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Abstract
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1 Introduction

Professor Paul Newbold has made a number of important contributions in econometrics, in

particular in the area of the analysis of non-stationary time series. I (Perron) have been

honoured and privileged to have him participate in a research agenda that I put forward in

Perron (1989). This paper is, in part, a product motivated and made possible by some of

his work.

It is well known that a break in the deterministic trend affects the outcome of unit root

tests. Perron (1989) showed that a standard Dickey-Fuller (1979) (DF) type unit root test

is not consistent if the alternative is that of a stationary noise component with a break in

the slope of the deterministic trend. His main point is that the existence of an exogenous

shock which has a permanent effect will lead to a non rejection of the unit root hypothesis

even though it is not true. Of interest also is the fact that Leybourne, Mills and Newbold

(1998) and Leybourne and Newbold (2000) analyzed the effect of a break on a standard

DF test under the unit root null hypothesis and showed that size distortions can occur,

especially when the break is early in the sample 1. Perron (1989, 1990) proposed alternative

unit root tests which allow the possibility of a break under both the null and alternative

hypotheses. These tests have less power than a standard DF type test when there is no

break. Nonetheless, they have a correct size asymptotically and are consistent whether

there is a break or not. Moreover, they are invariant to the break parameters and thus

their performance does not depend on the magnitude of the break. The most controversial

assumption, however, is that its timing is known a priori (see Christiano, 1992).

In order for Perron’s (1989, 1990) test procedures to be valid, the break date should be

chosen independently of the given data. Whenever a systematic search for a break is done,

the limiting distributions in Perron (1989, 1990) are no longer appropriate. Historical facts

can often be a good guidance in choosing a break date independently of the given data.

Even in that case, it is very likely that an imprecise break date is used. Hecq and Urbain

(1993) showed, by simulations, that the use of an incorrect break date in Perron’s (1990)

test, applicable with non-trending data, causes size distortions and power loss, though as

shown by Montañés (1997), this effect disappears asymptotically. Montañés and Olloqui

(1999) extended the analysis to Perron’s (1989) tests, applicable with trending data, and

showed that a loss of power occurs even in large samples. Kim, Leybourne and Newbold

1See also Montañés and Reyes (1998, 1999, 2000) who examined the asymptotic behavior of the Aug-
mented Dickey-Fuller test (Dickey and Fuller, 1979, Said and Dickey, 1984) and the Phillips-Perron (1988)
test under the crash alternative hypothesis.
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(2000) examined the effect of using a wrong break date under the null hypothesis.

The work by Zivot and Andrews (1992) provide methods that treat the occurrence of

the break date as unknown, and has become quite popular. However, Professor Newbold

and his co-authors have clearly recognized the potential pitfalls of their approach, and in all

fairness to that of Perron (1997) which follows a similar path. In this line of work, a break

is not allowed under the null hypothesis, only under the alternative, mostly because of the

theoretical apparatus adopted. This means, for example, that under the null hypothesis a

level shift must be viewed as coming from the tail of the distribution of the data generating

process, and a slope change involves errors with a different mean in some sub-samples. This

framework is convenient since it allows them to establish various unit root testing procedures;

for example by minimizing the t-statistic related to the sum of the autoregressive coefficients

over each possible break date. This approach is, however, contrary to Perron (1989)’s original

motivation, which was to devise testing procedures that where invariant to the magnitude of

the shift in level and/or slope. In particular, if a change is present it is allowed under both

the null and alternative hypotheses.

The existence of a structural break in the trend function is a problem of long horizon

data; it can happen whether the noise component is stationary or has a unit root. As

argued in Nunes, Newbold and Kuan (1997) and Harvey, Leybourne and Newbold (2001)

(see also Vogelsang and Perron, 1998, and Lee and Strazicich, 2001), if the noise component

has a unit root and a break occurs in the trend function, the Zivot and Andrews’ (1992)

type test statistics often diverge or are not invariant to break parameters. This is a natural

consequence of not permitting a break under the null hypothesis. An added consequence is

that this type of tests have substantially less power than Perron’s (1989) tests, because they

do not fully utilize the information about the break, when one is present.

