statistic � (d) in (10) de�nes the family of variance

ratio statistics indexed by the fractional partial summation parameter, d.4

The statistic (10) generalizes the idea of Shin & Schmidt (1992), Breitung (2002), and

Taylor (2005) who used the ratio of the sample variance of yt and that of the partial sum of yt
to eliminate the nuisance parameter �2y and avoid estimation of serial correlation parameters

in testing for a unit root.5 The same idea was applied by Vogelsang (1998a, 1998b) to test for

structural breaks, see also the simulation evidence by Harvey, Leybourne & Newbold (2004).

In recent work, Müller (2007a, 2007b) demonstrates some desirable properties of variance

ratio-type unit root test statistics such as (10), which are not necessarily shared by other

statistics that have to estimate the long-run variance �2y. In particular, tests based on variance

ratio-type statistics are shown to be able to consistently discriminate between the unit root

null and the stationary alternative.

To adjust for a non-zero mean and possibly deterministic time trend in the observed time

series yt, suppose fytgTt=1 is generated according to

yt = �0�t + zt; t = 0; 1; :::; (11)

where zt is unobserved and generated as yt in (1). Here, �t = 0 when there are no deterministic

terms, �t = 1 when there is a non-zero mean, and �t = (1; t)0 when there is correction for

4Note that the ratio in (10) has the appearance of a likelihood ratio test statistic constructed based on the

implicit null and alternative (point) hypotheses that yt is i:i:d: and that ~yt is i:i:d:, respectively. In other words,

this interpretation would correspond to a null hypothesis that the observed data is I(0) against the alternative

that the data is I(�d), that is (fractionally) overdi¤erenced, and since this does not appear particularly useful
we do not consider this interpretation further.

5A similar type of variance ratio test, based on the ratio of the sample variance of �yt and yt � yt�k for
some k > 1, was used by, inter alia, Lo & MacKinlay (1988) and Miller & Newbold (1995) to test the unit root

hypothesis in ARIMA models.
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a deterministic linear time trend. Thus, the family of variance ratio statistics corrected for

deterministic terms is de�ned as in (10) but with the residuals ŷt = yt � �̂0�t replacing the

observed time series yt. For now, ŷt are ordinary least squares residuals, which are su¢ cient to

generate a consistent test, and in the next section GLS detrending is considered in the spirit

of Elliott et al. (1996) which will in fact increase the power of the test, at least against linear

alternatives and for an important range of d values.

The following assumption on ut in (1) is su¢ cient for the weak convergence in (4) and (5).

Assumption 1 The unobserved errors ut are generated by the linear process

ut =  (L) "t =
1X
j=0

 j"t�j ; t = 0; 1; :::;

where
P1
j=0 j

1=2
�� j�� < 1,  (1) =

P1
j=0  j 6= 0,  0 = 1, and the "t are i:i:d: with E"t = 0,

E"2t = �2" > 0, E j"tj
q <1 for some q > 2:

Under the null hypothesis that � = 1 and under Assumption 1 on ut the convergence in (5)

holds with �2y =  (1)2 �2", see e.g. Akonom & Gourieroux (1987) and Marinucci & Robinson

(2000). The conditions on the coe¢ cients  j are similar to those employed by Phillips & Solo

(1992) and can in fact be relaxed slightly, e.g. Marinucci & Robinson (2000) and Davidson &

de Jong (2000), but are mild enough to cover all stationary and invertible ARMA models.

Note that under the null hypothesis, ~yt is integrated of order 1+d > 1 and the relevant mo-

ment condition in that case is q > 2, c.f. Marinucci & Robinson (2000). Under the alternative,

~yt is integrated of order d thus requiring a di¤erent moment condition below.

When the convergence (5) is established, the limiting distribution of the variance ratio

statistic � (d) is easily derived and is presented in the following theorem.

Theorem 1 Let yt be de�ned by (1) and (11), � (d) by (10) with the residuals ŷt replacing yt
in (3) and (10), and let j = 0 when �t = 0, j = 1 when �t = 1, and j = 2 when �t = (1; t)0.

Under the null hypothesis (2), Assumption 1 on ut, and for d > 0,

� (d)) Uj (d) =

R 1
0 Bj (s)

2 dsR 1
0
~Bj;d (s)

2 ds
; j = 0; 1; 2;

as T !1, where
Bj (s) =W0 (s) ; j = 0;

and the demeaned respectively demeaned and detrended standard Brownian motions are de�ned

as

Bj (s) =W0 (s)�
�Z 1

0
W0 (r)D (r)

0 dr

��Z 1

0
D (r)D (r)0 dr

��1
D (s) ; j = 1; 2;
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where D (s) = 1 when �t = 1 (j = 1), D (s) = (1; s)0 when �t = (1; t)0 (j = 2), and also
~B0;d (s) =Wd(s) and

~Bj;d (s) =Wd(s)�
�Z 1

0
W0 (r)D (r)

0 dr

��Z 1

0
D (r)D (r)0 dr

��1 Z s

0

(s� r)d�1

� (d)
D (r) dr; j = 1; 2:

Note that in this theorem and below, the weak convergence is pointwise in d. Also note

that, by the substitution u = s� r;Z s

0

(s� r)d�1

� (d)
dr =

sd

d� (d)
=

sd

� (d+ 1)
;Z s

0

(s� r)d�1

� (d)
rdr =

sd+1

d(d+ 1)� (d)
=

sd+1

� (d+ 2)
;

so that the term
R s
0
(s�r)d�1
�(d) D (r) dr appearing in the de�nition of ~Bj;d (s) for j = 1 and j = 2

corresponds to fractional powers of s. Furthermore, ~Bj;d (s) (j = 1; 2) is a fractional Brownian

motion less the trend correction term from an L2 regression of a standard (non-fractional)

Brownian motion on a fractional polynomial trend of order sd.

The asymptotic distribution Uj (d) of � (d) given in Theorem 1 depends only on the choice

of deterministic terms (j) and the parameter d, i.e. the order of (fractional) partial summation

indexing the family of tests. Hence, the asymptotic distribution can easily be simulated to

obtain quantiles for any member of the family characterized by the value of the parameter d.

Quantiles of Uj (d) for several members of the family, i.e. several values of the parameter d,

are presented in Table 1.

Table 1 about here

A very important property of the variance ratio statistic (10) and its asymptotic distribution

in Theorem 1 is that there is no need to specify or estimate any particular parametric or

nonparametric model for the short-run dynamics in  (L). Thus, the statistic is asymptotically

invariant to any short-run dynamics in the data generating process for yt. As a result, any

hypothesis test based on a member of the family of variance ratio statistics will share this useful

property.

Thus, consider using � (d) as a test of the unit root hypothesis, i.e. of the null hypothesis

(2), where large values of � (d) are associated with rejection of H0. Under the alternative, ~yt is

a fractionally integrated process of order d, and a strengthening of Assumption 1 is needed.

Assumption 2 Assumption 1 is satis�ed with q > 2 when d < 1=2 and q > max (2; 2= (2d� 1))
when d > 1=2.
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Under Assumption 2 more moments are required (higher q) compared to Assumption 1. The

moment condition E j"tjq < 1 for some q > max (2; 2= (2d� 1)) in Assumption 2 is needed
when analyzing the behavior of �(d) under the alternative hypothesis, and in particular to

obtain (5) when ~yt is integrated of order d 2 (1=2; 1) (when d � 1 the moment condition is

q > 2). Thus, the innovations "t are assumed to be identically and independently distributed,

and less dependence (smaller d) requires the existence of more moments (higher q) for "t
when d 2 (1=2; 1). When d < 1=2, ~yt is (asymptotically) stationary and the relevant moment
condition is q > 2.

The rejection region of the test and the alternatives against which it is consistent are given

in the following theorem.

Theorem 2 Let the assumptions of Theorem 1 be satis�ed, with Assumption 2 replacing As-

sumption 1. Then the test that rejects H0 in (2) when � (d) > CVj;
 (d), where CVj;
 (d) is

found from

Pr (Uj (d) > CVj;
 (d)) = 
; (12)

has asymptotic size 
 and is consistent against the alternative H1 in (2).

Note that, although the parameter d indexing the family of tests is speci�ed by the econo-

metrician, it is not a tuning parameter in the sense described in the introduction above. This

is because the choice of d is re�ected in the limiting distribution of the variance ratio sta-

tistic, unlike the tuning parameters, e.g. lag length and bandwidth parameters, in the usual

Dickey-Fuller or Phillips-Perron unit root tests. Thus, it may be possible to locate a member

of the family of tests which is tailored in such a way that power is maximized against relevant

alternatives. Indeed, this is considered in the following asymptotic local power analysis, where

results are provided which recommend d = 0:1, c.f. Theorem 3. See also the simulations in

section 4 below. Another typical choice could be d = 1, i.e. partial summation, based on

computational simplicity, which would in fact lead to (the inverse of) the statistic suggested

by Breitung (2002) to test for a unit root against nonlinear alternatives, see also Taylor (2005)

for seasonal unit root tests. An important reason to choose d < 1=2 rather than d 2 (1=2; 1) is
that the moment condition q > 2=(2d � 1) is very strict when d is greater than, but close to,
1=2, whereas when d is less then 1=2 the moment condition is simply q > 2.

The variance ratio statistic (10) is related to many well known statistics such as the KPSS

statistic of Kwiatkowski, Phillips, Schmidt & Shin (1992) and Shin & Schmidt (1992), and also

earlier statistics such as the Durbin-Watson statistic, to mention just a few. Indeed, variance

ratio type statistics have a very long tradition in time series analysis. However, there is a

fundamental di¤erence between those statistics and the variance ratio statistic in (10). The

former statistics are mostly based on the ratio of the sample variance of yt and that of �yt

8



(corresponding to d = �1 in the present setup) and then the �2y that appears in the limiting
distribution is divided out by employing some form of long-run variance estimator. On the other

hand, the statistic (10) is the ratio of the sample variance of yt and that of the (fractional)

partial sum of yt, which implies that �2y cancels from the limiting distribution and there is no

need to estimate serial correlation parameters or the long-run variance. In the next section, the

asymptotic local power is analyzed and the subsequent section investigates the �nite sample

properties, where in both sections comparisons are made to the GLS detrended ADF tests of

Elliott et al. (1996).

3 Asymptotic Local Power Analysis

In this section, the asymptotic local power of the autoregressive unit root test described in

Theorem 2 is analyzed to guide the choice of the parameter d. Since d is the only parameter

indexing the family of tests and the only parameter needed to calculate the variance ratio test

statistic (10), and is also the only parameter in the asymptotic distribution, it is of interest to

examine the power function for a range of values of d. In particular, one might ask if there is a

member of the family with maximum (within the family) power against relevant alternatives,

i.e. if there is a power maximizing value of d. This value could then be chosen by the researcher

in order to �tailor�the test to obtain high power, i.e. to select the member of the test family

with the best power properties.

Instead of attempting to calculate the exact power function of the test as a function of d,

the power is described qualitatively using local-to-unity asymptotics. To obtain non-degenerate

power under the alternative, consider the well-known sequence of local alternatives where

fytgTt=1 is generated according to

yt = �T yt�1 + ut; �T = 1� c=T; (13)

i.e. near-integrated alternatives with some c � 0, c.f. Chan & Wei (1987) and Phillips (1987b).
For any �xed T , yt is stationary (the alternative) provided T is large enough that c=T 2
(0; 2). On the other hand, yt is nonstationary (the null hypothesis) in the limit since �T ! 1

when T ! 1. Thus, the model (13) provides alternatives local to � = 1. The next two

subsections �rst consider the asymptotic local power of the above family of variance ratio tests,

and subsequently introduce a GLS detrended version to be compared to the GLS detrended

ADF test of Elliott et al. (1996).

3.1 Asymptotic Local Power of the Variance Ratio Test

The following theorem presents the distribution of the variance ratio statistic under the near-

integrated local alternatives.
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Theorem 3 Let the assumptions of Theorem 1 be satis�ed except (13) replaces (1) in the

de�nition of yt (or zt if �t 6= 0). Then, as T !1,

� (d)) Uj;NI (c; d) =

R 1
0 Jj;c (s)

2 dsR 1
0
~Jj;c;d (s)

2 ds
; j = 0; 1; 2;

where J0;c (s) is the Ornstein-Uhlenbeck process,

J0;c (s) =W (s)� c
Z s

0
e�(s�r)cW (r)dr; J0;c (0) = 0;

J1;c (s) ; J2;c (s) are the demeaned respectively demeaned and detrended Ornstein-Uhlenbeck processes,

Jj;c (s) = J0;c (s)�
�Z 1

0
J0;c (r)D (r)

0 dr

��Z 1

0
D (r)D (r)0 dr

��1
D (s) ; j = 1; 2;

and

~J0;c;d (s) = Wd(s)� c
Z s

0
e�(s�r)cWd (r) dr;

~Jj;c;d (s) = ~J0;c;d (s)�
�Z 1

0
J0;c (r)D (r)

0 dr

��Z 1

0
D (r)D (r)0 dr

��1 Z s

0

(s� r)d�1

� (d)
D (r) dr; j = 1; 2:

Theorem 3 describes the distribution of � (d) under the sequence of near-integrated local

alternatives (13). It follows that the asymptotic local power of any member of the family

of variance ratio tests of (2) can be described in terms of Uj;NI (c; d) whose distribution is a

continuous function of the local noncentrality parameter c � 0 and the index d > 0. Note that
Uj;NI (0; d) = Uj (d), j = 0; 1; 2. Also note that the process ~J0;c;d (s) appearing in Theorem 3

is a fractional version of the well known Ornstein-Uhlenbeck process J0;c(s), see e.g. Brockwell

& Marquardt (2005) or Buchmann & Klüppelberg (2006).

The local asymptotic power function of any member of the family of variance ratio tests

can thus be calculated as

P (Uj;NI (c; d) > CVj;
 (d)) ;

where CVj;
 (d) is de�ned in Theorem 2.

Figure 1 about here

Figure 1 displays simulated asymptotic local power curves for several members of the vari-

ance ratio test family (with 
 = 0:05) as a function of the local noncentrality parameter,

c � 0. The simulated power functions are based on 20,000 Monte Carlo replications of (13)

with T = 500, ut i:i:d: standard normal, and either no deterministic terms (Panel A), constant

mean (Panel B), or linear trend (Panel C). In each of the graphs, the power curves are drawn
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for d 2 f0:1; 0:25; 0:5; 1:0g. The critical values are simulated for each d based on 20,000 Monte
Carlo replications and sample size 500.

From Figure 1 it is clear that the asymptotic local power of the variance ratio test is

monotonic in d, and that d = 0:1 appears to be the �power maximizing�choice among those

power functions depicted, in the sense that it has uniformly (in c) higher power relative to

d = 0:25, d = 0:5, and d = 1:0. It should be noted that other choices of d conform to the

monotonicity apparent in Figure 1 although the gain in power from choosing an even smaller

value of d is minor. Furthermore, it also seems unwise to choose d too small, since then d

acts as if it depends (inversely) on the sample size which may distort the size properties of the

test (and result in poor size properties in �nite samples). Obviously, if d = 0 the test statistic

degenerates. Thus, Figure 1 suggests that d = 0:1 provides a good choice of the parameter d

indexing the family of tests, in the sense that local asymptotic power is better uniformly in c

relative to higher values of d.6 Note, however, that the local asymptotic power gains relative

to higher values of d are smaller when allowing non-zero mean (and possibly trend) correction

as in Panels B and C. In section 4 below, further support of the test with d = 0:1 relative to

the one with d = 1 is presented based on simulation evidence.

Finally, Figure 1 clearly demonstrates that signi�cant power gains can be achieved by

considering non-integer values of d (< 1). Comparing the d = 1 curve with the other curves,

it is seen that d = 1 provides the lowest power in all the panels of Figure 1. In other words,

the variance ratio test with d = 1, which was suggested by Breitung (2002) for testing the

unit root hypothesis against nonlinear models, can be vastly improved upon (at least against

near-integrated alternatives) by admitting non-integer values of d < 1.

3.2 GLS Detrending and Comparison to ADF-GLS Tests

Now consider applying GLS detrending to correct for deterministic terms instead of the simple

OLS detrending above. Thus, for any generic series fxtgTt=1 and some constant �c de�ne x�c;1 = x1

and x�c;t = xt � (1� �c=T )xt�1; t = 2; :::; T . With this de�nition the observed GLS detrended

time series, denoted fŷ�c;tgTt=1, is given by

ŷ�c;t = yt � ~�0�t; (14)

where

~� = argmin
�

TX
t=1

�
y�c;t � �0��c;t

�2
:

6This analysis is based on local power arguments. An alternative, which is not explored here, is to consider

power against �xed alternatives by examining the rate of divergence under the alternative. However, this is

known to be possibly misleading, e.g. this would make one believe that the F -test in the standard regression

model is superior to the t-test because it has a faster rate of divergence under the alternative.
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The use of GLS detrended time series for the ADF test was proposed by Elliott et al. (1996)

who in particular suggest �c = 7 and �c = 13:5 for �t = 1 and �t = (1; t)0, respectively, resulting in

the ADF-GLS test. These values of �c correspond to the (local) point alternatives against which

the local asymptotic power for signi�cance level 5% equals one-half. With respect to the choice

of lag augmentation, i.e. tuning parameter, for the ADF-GLS tests, Ng & Perron (2001) show

that the tests have both good size and power properties when employing a modi�ed version

of the well known Akaike information criterion, which is applied in the simulations below. In

the asymptotic comparisons, the lag augmentation is (unrealistically, of course) assumed to be

chosen correctly and optimally.

Consider constructing the variance ratio test based on the GLS detrended time series (14).

That is,

� (�c; d) = T 2d
PT
t=1 ŷ

2
�c;tPT

t=1 ~y
2
�c;t

; (15)

where ~y�c;t = ��d+ ŷ�c;t as in (3). The distribution of the GLS detrended variance ratio test (15)

under the sequence of local alternatives (13) depends on the stochastic processes

V�c;c (s) = J0;c (s)� b1s;

~V�c;c;d (s) = ~J0;c;d (s)� b1
sd+1

�(d+ 2)
;

b1 =
(1 + �c)

1 + �c+ �c2=3
J0;c (1) +

�c2

1 + �c+ �c2=3

Z 1

0
rJ0;c (r) dr;

and is presented in the next theorem.