Despite these shorthcomings, the method of Zivot and Andrews (1992) has remained

popular in empirical work, probably in part because of the lack of sound statistical methods

that could tackle the problem of allowing for changes in the trend function at unknown times

under both the null and alternative hypotheses. Using recent developments on structural

change problems related to non-stationary data by Perron and Zhu (2005) and Perron and

Yabu (2006), Kim and Perron (2006) developed a methodology to devise new test procedures

which allow a break in the trend function at an unknown time under both the null and

alternative hypotheses. Also, when a break is present, the limit distribution of the test

is the same as in the case of a known break date, thereby allowing increased power while

maintaining the correct size. Simulation experiments confirm that it offers an improvement
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over commonly used methods in small samples.

In this paper, we extend the work of Kim and Perron (2006) in several directions: 1) we

allow for an arbitrary number of changes in both the level and slope of the trend function 2;

2) we adopt the so-called quasi-GLS detrending method advocated by Elliott et al. (1996)

which permits tests that have local asymptotic power functions close to the local asymptotic

Gaussian power envelope 3; 3) we consider a variety of tests, in particular the class of M-tests

introduced in Stock (1999) and analyzed in Ng and Perron (2001). On the other hand, we

restrict our analysis to the case of the so-called AO (additive outlier) models as defined in

Perron (1989).

The paper is organized as follows. In Section 2, we present the model that allows for

multiple structural breaks in the deterministic trend function. Section 3 discusses the fea-

sible point optimal test with multiple structural breaks assuming the break dates to be

known. Section 3.1 provides details on the methods to construct the relevant non-centrality

parameter arising in the quasi-differencing procedures used. Section 4 analyzes the M-class

and related unit root tests allowing for multiple breaks. Section 5 considers the case with

unknown break dates and show that if these are estimated by minimizing the sum of squared

residuals from the appropriate GLS regression, the limit distributions of the tests are the

same as in the known break date case, provided breaks are present. Section 5.1 provides

details on how to compute the estimate of the break dates. Section 6 provides preliminary

simulations showing that the tests perform well but that they exhibit important size dis-

tortions when no break occurs. A solution to this problem is offered in Section 7 based

on a pre-test for changes in the slope of a trend function allowing the noise component to

be stationary or integrated based on the work of Perron and Yabu (2006). We show that

2Related papers allowing for multiple changes include the following. Lee (1996) and Lumsdaine and Papell
(1997), for trending variables, and Carrion, Sanso and Artis (2004), for non-trending variables, generalized
the approach in Zivot and Andrews (1992), while Clementes, Montañés and Reyes (1998) extends the work
of Perron and Vogelsang (1992a,b) for non–trending variables. Lee and Strazicich (2003) extend Schmidt
and Phillips’s (1992) LM test to allow for two structural breaks both under the null and the alternative
hypotheses. For multiple structural breaks, Ohara (1999) and Kapetanios (2005) generalized the approach
in Zivot and Andrews (1992). Gadea, Montañés and Reyes (2004) designed a pseudo F statistic to account
for multiple level shifts for non-trending variables. Finally, Bai and Carrion-i-Silvestre (2004) consider the
square of the modified Sargan-Bhargava statistic to the presence of multiple structural breaks that might
affect either the level and/or the slope of the time trend. Hatanaka and Yamada (1999) is most closely related
to the approach of Kim and Perron (2006) and deals with two breaks for the so-called IO (innovational outlier)
type model.

3Perron and Rodriguez (2003) also consider GLS-detrended type procedures allowing a single break. The
approach is, however, quite different. Also, while their treatment yields “optimal” tests when a break is
present, this is not the case if a break is absent.
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the resulting procedure involving the pre-test has good size and power superior to that of

alternative methods. Section 8 offers brief concluding remarks and an appendix the proofs

of various theoretical results.

2 The model

Let yt be a stochastic process generated according to

yt = dt + ut (1)

ut = αut−1 + vt, t = 0, . . . , T, (2)

where {ut} is an unobserved mean-zero process. We assume that u0 = 0, although the

results generally hold for the weaker requirement that E (u20) < ∞. The disturbance term
vt is defined by vt =

P∞
i=0 γiηt−i with

P∞
i=0 i |γi| < ∞ and {ηt} a martingale difference

sequence adapted to the filtration Ft = σ − field{ηt−i; i ≥ 0}. We define the long-run and
short-run variance as σ2 = σ2ηγ (1)

2 and σ2η = limT→∞ T−1
PT

t=1E (η
2
t ), respectively.