Theorem 4 Let the assumptions of Theorem 3 be satis�ed except yt is GLS detrended as in

(14) and the variance ratio statistic is given by (15). Then, as T !1,

� (�c; d)) Uj;GLS (�c; c; d) ; j = 1; 2;

where

U1;GLS (�c; c; d) = U0;NI (c; d) ;

U2;GLS (�c; c; d) =

R 1
0 V�c;c (s)

2 dsR 1
0
~V�c;c;d (s)

2 ds
;

and U0;NI (c; d) and J0;c (s) are de�ned in Theorem 3.

To implement the GLS detrending procedure for the variance ratio test, a recommendation

regarding the choice of local detrending parameter �c is needed.

Table 2 about here

12



Following Elliott et al. (1996), the values of �c = c that attain asymptotic local power equal

to one-half at 5% signi�cance level are presented in Panel A of Table 2 for �t = 1 and �t = (1; t)0

and several values of d. These values of �c = c are those for which the power envelope type

function Pr (Uj;GLS (�c; �c; d) > CVj;0:05 (�c; d)) is equal to one-half at the 5% signi�cance level,

where CVj;
 (�c; d) satis�es Pr (Uj;GLS (�c; 0; d) > CVj;
 (�c; d)) = 
.

Critical values of the variance ratio test for the particular �c and d values presented in Panel

A of Table 2 are presented in Panel B of Table 2 for signi�cance levels 
 = 1%; 5%; and 10%.

Note that the table presents the critical values for j = 2 only, since the j = 1 case has the same

asymptotic null distribution and hence the same critical values as j = 0 in Table 1.

Figure 2 about here

In Figure 2 the asymptotic local power functions of the GLS detrended variance ratio tests

with d = 0:001; 0:1; 1 are presented for the no deterministics case (Panel A), the case with a

constant mean (Panel B), and the case with a linear trend (Panel C). The asymptotic local

power functions are simulated based on 20,000 Monte Carlo replications with T = 500. Also

included are the local power functions of the Dickey-Fuller and GLS detrended Dickey-Fuller

tests. The local power functions of the latter are indistinguishable from the parametric power

envelope, c.f. Elliott et al. (1996).

The main focus is the comparison between the Dickey-Fuller tests, the GLS detrended

Dickey-Fuller tests, and the GLS detrended variance ratio test with d = 0:1, since the latter

was preferred to tests with higher values of d in the asymptotic local power analysis in Figure

1 above. The test with d = 0:001 is included to examine how close the asymptotic local

power curve of the nonparametric variance ratio test can be pushed towards the parametric

power envelope, essentially given by the asymptotic local power function of the GLS detrended

Dickey-Fuller tests.

Note that, as observed by Breitung & Taylor (2003), the Breitung (2002) test does not

bene�t from GLS detrending � on the contrary �whereas the variance ratio test based on

fractional partial summation (e.g. d = 0:1) does bene�t signi�cantly from GLS detrending, in

terms of asymptotic local power. In both the case with mean correction (Panel B) and the

case with trend correction (Panel C), the asymptotic local power of the variance ratio test with

d = 0:1 is approximately the same as that of the Dickey-Fuller test. When GLS detrending is

employed in the construction of the variance ratio test the power is increased, and in particular

the power of the GLS detrended variance ratio test with d = 0:1 is signi�cantly higher than

that of the Dickey-Fuller test although still below that of the GLS detrended Dickey-Fuller

test. In all three panels of Figure 2, the GLS detrended variance ratio tests conform to the

same monotonicity in d as in Figure 1.
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One method to measure and compare the asymptotic local power of the GLS detrended

variance ratio test with that of the ADF-GLS tests (whose asymptotic local power essentially

coincides with the parametric power envelope) is to calculate the Pitman asymptotic relative

e¢ ciency (ARE) of the d = 0:1 and d = 1 tests relative to the ADF-GLS test. In the framework

of asymptotic local power, this is done by comparing the values of c at which the tests obtain

a speci�ed power, e.g. power one-half following Elliott et al. (1996). The interpretation is that

if the Pitman ARE of test A relative to test B is 1.25, then 25% more observations would

be needed to obtain asymptotic local power of one-half using test A instead of test B. In the

constant mean case, using 5% tests, the Pitman ARE of the VR-GLS tests with d = 0:1 and

d = 1 relative to the ADF-GLS test are 1.34 and 2.97. In the linear trend case the corresponding

AREs are 1.12 and 2.07. Thus, in the linear trend case only 12% more observations would be

required for the VR-GLS test with d = 0:1 than for the ADF-GLS test to achieve asymptotic

local power of one-half.

It is clear from the above asymptotic analysis that the nearly optimal ADF-GLS test is

more powerful in a local asymptotic sense than the nonparametric GLS detrended variance

ratio test with d = 0:1. However, these considerations are assuming that the tuning parameter,

i.e. lag length, in the ADF-GLS test is chosen optimally, even though in any applied situation

the correct/optimal lag length is unknown. It is well known that in more realistic scenarios

where the lag length is unknown and must be chosen/estimated from the data, using e.g.

an information criterion, and the serial correlation nuisance parameters must be estimated,

the properties of the Dickey-Fuller type tests may deteriorate relative to the above �perfect

knowledge�case. Indeed, they may be inferior to the nonparametric variance ratio test, which

does not require the selection of any tuning parameters. This possibility is examined using

simulations in the next section.

4 Finite Sample Performance

In this section simulation evidence is provided to evaluate the �nite sample performance of the

proposed nonparametric variance ratio test compared to the (nearly) optimal parametric GLS

detrended ADF test of Elliott et al. (1996). The time series yt is simulated according to the

autoregressive model

yt = �yt�1 + ut; t = 1; :::; T; (16)
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where y0 = 0. Several di¤erent linear and nonlinear generating mechanisms are considered for

ut, in particular,

AR : ut = aut�1 + "t; t = 1; :::; T; (17)

MA : ut = "t + a"t�1; t = 1; :::; T; (18)

GARCH : ut = h
1=2
t "t; ht = 1 + aht�1 + (0:95� a)u2t�1; t = 1; :::; T; (19)

Bilin : ut = a"t�1ut�1 + "t; t = 1; :::; T; (20)

VCM : ut = �tut�1 + "t; �t = a cos (2�t=T ) ; t = 1; :::; T; (21)

TAR : ut =

(
aut�1 + "t if jut�1j < 2;
�aut�1 + "t if jut�1j � 2;

t = 1; :::; T: (22)

The models (17) and (18) are the traditional autoregressive (AR) and moving average (MA)

models of order one for ut with coe¢ cient a. In (19), ut is serially uncorrelated but exhibits

time-varying variance, GARCH, of order (1,1). The parameterization is such that the sum of the

two GARCH parameters (here denoted a and (0:95� a)) equals 0:95 re�ecting typical empirical
values. Model (20) is the bilinear (Bilin) model with parameter a, (21) is a variable coe¢ cient

model (VCM) where the autoregressive coe¢ cient is cyclical with amplitude determined by the

parameter a, and (22) is the threshold autoregressive (TAR) model with parameter equal to a

or �a determined by the threshold condition. Finally, yt is also simulated from the model

STUR : yt = �tyt�1 + "t; �t = a+ (�� a)�t�1 + 0:05�t; t = 1; :::; T; (23)

where y0 = 0 and E (�t) = a= (1� �+ a), which is a variant of the stochastic unit root model
considered by, e.g., McCabe & Tremayne (1995) and Granger & Swanson (1997). Note that

some of the nonlinear models considered here induce trends in yt, see e.g. Granger & Anderson

(1978), so only the case with correction for a linear trend is considered for the nonlinear models.

In all models, "t and �t are i:i:d: standard normal and independent. The sample sizes

considered are T = 100 and T = 500, and 20; 000 Monte Carlo replications are used in the

simulations. Throughout, a 5% nominal signi�cance level is employed. All calculations were

made in Ox 3.4, see Doornik (2001).

In all the simulations, comparisons are made to the well known ADF test and to the ADF-

GLS test of Elliott et al. (1996). To make the tests comparable, the lag augmentations (say k)

in the ADF and ADF-GLS regressions are chosen using the data dependent modi�ed Akaike

information criterion (MAIC) of Ng & Perron (2001) who show that this criterion �dominates

all other criteria from both theoretical and numerical perspectives.� In particular, the lag

augmentation was chosen to optimize the MAIC with kmin = 0 and kmax = [12(T=100)1=4] as

in Ng & Perron (2001). Note that, in the simulations, this upper bound binds rarely for the

small sample size (T = 100) and never for the larger sample size (T = 500). Also note that the
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ADF-GLS test favors small initial conditions, see Müller & Elliott (2003), so in that sense the

zero initial condition poses the greatest challenge for the proposed nonparametric test when

compared to the ADF-GLS test.

Tables 3 and 4 about here

Tables 3 and 4 present the simulated size and size-adjusted rejection frequencies with

T = 100 for the constant mean and the linear trend cases, respectively, under the simple

autoregressive and moving average models (17) and (18). The results are reported for the vari-

ance ratio statistic with d = 0:1 (denoted � (0:1)), the corresponding GLS detrended variance

ratio statistic (denoted � (�c; 0:1)), the Breitung (2002) test (BT), and the ADF and ADF-GLS

tests using the MAIC to select lag augmentation. For each statistic, entries in the rows marked

� = 1:00 are the rejection frequencies under the unit root null hypothesis, i.e. the size of the

test, and all other entries are size-adjusted �nite sample rejection frequencies.7 In both tables,

the BT test appears dominated by either � (�c; 0:1) or ADF-GLS or both, in terms of size as well

as size-adjusted power, so the focus will be on the comparison of the � (�c; 0:1) and ADF-GLS

tests.

The results of Table 3 for the constant mean case show that the variance ratio test has

some size distortion in the presence of a negative moving average or autoregressive root. On

the other hand, the ADF and ADF-GLS tests handle the size issue very well, and have sizes

very close to the nominal level for all the models considered in this table. With respect to

the (size-adjusted) �nite sample power of the tests, the variance ratio tests, and especially the

GLS detrended version, are clearly superior to the Dickey-Fuller type tests. Thus, the size

control of the ADF-GLS tests, which results from the application of the MAIC lag selection

criterion, comes at the price of a great decrease in power, at least for this sample size, T = 100.

Speci�cally, for � = 0:90, the �nite sample rejection frequencies of the GLS detrended variance

ratio test are very similar to the ones of the ADF-GLS test, but for � < 0:9 the GLS detrended

variance ratio test clearly outperforms the ADF-GLS test. For the latter range of �-values, the

�nite sample power of the GLS detrended variance ratio test is mostly around 20% higher than

that of the ADF-GLS test.

In Table 4, presenting the results for the linear trend case, it is clear that the close proximity

of the asymptotic local power of the � (�c; 0:1) test in this case to the parametric power envelope

carries over to the simulation results. In particular, the results from Table 3 are reinforced here:

the size distortion remains in the presence of negative autoregressive or moving average roots,

but the �nite sample power of the GLS detrended variance ratio test is now higher than that of

7The unadjusted rejection frequencies are not shown here for reasons of space, but are available from the

author upon request.
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the ADF-GLS test throughout the table. In particular, when there is a positive autoregressive

root, the � (�c; 0:1) test is, in some cases, more than twice as powerful as the ADF-GLS test. The

results presented in Tables 3 and 4 thus demonstrate that, at the cost of some size distortion in

speci�c cases, signi�cant power gains may be obtained for relevant sample sizes by considering

the proposed variance ratio test.

Tables 5 and 6 about here

In Tables 5 and 6, laid out as the previous two tables, the simulated size and size-adjusted

rejection frequencies for sample size T = 500 are reported under the same models as in Tables 3

and 4. The results for the constant mean case in Table 5 show that the size distortion evident in

the smaller sample size has vanished, and all the tests now have reasonable size properties. The

power of the ADF-GLS test has increased dramatically relative to the variance ratio test in this

larger sample size, presumably due to better lag augmentation selection, and now dominates

that of the variance ratio tests for small deviations from the null. In particular, the ADF-GLS

test now has somewhat higher �nite sample power against � = 0:98, whereas for � = 0:96

the GLS detrended variance ratio test has nearly the same power as the ADF-GLS test. For

� < 0:96, both the � (�c; 0:1) and ADF-GLS tests reject in very nearly all replications.

The results in Table 6 for the linear trend case with T = 500 show that the variance ratio

test remains very competitive in the presence of a linear trend, even with the larger sample size

and therefore better lag augmentation selection by the ADF-GLS test. The variance ratio tests

are much less over-sized when T = 500 compared to T = 100 in Table 4, and size distortion is

now only signi�cant for the largest negative moving average root. With respect to �nite sample

power, the rejection frequencies of the GLS detrended variance ratio test and the ADF-GLS

tests are extremely similar for all the alternatives shown in the table.

Tables 7 and 8 about here

Tables 7 and 8 present simulation results for the models (19)-(23). Since some of the non-

linear models induce trends in the observed time series, only the linear trend case is considered

here. The results for the smaller sample size, T = 100, in Table 7 emphasize the usefulness

of the nonparametric variance ratio test. All tests have excellent size properties, but overall

the variance ratio test is clearly superior in terms of �nite sample power. The results for the

variance ratio test under the GARCH model (19) are similar to the results for the i:i:d: er-

ror case in Table 4, whereas the ADF-GLS test has somewhat reduced power in the presence

of GARCH. In the bilinear model (20), GLS detrending appears to have no e¤ect on power.

Under this model, the �nite sample power of the variance ratio tests (with or without GLS

detrending) is similar to that of the Dickey-Fuller type tests for � � 0:8, but for moderate to
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large deviations from the null the variance ratio tests are clearly superior, i.e. when � < 0:8.

For the TAR model (22), the situation is very similar to that for the GARCH model or the

i:i:d: error case, where the �nite sample powers of the � (�c; 0:1) and ADF-GLS tests are similar

for � = 0:9 but the GLS detrended variance ratio test is superior for � < 0:9. Finally, in the

VCM and STUR models (21) and (23), the GLS detrended variance ratio test has higher �nite

sample power than the ADF and ADF-GLS tests for all alternatives considered. In the STUR

model, GLS detrending also appears to have no signi�cant e¤ect on the power of the variance

ratio test whereas the ADF-GLS test has lower power than the ADF test.

For the larger sample size, T = 500, the results in Table 8 con�rm the previous results

for the GARCH, VCM, and TAR models: that the GLS detrended variance ratio test and the

ADF-GLS test both have excellent size properties, that the two tests have similar size-adjusted

power for small deviations from the null hypothesis, and that the GLS detrended variance

ratio test has slightly higher power when moving further away from the null. For the bilinear

model, size is again well controlled by all the tests, but the GLS detrended tests (both � (�c; 0:1)

and ADF-GLS) have very low power. For the STUR model, all tests (including the ADF and

ADF-GLS tests) exhibit severe size distortions when a = 0:1 but not when a = 0:5. In terms

of power, the variance ratio test is clearly superior when a = 0:1 and the tests are similar for

a = 0:5.

In general, it is apparent from the simulations that the nonparametric variance ratio test

is useful and that non-trivial power gains may be obtained relative to the ADF-GLS test of

Elliott et al. (1996) in sample sizes that are relevant for empirical research. Thus, even though

the ADF-GLS test has superior asymptotic local power properties, as documented in section

3 above, the need to select a tuning parameter (lag augmentation) and estimate nuisance

parameters (serial correlation) reduces the power of Dickey-Fuller type tests in more realistic

settings. Although the power loss of the ADF-GLS test relative to the power envelope is

somewhat alleviated in larger samples, where the MAIC comes closer to selecting the optimal

(but unknown to the researcher) lag augmentation, it remains an issue and the variance ratio

test is still able to achieve similar, if not higher, power without the need to select any tuning

parameters.

5 Concluding Remarks

The family of nonparametric variance ratio tests of the unit root hypothesis presented here has

the property that the tests are free of tuning parameters. That is, there are no parameters

involved in calculating the test which are not re�ected in the asymptotic distribution. The

tests are constructed as a ratio of the sample variance of the observed series and that of a

fractional partial sum of the series, possibly applying GLS detrending to handle determinis-
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tic terms, and the family is thus indexed by the parameter d which determines the order of

the fractional partial summation. However, unlike the choice of tuning parameters, e.g., lag

length in augmented Dickey-Fuller regressions or bandwidth in Phillips-Perron type tests, each

member of the family with d > 0 is consistent and its asymptotic distribution depends on d,

thus re�ecting the parameter chosen to implement the test. Consequently, using local power

asymptotics, the member of the family which has the highest (within the family) power against

relevant (near-integrated) alternatives was derived, and in particular, it was shown that when

d is small the asymptotic local power of the proposed nonparametric test is relatively close to

the parametric power envelope, especially in the case with a linear time trend.

Furthermore, simulation evidence demonstrates that the proposed test has good �nite sam-

ple properties in the presence of both linear and nonlinear short-run dynamics. Indeed, the

�nite sample size-adjusted power of the nonparametric tuning parameter free variance ratio

test is similar, and sometimes superior, to that of the GLS detrended ADF test when the two

are compared on an even footing by applying the MAIC to select the lag augmentation of the

Dickey-Fuller regressions.

Appendix: Proofs

Proof of Theorem 1. In the case with no deterministic terms, the result follows immediately

by the Continuous Mapping Theorem since Assumption 1 implies (4) and (5). In the presence

of deterministic terms, recall that ŷt = zt� (�̂� �)0 �t, where zt is generated as yt in (1). From
(4), the convergence

yT (s) = T�1=2z[Ts] ) �yW0 (s)

holds. Now de�ne N(T ) = diag(1; T�1) and write

T�1=2 (�̂� �)0 �[Ts] =
 
T�1

TX
s=1

T�1=2zs�
0
sN(T )

! 
T�1

TX
s=1

N(T )�s�
0
sN(T )

!�1
N(T )�[Ts];

where

T�1=2 (�̂� �)0N(T )�1 =

 
T�1

TX
s=1

T�1=2zs�
0
sN(T )

! 
T�1

TX
s=1

N(T )�s�
0
sN(T )

!�1
(24)

=

 
T�1

TX
s=1

T�1=2zsD(s=T )

! 
T�1

TX
s=1

D(s=T )D(s=T )0

!�1

) �y

�Z 1

0
W0 (s)D (s)

0 ds

��Z 1

0
D (s)D (s)0 ds

��1
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by application of (4) and the Continuous Mapping Theorem, and

N(T )�[Ts] = D([Ts]=T )! D(s) as T !1: (25)

It thus follows that

ŷT (s) = T�1=2ŷ[Ts] ) �yBj (s) ; j = 0; 1; 2: (26)

Next, for ~yT (s) = T�d��d+ ŷT (s) = T�1=2�d
P[Ts]�1
j=0 �j (d) ŷ[Ts]�j = T�1=2�d

P[Ts]
j=1 �[Ts]�j (d) ŷj ,

where ŷt = zt � (�̂� �)0 �t and �j(d) = �(j + d)=(�(d)�(j + 1)), the convergence

~yT (s) = T�1=2�d
[Ts]X
j=1

�[Ts]�j (d) zj ) �yWd(s)

holds from (5). For the remaining term,

T�1=2�d
[Ts]X
j=1

�[Ts]�j (d) (�̂� �)0 �j =
�
T�1=2 (�̂� �)0N(T )�1

�0@T�d [Ts]X
j=1

�[Ts]�j (d)N(T )�j

1A ;

the �rst term converges by (24) and the last term is deterministic and satis�es the convergence

T�d
[Ts]X
j=1

�[Ts]�j (d)N(T )�j = T�d
[Ts]X
j=1

�[Ts]�j (d)D(j=T ) (27)

= T�d
[Ts]X
j=1

([Ts]� j)d�1

� (d)
D(j=T ) + o(1)

= T�1
[Ts]X
j=1

�
[Ts]
T � j

T

�d�1
� (d)

D(j=T ) + o(1)

!
Z s

0

(s� r)d�1

� (d)
D (r) dr as T !1:

Hence, it follows that

~yT (s)) �y ~Bj;d (s) ; j = 0; 1; 2;

which proves the desired result.

Proof of Theorem 2. The test has asymptotic size 
 by Theorem 1 and the de�nition of

CVj;
 (d). Consistency is proved in the case �t = 0; the remaining cases follow similarly. Under

the alternative hypothesis H1 in (2) and Assumption 2,

T�1
TX
t=1

y2t
P! !2y = Ey2t ;

T�2d
TX
t=1

~y2t ) �2y

Z 1

0
Wd�1 (s)

2 ds; d > 1=2;
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where the �rst line holds by the law of large numbers for stationary ergodic time series since

!2y = Ey2t <1, e.g. White (1984, p. 42), and the second line holds by (5) and the Continuous
Mapping Theorem. If d < 1=2, de�ne the stationary time series �yt = ��dyt =

P1
j=0 �j(d)yt�j

(with no truncation), for which the law of large numbers for stationary ergodic time series

implies that

T�1
TX
t=1

�y2t
P! �!2y = E�y2t ; d < 1=2;

since �!2y = E�y2t < 1 when d < 1=2. Under H1, yt can be written as yt =
P1
j=0 � j"t�j ,

where the � j are functions of � and  j ; j = 0; 1; : : :. Thus, �yt and ~yt can be written as

�yt =
P1
j=0 �j"t�j and ~yt =

P1
j=0

~�t;j"t�j , where the coe¢ cients �j =
Pj
k=0 �k(d)� j�k and

~�t;j =
Pmin(j;t�1)
k=0 �k(d)� j�k such that �j = ~�t;j for j � t�1. The coe¢ cients satisfy �j � Cjd�1

(because �j(d) satis�es the same inequality) and ~�t;j � Ctd�1. The process ~yt =
P1
j=0

~�t;j"t�j

is asymptotically stationary in the sense that

V ar (~yt � �yt) = �2"

1X
j=t

(�j � ~�t;j)2

� C
1X
j=t

j2d�2

� Ct2d�1 ! 0

as t ! 1. It therefore follows that also T�1
PT
t=1 ~y

2
t
P! E�y2t if T

�1PT
t=1 (~yt � �yt)

2 P! 0. But

this is a consequence of

E

�����T�1
TX
t=1

(~yt � �yt)2
����� = T�1

TX
t=1

V ar (~yt � �yt)

� CT 2d�1 ! 0:

Hence,

T�1� (d))
!2y
�2y

�Z 1

0
Wd�1 (s)

2 ds

��1
; d > 1=2;

T�2d� (d)
P!
!2y

�!2y
; d < 1=2;

i.e. � (d) 2 OP
�
Tmin(1;2d)

�
under H1 and thus diverges in probability to +1 when d > 0 (note

that � (d) > 0 by construction). Consistency against the alternative H1 follows.

Proof of Theorem 3. Recall that ŷt = zt � (�̂� �)0 �t, where zt is generated by (13).
Under assumptions implied by Assumption 1, Chan & Wei (1987) and Phillips (1987b) proved

that

T�1=2z[Ts] ) �yJ0;c (s) ;
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where J0;c (s) = W (s) � c
R s
0 e

�(s�r)cW (r)dr; J0;c (0) = 0; is the Ornstein-Uhlenbeck process

which is sometimes also written as J0;c (s) =
R s
0 e

�c(s�r)dW0 (r). As in (24) it follows that

T�1=2 (�̂� �)0N(T )�1 ) �y

�Z 1

0
J0;c (r)D (r)

0 dr

��Z 1

0
D (r)D (r)0 dr

��1
; (28)

which combined with (25) implies that

ŷT (s) = T�1=2ŷ[Ts] ) �yJj;c (s) ; (29)

where Jj;c (s) is the demeaned (j = 1) respectively demeaned and detrended (j = 2) Ornstein-

Uhlenbeck processes de�ned in Theorem 3.

As in the proof of Theorem 1, de�ne ~yT (s) = T�d��d+ ŷT (s) = T�1=2�d
P[Ts]
j=1 �[Ts]�j (d) ŷj .

First suppose there are no deterministic terms (j = 0), in which case ŷt = yt. Since e�c=T =

1 � c=T + O(T�2) it follows that yt =
Pt
j=1 e

�(t�j)c=Tuj (where a negligible remainder term

has been left out), and using summation by parts the representation

yt =
tX
j=1

e�(t�j)c=Tuj =
tX
j=1

uj +
t�1X
j=1

�
e�(t�j)c=T � e�(t�j�1)c=T

� jX
k=1

uk

is obtained. By the Mean Value Theorem, for 0 � x � 1;

e�(t�j�1)c=T = e�(t�j)c=T +
c

T
e�(t�j)c=T +

1

2

� c
T

�2
e�(t�j�x)c=T

= e�(t�j)c=T +
c

T
e�(t�j)c=T

�
1 +O

�
T�1

��
;

which implies that

yt =
tX
j=1

uj �
c

T

t�1X
j=1

e�(t�j)c=T
jX
k=1

uk
�
1 +OP

�
T�1

��
:

The OP (T�1) term is uniform in t and is therefore ignored in the following.

Now, still in the case with no deterministic terms, ~yT (s) = T�1=2�d
P[Ts]
j=1 �[Ts]�j (d) yj is

~yT (s) = T�1=2�d
[Ts]X
j=1

�[Ts]�j (d)

jX
k=1

uk � T�1=2�d
[Ts]X
j=2

�[Ts]�j (d)
c

T

j�1X
k=1

e�(j�k)c=T
kX
l=1

ul

= ~y1T (s)� ~y2T (s);

where ~y1T (s) = T�1=2�d
P[Ts]
j=1 �[Ts]�j (d)

Pj
k=1 uk ) �yWd (s) by (5). By interchanging the
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order of the summations the second term can be rearranged as

tX
j=2

�t�j (d)
c

T

j�1X
k=1

e�(j�k)c=T
kX
l=1

ul =
c

T

t�2X
k=0

e�(k+1)c=T
t�kX
j=2

�t�k�j (d)

j�1X
k=1

uk

=
c

T

tX
i=2

e�(t�i+1)c=T
iX
j=2

�i�j (d)

j�1X
k=1

uk

=
c

T

t�1X
k=1

e�(t�k)c=T
k+1X
j=2

�k+1�j (d)

j�1X
k=1

uk

=
c

T

t�1X
k=1

e�(t�k)c=T
kX
j=1

�k�j (d)

jX
k=1

uk;

and thus ~y2T (s) is

~y2T (s) =
c

T

[Ts]�1X
k=1

e�([Ts]�k)c=T ~y1T (k=T )

= c

[Ts]�1X
k=1

e�([Ts]�k)c=T
Z (k+1)=T

k=T
~y1T (r)dr

= c

[Ts]�1X
k=1

Z (k+1)=T

k=T
e�([Ts]�[Tr])c=T ~y1T (r)dr

= c

Z [Ts]=T

1=T
e�([Ts]�[Tr])c=T ~y1T (r)dr

= c

Z s

0
e�(s�r)c~y1T (r)dr +RT (s):

By application of (5) and the Continuous Mapping Theorem (since the functional
R s
0 e

�(s�r)cf(r)dr

is a continuous mapping from D[0; 1] to D[0; 1]) it follows that

c

Z s

0
e�(s�r)c~y1T (r)dr ) �yc

Z s

0
e�(s�r)cWd (r) dr:

Thus, it only remains to show that the approximation error RT (s) is negligible uniformly

in s 2 [0; 1]. Write RT (s) as

RT (s) = c

Z 1=T

0
e�([Ts]�[Tr])c=T ~y1T (r)dr

+c

Z s

[Ts]=T
e�([Ts]�[Tr])c=T ~y1T (r)dr

+c

Z s

0

�
e�([Ts]�[Tr])c=T � e�(s�r)c

�
~y1T (r)dr:
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It is easily seen that
R 1=T
0 e�([Ts]�[Tr])c=T ~y1T (r)dr = 0 because ~y1T (r) = 0 for r < 1=T . For the

next term we have that

sup
0�s�1

c

Z s

[Ts]=T
e�([Ts]�[Tr])c=T ~y1T (r)dr = sup

0�s�1
C

Z s

[Ts]=T
~y1T (r)dr

� sup
0�s�1

C

�
Ts� [Ts]

T

� ����~y1T � [Ts]T
�����

� C

T
sup
0�s�1

j~y1T (s)j ;

which is OP
�
T�1

�
since sup0�s�1 j~y1T (s)j ) �y sup0�s�1 jWd (s)j by (5) and the Continuous

Mapping Theorem. The last term of RT (s) is bounded by

sup
0�s�1

c

Z s

0

�
e�([Ts]�[Tr])c=T � e�(s�r)c

�
~y1T (r)dr

� sup
0�s�1

c

Z s

0

�
e�([Ts]=T�[Tr]=T )c � e�([Ts]=T�r)c

�
~y1T (r)dr

+ sup
0�s�1

c

Z s

0

�
e�([Ts]=T�r)c � e�(s�r)c

�
~y1T (r)dr

� sup
0�r�1

C
����e([Tr]=T )c � erc� ~y1T (r)���+ sup

0�r�1

C

T
erc j~y1T (r)j

� C

T
sup
0�r�1

j~y1T (r)j ;

which is OP (T�1) by (5) and the Continuous Mapping Theorem. Hence sup0�s�1RT (s)
P! 0:

Finally, the result for the fractional partial sum of the detrended process, i.e. ~yT (s) =

T�1=2�d
P[Ts]
j=1 �[Ts]�j (d) ŷj , can easily be proven. Following the steps in the proof of Theorem

1 above and using ŷt = zt � (�̂� �)0 �t, where zt is generated by (13), it is seen that

T�1=2�d
[Ts]X
j=1

�[Ts]�j (d) zj ) �y ~J0;c;d (s) ;

which combined with (27) and (28) yields

~yT (s)) �y ~J0;c;d (s)� �y
�Z 1

0
J0;c (r)D (r)

0 dr

��Z 1

0
D (r)D (r)0 dr

��1 Z s

0

(s� r)d�1

� (d)
D (r) dr

in the same way as above.

Proof of Theorem 4. From Elliott et al. (1996, pp. 834-835) it follows that T�1=2ŷ�c;[Ts] )
�yJ0;c (s) if j = 1 and T�1=2ŷ�c;[Ts] ) �yV�c;c (s) if j = 2. It therefore also follows immediately

that T�1=2�d~y�c;[Ts] ) �y ~J0;c;d (s) for j = 1 when ~y�c;t is based on ŷ�c;t.
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It only remains to be shown that T�1=2�d~y�c;[Ts] ) �y ~V�c;c;d (s) when j = 2 and ~y�c;t is based

on

ŷ�c;t = zt � (~�0 � �0)� (~�1 � �1)t (30)

which is GLS detrended as in (14). From Elliott et al. (1996, p. 835) it is known that ~�0 2 OP (1)
and

p
T (~�1 � �1)) �y

(1 + �c)

1 + �c+ �c2=3
J0;c (1) + �y

�c2

1 + �c+ �c2=3

Z 1

0
rJ0;c (r) dr = �yb1: (31)

Following the steps in the proofs of Theorems 1 and 3, write

T�1=2�d~y�c;[Ts] = T�1=2�d
[Ts]X
j=1

�[Ts]�j (d) ŷ�c;j

and use (30) to obtain the representation

T�1=2�d~y�c;[Ts] = T�1=2�d
[Ts]X
j=1

�[Ts]�j (d) zj

�(~�0 � �0)T�1=2�d
[Ts]X
j=1

�[Ts]�j (d)

�
p
T (~�1 � �1)T�d

[Ts]X
j=1

�[Ts]�j (d)
[Ts]

T
:

For the �rst term it clearly holds that

T�1=2�d
[Ts]X
j=1

�[Ts]�j (d) zj ) �y ~J0;c;d (s) :

Next,

sup
0�s�1

T�1=2�d
[Ts]X
j=1

�[Ts]�j (d) � C sup
0�s�1

T�1=2�d
[Ts]�1X
j=1

([Ts]� j)d�1

� C sup
0�s�1

T�1=2�d
[Ts]�1X
j=1

jd�1

� CT�1=2;

and since ~�0 2 OP (1) this implies that the second term is OP (T�1=2). For the third term use

(31) and

T�d
[Ts]X
j=1

�[Ts]�j (d)
[Ts]

T
! sd+1

� (d+ 2)
;

such that T�1=2�d~y�c;[Ts] ) �y ~J0;c;d (s)� �yb1 sd+1

�(d+2) = �y ~V�c;c;d (s) for j = 2.
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Table 1: Critical values CVj;� (d) of the variance ratio test (10)
d

Deterministics 
 T 0:10 0:25 0:50 0:75 1:00

j = 0 : �t = 0 0.10 100 1.5388 2.7808 6.7604 15.3013 33.6340
500 1.5395 2.7677 6.7019 15.0938 33.1256

0.05 100 1.6170 3.1344 8.4524 20.9946 48.7309
500 1.6230 3.1434 8.4422 20.7033 49.4214

0.01 100 1.7623 3.8953 12.5536 36.1244 98.8180
500 1.7705 3.9230 12.9280 38.5938 106.6029

j = 1 : �t = 1 0.10 100 1.7492 3.8341 12.2919 32.0381 70.0327
500 1.7609 3.8718 12.3902 32.3151 70.4341

0.05 100 1.8110 4.1758 14.4893 41.5508 100.4194
500 1.8215 4.1995 14.4260 40.8306 97.8254

0.01 100 1.9205 4.8245 19.3901 64.8151 186.3318
500 1.9312 4.8477 18.9774 62.1184 173.0501

j = 2 : �t = [1; t]
0 0.10 100 1.9064 4.7761 19.5001 69.8565 227.3997

500 1.9245 4.8319 19.6838 70.3534 227.9921
0.05 100 1.9563 5.0871 22.0730 83.9390 291.3214

500 1.9785 5.1681 22.3296 84.7881 289.6125
0.01 100 2.0441 5.6818 27.7271 119.0518 455.0747

500 2.0780 5.8320 28.2634 118.8001 446.2204

Note: The critical values are simulated based on 20,000 Monte Carlo replications. The test
rejects when the test statistic is larger than the critical values in this table.

Table 2: Values of �c and CVj;�(�c; d) of the VR-GLS test (15)
d

Deterministics 
 T 0:10 0:25 0:50 0:75 1:00

Panel A: Values of �c = c that yield asymptotic local power of 50%
j = 1 : �t = 1 0.05 500 9.4 10.6 12.8 16.3 20.8
j = 2 : �t = [1; t]

0 0.05 500 15.1 16.1 18.7 22.5 28.0
Panel B: Critical values CVj;
 (�c; d)
j = 2 : �t = [1; t]

0 0.10 100 1.7988 4.0537 13.7148 41.7500 122.8662
500 1.7737 3.8567 11.9207 31.8438 78.2120

0.05 100 1.8512 4.3743 15.9824 52.2843 161.4733
500 1.8340 4.1947 14.0528 40.6188 108.0809

0.01 100 1.9533 5.0089 20.9652 76.3726 267.6498
500 1.9523 4.8893 19.2863 65.1618 195.2196

Note: The values of �c = c in Panel A of the table correspond to the (local) point alternatives
against which the local asymptotic power for signi�cance level 5% equals one-half. The critical
values in Panel B apply the corresponding value of �c from Panel A. The results are simulated
based on 20,000 Monte Carlo replications. The test rejects when the test statistic is larger than
the critical values in Panel B of this table.
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Table 3: Size and Size-Adjusted Power: Constant Mean, T = 100
Test MA AR

� Statistic �0:5 �0:3 0:0 0:3 0:5 �0:5 �0:3 0:3 0:5

1:00 � (0:1) 0.21 0.10 0.05 0.04 0.03 0.11 0.08 0.03 0.02
� (�c; 0:1) 0.23 0.14 0.10 0.08 0.08 0.15 0.12 0.08 0.06
BT 0.09 0.06 0.05 0.05 0.05 0.06 0.06 0.04 0.04
ADF 0.07 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.05

ADF-GLS 0.08 0.07 0.06 0.05 0.05 0.05 0.05 0.05 0.06

0:9 � (0:1) 0.45 0.42 0.38 0.36 0.35 0.43 0.41 0.35 0.32
� (�c; 0:1) 0.67 0.63 0.57 0.54 0.54 0.63 0.60 0.53 0.49
BT 0.33 0.31 0.29 0.28 0.28 0.31 0.30 0.28 0.27
ADF 0.17 0.19 0.22 0.11 0.13 0.20 0.20 0.10 0.16

ADF-GLS 0.51 0.56 0.63 0.52 0.52 0.61 0.60 0.51 0.52

0:8 � (0:1) 0.92 0.89 0.83 0.79 0.77 0.90 0.87 0.76 0.70
� (�c; 0:1) 0.99 0.98 0.95 0.93 0.92 0.98 0.97 0.91 0.87
BT 0.67 0.60 0.55 0.53 0.52 0.62 0.59 0.52 0.48
ADF 0.41 0.47 0.59 0.38 0.33 0.52 0.52 0.30 0.29

ADF-GLS 0.72 0.77 0.84 0.84 0.80 0.82 0.81 0.83 0.74

0:7 � (0:1) 1.00 0.99 0.98 0.96 0.95 1.00 0.99 0.95 0.90
� (�c; 0:1) 1.00 1.00 1.00 0.99 0.99 1.00 1.00 0.99 0.98
BT 0.87 0.80 0.73 0.69 0.68 0.81 0.77 0.67 0.62
ADF 0.55 0.60 0.70 0.71 0.57 0.64 0.65 0.67 0.29

ADF-GLS 0.79 0.81 0.86 0.89 0.86 0.84 0.84 0.90 0.83

0:6 � (0:1) 1.00 1.00 1.00 0.99 0.99 1.00 1.00 0.99 0.97
� (�c; 0:1) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
BT 0.96 0.91 0.84 0.80 0.78 0.92 0.89 0.77 0.71
ADF 0.64 0.65 0.73 0.79 0.72 0.67 0.68 0.81 0.52

ADF-GLS 0.83 0.83 0.87 0.89 0.88 0.86 0.85 0.90 0.89

Note: The ADF and ADF-GLS tests use the MAIC to determine the lag augmentation with
kmin = 0 and kmax = int(12(T=100)1=4) as in Ng & Perron (2001). For each statistic, entries
under the rows marked � = 1:00 are the �nite sample rejection frequencies under the null, i.e.
the size. All other entries are size-adjusted power under the models described in each column.
Based on 20,000 Monte Carlo replications.
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Table 4: Size and Size-Adjusted Power: Linear Trend, T = 100
Test MA AR

� Statistic �0:5 �0:3 0:0 0:3 0:5 �0:5 �0:3 0:3 0:5

1:00 � (0:1) 0.35 0.14 0.05 0.03 0.02 0.18 0.11 0.02 0.01
� (�c; 0:1) 0.29 0.13 0.05 0.03 0.03 0.15 0.10 0.02 0.01
BT 0.14 0.08 0.05 0.04 0.04 0.09 0.07 0.03 0.03
ADF 0.09 0.07 0.04 0.03 0.04 0.04 0.05 0.02 0.05

ADF-GLS 0.06 0.06 0.04 0.02 0.03 0.04 0.04 0.02 0.04

0:9 � (0:1) 0.24 0.22 0.21 0.20 0.19 0.23 0.22 0.19 0.18
� (�c; 0:1) 0.32 0.31 0.28 0.27 0.26 0.30 0.30 0.26 0.24
BT 0.20 0.19 0.18 0.17 0.17 0.19 0.19 0.17 0.17
ADF 0.13 0.14 0.16 0.08 0.09 0.14 0.14 0.07 0.10

ADF-GLS 0.23 0.24 0.28 0.21 0.21 0.27 0.26 0.19 0.20

0:8 � (0:1) 0.72 0.68 0.61 0.57 0.55 0.70 0.67 0.54 0.49
� (�c; 0:1) 0.86 0.83 0.77 0.73 0.72 0.84 0.82 0.71 0.64
BT 0.54 0.49 0.44 0.41 0.41 0.50 0.47 0.40 0.37
ADF 0.33 0.36 0.48 0.26 0.18 0.42 0.40 0.19 0.15

ADF-GLS 0.47 0.53 0.66 0.57 0.48 0.60 0.59 0.48 0.33

0:7 � (0:1) 0.97 0.95 0.91 0.87 0.85 0.96 0.95 0.84 0.76
� (�c; 0:1) 0.99 0.99 0.97 0.95 0.94 0.99 0.99 0.94 0.89
BT 0.82 0.76 0.68 0.63 0.62 0.78 0.73 0.64 0.55
ADF 0.52 0.55 0.68 0.63 0.39 0.62 0.61 0.54 0.11

ADF-GLS 0.58 0.64 0.75 0.82 0.70 0.69 0.70 0.81 0.35

0:6 � (0:1) 1.00 1.00 0.99 0.97 0.96 1.00 1.00 0.96 0.91
� (�c; 0:1) 1.00 1.00 1.00 0.99 0.99 1.00 1.00 0.99 0.97
BT 0.95 0.90 0.84 0.79 0.77 0.92 0.89 0.76 0.68
ADF 0.64 0.64 0.74 0.82 0.66 0.68 0.68 0.81 0.24

ADF-GLS 0.63 0.67 0.77 0.85 0.80 0.70 0.72 0.88 0.60

Note: The ADF and ADF-GLS tests use the MAIC to determine the lag augmentation with
kmin = 0 and kmax = int(12(T=100)1=4) as in Ng & Perron (2001). For each statistic, entries
under the rows marked � = 1:00 are the �nite sample rejection frequencies under the null, i.e.
the size. All other entries are size-adjusted power under the models described in each column.
Based on 20,000 Monte Carlo replications.
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Table 5: Size and Size-Adjusted Power: Constant Mean, T = 500
Test MA AR

� Statistic �0:5 �0:3 0:0 0:3 0:5 �0:5 �0:3 0:3 0:5

1:00 � (0:1) 0.10 0.07 0.05 0.04 0.04 0.07 0.06 0.04 0.04
� (�c; 0:1) 0.09 0.07 0.06 0.06 0.06 0.07 0.06 0.06 0.05
BT 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
ADF 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04

ADF-GLS 0.06 0.05 0.05 0.05 0.04 0.05 0.05 0.05 0.05

0:98 � (0:1) 0.42 0.40 0.38 0.37 0.37 0.40 0.39 0.37 0.36
� (�c; 0:1) 0.58 0.54 0.53 0.52 0.52 0.55 0.54 0.52 0.51
BT 0.31 0.30 0.29 0.29 0.29 0.30 0.30 0.29 0.29
ADF 0.25 0.26 0.26 0.25 0.22 0.26 0.26 0.25 0.24

ADF-GLS 0.69 0.71 0.72 0.71 0.69 0.72 0.72 0.71 0.70

0:96 � (0:1) 0.87 0.83 0.80 0.79 0.79 0.84 0.82 0.78 0.76
� (�c; 0:1) 0.95 0.92 0.91 0.90 0.90 0.93 0.92 0.89 0.88
BT 0.58 0.55 0.54 0.53 0.53 0.55 0.54 0.53 0.52
ADF 0.67 0.71 0.75 0.70 0.66 0.74 0.74 0.72 0.70

ADF-GLS 0.97 0.98 0.98 0.98 0.97 0.98 0.98 0.98 0.98

0:94 � (0:1) 0.99 0.98 0.96 0.96 0.96 0.98 0.97 0.95 0.94
� (�c; 0:1) 1.00 0.99 0.99 0.98 0.98 0.99 0.99 0.98 0.98
BT 0.75 0.71 0.69 0.69 0.69 0.71 0.70 0.68 0.67
ADF 0.88 0.90 0.93 0.91 0.89 0.92 0.92 0.91 0.90

ADF-GLS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99

0:92 � (0:1) 1.00 1.00 1.00 0.99 0.99 1.00 1.00 0.99 0.99
� (�c; 0:1) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
BT 0.86 0.82 0.79 0.79 0.78 0.82 0.81 0.78 0.76
ADF 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.95

ADF-GLS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Note: The ADF and ADF-GLS tests use the MAIC to determine the lag augmentation with
kmin = 0 and kmax = int(12(T=100)1=4) as in Ng & Perron (2001). For each statistic, entries
under the rows marked � = 1:00 are the �nite sample rejection frequencies under the null, i.e.
the size. All other entries are size-adjusted power under the models described in each column.
Based on 20,000 Monte Carlo replications.
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Table 6: Size and Size-Adjusted Power: Linear Trend, T = 500
Test MA AR

� Statistic �0:5 �0:3 0:0 0:3 0:5 �0:5 �0:3 0:3 0:5

1:00 � (0:1) 0.16 0.08 0.05 0.04 0.04 0.09 0.07 0.04 0.03
� (�c; 0:1) 0.12 0.07 0.05 0.04 0.04 0.07 0.06 0.04 0.03
BT 0.07 0.06 0.05 0.05 0.05 0.06 0.05 0.05 0.04
ADF 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04

ADF-GLS 0.04 0.04 0.04 0.04 0.03 0.04 0.04 0.04 0.04

0:98 � (0:1) 0.22 0.21 0.20 0.20 0.20 0.22 0.21 0.20 0.19
� (�c; 0:1) 0.29 0.28 0.27 0.27 0.27 0.28 0.27 0.27 0.26
BT 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.17
ADF 0.15 0.16 0.17 0.15 0.14 0.16 0.16 0.16 0.15

ADF-GLS 0.28 0.29 0.30 0.29 0.28 0.30 0.30 0.29 0.28

0:96 � (0:1) 0.66 0.62 0.58 0.56 0.56 0.62 0.60 0.55 0.53
� (�c; 0:1) 0.77 0.73 0.70 0.69 0.69 0.74 0.72 0.69 0.67
BT 0.45 0.43 0.42 0.41 0.41 0.43 0.42 0.41 0.40
ADF 0.44 0.47 0.53 0.48 0.44 0.51 0.51 0.49 0.47

ADF-GLS 0.71 0.75 0.79 0.75 0.73 0.78 0.78 0.76 0.74

0:94 � (0:1) 0.93 0.90 0.86 0.85 0.84 0.90 0.89 0.84 0.81
� (�c; 0:1) 0.97 0.95 0.93 0.92 0.92 0.95 0.94 0.91 0.90
BT 0.68 0.65 0.62 0.61 0.61 0.65 0.64 0.61 0.59
ADF 0.71 0.76 0.83 0.78 0.74 0.81 0.81 0.79 0.76

ADF-GLS 0.91 0.92 0.94 0.93 0.93 0.94 0.94 0.93 0.93

0:92 � (0:1) 1.00 0.99 0.97 0.97 0.96 0.99 0.98 0.96 0.95
� (�c; 0:1) 1.00 0.99 0.99 0.99 0.98 0.99 0.99 0.98 0.98
BT 0.84 0.79 0.76 0.75 0.75 0.80 0.78 0.75 0.73
ADF 0.84 0.87 0.91 0.89 0.89 0.90 0.90 0.90 0.88

ADF-GLS 0.96 0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.96

Note: The ADF and ADF-GLS tests use the MAIC to determine the lag augmentation with
kmin = 0 and kmax = int(12(T=100)1=4) as in Ng & Perron (2001). For each statistic, entries
under the rows marked � = 1:00 are the �nite sample rejection frequencies under the null, i.e.
the size. All other entries are size-adjusted power under the models described in each column.
Based on 20,000 Monte Carlo replications.
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Table 7: Size and Size-Adjusted Power: Linear Trend, T = 100
Test GARCH Bilin VCM TAR STUR

� Statistic 0:65 0:85 �0:8 0:8 �0:8 0:8 0:5 0:8 0:1 0:5

1:00 � (0:1) 0.06 0.05 0.06 0.05 0.01 0.06 0.03 0.05 0.05 0.04
� (�c; 0:1) 0.07 0.07 0.05 0.05 0.03 0.02 0.03 0.05 0.06 0.05
BT 0.05 0.05 0.05 0.05 0.03 0.05 0.04 0.05 0.04 0.05
ADF 0.03 0.02 0.05 0.04 0.01 0.14 0.02 0.02 0.03 0.03

ADF-GLS 0.04 0.04 0.04 0.04 0.02 0.02 0.02 0.02 0.06 0.03

0:9 � (0:1) 0.21 0.22 0.17 0.18 0.15 0.15 0.21 0.22 1.00 0.51
� (�c; 0:1) 0.25 0.26 0.12 0.13 0.20 0.26 0.28 0.28 0.95 0.57
BT 0.18 0.18 0.16 0.17 0.13 0.15 0.18 0.19 0.94 0.37
ADF 0.17 0.19 0.15 0.15 0.08 0.01 0.12 0.11 0.83 0.48

ADF-GLS 0.23 0.25 0.14 0.14 0.13 0.19 0.27 0.23 0.58 0.57

0:8 � (0:1) 0.58 0.61 0.54 0.55 0.38 0.38 0.59 0.61 1.00 0.91
� (�c; 0:1) 0.68 0.71 0.46 0.47 0.48 0.64 0.75 0.76 0.97 0.88
BT 0.44 0.44 0.43 0.44 0.29 0.28 0.43 0.45 0.99 0.67
ADF 0.46 0.51 0.40 0.40 0.19 0.01 0.43 0.34 0.85 0.75

ADF-GLS 0.55 0.59 0.48 0.48 0.28 0.39 0.71 0.63 0.49 0.72

0:7 � (0:1) 0.87 0.90 0.85 0.86 0.63 0.64 0.88 0.90 1.00 0.99
� (�c; 0:1) 0.93 0.94 0.83 0.84 0.72 0.87 0.95 0.96 0.97 0.94
BT 0.68 0.68 0.67 0.68 0.44 0.41 0.65 0.68 0.99 0.82
ADF 0.64 0.68 0.64 0.64 0.36 0.04 0.73 0.64 0.86 0.80

ADF-GLS 0.68 0.70 0.67 0.67 0.46 0.58 0.85 0.82 0.45 0.70

0:6 � (0:1) 0.97 0.98 0.96 0.96 0.80 0.82 0.98 0.98 1.00 1.00
� (�c; 0:1) 0.98 0.99 0.96 0.97 0.86 0.96 0.99 1.00 0.97 0.96
BT 0.83 0.84 0.83 0.84 0.56 0.53 0.80 0.83 1.00 0.89
ADF 0.71 0.68 0.76 0.76 0.51 0.10 0.82 0.78 0.87 0.82

ADF-GLS 0.72 0.71 0.72 0.73 0.59 0.69 0.85 0.84 0.43 0.67

Note: The ADF and ADF-GLS tests use the MAIC to determine the lag augmentation with
kmin = 0 and kmax = int(12(T=100)1=4) as in Ng & Perron (2001). For each statistic, entries
under the rows marked � = 1:00 are the �nite sample rejection frequencies under the null, i.e.
the size. All other entries are size-adjusted power under the models described in each column.
Based on 20,000 Monte Carlo replications.
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Table 8: Size and Size-Adjusted Power: Linear Trend, T = 500
Test GARCH Bilin VCM TAR STUR

� Statistic 0:65 0:85 �0:8 0:8 �0:8 0:8 0:5 0:8 0:1 0:5

1:00 � (0:1) 0.06 0.05 0.05 0.05 0.03 0.16 0.04 0.05 0.22 0.06
� (�c; 0:1) 0.06 0.06 0.05 0.05 0.07 0.03 0.05 0.05 0.33 0.06
BT 0.05 0.05 0.04 0.05 0.05 0.10 0.05 0.05 0.16 0.06
ADF 0.03 0.03 0.04 0.04 0.04 0.24 0.03 0.04 0.13 0.03

ADF-GLS 0.04 0.04 0.03 0.03 0.07 0.04 0.03 0.04 0.35 0.04

0:98 � (0:1) 0.21 0.21 0.11 0.11 0.14 0.11 0.20 0.21 0.84 0.47
� (�c; 0:1) 0.25 0.25 0.00 0.00 0.20 0.24 0.26 0.26 0.87 0.55
BT 0.18 0.18 0.08 0.08 0.13 0.12 0.18 0.18 0.75 0.34
ADF 0.17 0.19 0.23 0.27 0.13 0.01 0.15 0.15 0.85 0.51

ADF-GLS 0.26 0.28 0.00 0.01 0.17 0.22 0.29 0.29 0.75 0.62

0:96 � (0:1) 0.56 0.58 0.51 0.51 0.36 0.27 0.56 0.57 1.00 0.93
� (�c; 0:1) 0.67 0.67 0.02 0.02 0.48 0.53 0.68 0.69 0.95 0.91
BT 0.42 0.42 0.34 0.34 0.30 0.23 0.41 0.41 0.98 0.69
ADF 0.46 0.55 0.57 0.64 0.33 0.04 0.47 0.47 0.97 0.92

ADF-GLS 0.66 0.73 0.08 0.12 0.42 0.48 0.77 0.75 0.75 0.94

0:94 � (0:1) 0.84 0.86 0.85 0.85 0.59 0.47 0.86 0.86 1.00 1.00
� (�c; 0:1) 0.90 0.91 0.08 0.09 0.71 0.74 0.92 0.92 0.95 0.97
BT 0.63 0.64 0.58 0.59 0.45 0.34 0.61 0.62 1.00 0.86
ADF 0.72 0.81 0.83 0.87 0.53 0.09 0.79 0.76 0.99 0.96

ADF-GLS 0.87 0.91 0.37 0.49 0.62 0.67 0.95 0.93 0.70 0.96

0:92 � (0:1) 0.96 0.97 0.97 0.97 0.75 0.66 0.96 0.97 1.00 1.00
� (�c; 0:1) 0.98 0.98 0.22 0.23 0.84 0.86 0.98 0.98 0.95 0.98
BT 0.77 0.77 0.74 0.76 0.56 0.44 0.75 0.76 1.00 0.93
ADF 0.85 0.90 0.92 0.94 0.67 0.17 0.93 0.89 1.00 0.98

ADF-GLS 0.94 0.96 0.64 0.74 0.75 0.78 0.98 0.97 0.65 0.97

Note: The ADF and ADF-GLS tests use the MAIC to determine the lag augmentation with
kmin = 0 and kmax = int(12(T=100)1=4) as in Ng & Perron (2001). For each statistic, entries
under the rows marked � = 1:00 are the �nite sample rejection frequencies under the null, i.e.
the size. All other entries are size-adjusted power under the models described in each column.
Based on 20,000 Monte Carlo replications.
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Figure 1: Asymptotic local power functions of � (d) against near-integrated alternatives
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Figure 2: Asymptotic local power functions of GLS detrended tests against near-integrated
alternatives
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