We consider three models: Model 0 (“level shift” or “crash”’), Model I (“slope change”

or “changing growth”), and Model II (“mixed change”) 4. Let DUt(T
0
j ) = 1 and DT ∗t (T

0
j ) =

(t − T 0j ) for t > T 0j and 0 elsewhere, with T 0j = [Tλ0j ] denoting the j-th break date, with

[·] the integer part, and λ0j ≡ T 0j /T ∈ (0, 1) the break fraction parameter. As a matter of
notation, all true break fractions and break dates are denoted with a superscript 0. Estimates

of the break fractions and break dates are denoted with a hat. We also use the convention

that T 00 = 0 and T 0m+1 = T . We collect the m break fraction parameters in the vector

λ0 = (λ01, . . . , λ
0
m)

0. For now it is assumed that the break dates are known; this will be

relaxed later.

The deterministic component in (1) is given by

dt = z0t(T
0
0 )ψ0 + z0t(T

0
1 )ψ1 + · · ·+ z0t(T

0
m)ψm ≡ z0t(λ

0)ψ (3)

where

zt(λ
0) = [z0t(T

0
0 ), . . . , z

0
t(T

0
m)]

0,

ψ = (ψ00, . . . , ψ
0
m)

0.

The various deterministic components and associated coefficients are defined by

zt(T
0
0 ) ≡ zt(0) = (1, t)

0,

4Perron and Rodriguez (2003) also considered Models I and II but only with one break.
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with ψ0 = (μ0, β0)
0 and, for 1 ≤ j ≤ m,

zt(T
0
j ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
DUt(T

0
j ),

DT ∗t (T
0
j ),

(DUt(T
0
j ), DT ∗t (T

0
j ))

0,

in Model 0,

in Model I,

in Model II,

with ψj = μj in Model 0, ψj = βj in Model I, and ψj = (μj, βj)
0 in Model II.

For Models 0 and II, we also consider the case where the magnitude of level shifts get

large as the sample size grows, i.e., (μ1, . . . , μm) = T 1/2+η(κ1, . . . , κm), with η > 0. The

models are then labelled as Models 0b and IIb, respectively. These models are useful to

obtain better approximations of the properties of the tests in finite samples. In Models 0

and II, the level shifts belong to the class of “slowly evolving trend” defined by Elliott et

al. (1996) and have no effect on the asymptotic size and power of the tests. When the

magnitude of the shifts are non-negligible, this typically implies that the derived asymptotic

distribution is a bad approximation to the finite sample distribution. In Models 0b and IIb,

the level shifts do not belong to the class of “slowly evolving trend”. As shown in Harvey,

Leybourne and Newbold (2001) this framework provides better approximations. A second

feature of importance is related to the estimation of the unknown break fractions. As shown

by Perron and Zhu (2005), the rate of convergence increases when the level shifts are modeled

to increase as the sample size grows. This phenomenon has important implications for the

properties of the unit root tests, as will be shown in the following sections.

Remark 1 It is possible to assume that there is no trending deterministic component in
Model 0. We do not explicitly consider this case in the subsequent analysis but it should be

understood that most of our results pertaining to Models 0 and 0b can readily be applied to

the level shift model with no time trend.

The so-called GLS detrended unit root test statistics are based on the use of the quasi-

differenced variables yᾱt and zᾱt (λ
0) defined by

yᾱt = (y1, (1− ᾱL) yt) , z
ᾱ
t (λ

0) =
¡
z1(λ

0), (1− ᾱL) zt(λ
0)
¢
, t = 2, . . . , T,

with ᾱ = 1+ c̄/T where c̄ is a non-centrality parameter to be defined below. Once the data

has been transformed, the parameters ψ, associated with the deterministic components, can

be estimated by minimizing the following objective function

S∗
¡
ψ, ᾱ, λ0

¢
=

TX
t=1

¡
yᾱt − ψ0zᾱt (λ

0)
¢2
. (4)
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We denote the minimum of this function by S
¡
ᾱ, λ0

¢
.

3 Feasible point optimal test with multiple structural breaks

The choice of the non-centrality parameter c̄ is related to the Gaussian point optimal statistic

to test the null hypothesis of α = 1 in (2) against the alternative hypothesis that α = ᾱ,

as suggested by Elliott et al. (1996). Following their analysis and Perron and Rodriguez

(2003), the feasible point optimal statistic is given by

PGLS
T

¡
λ0
¢
=
©
S
¡
ᾱ, λ0

¢− ᾱS
¡
1, λ0

¢ª
/s2(λ0), (5)

where s2(λ0) is an estimate of the spectral density at frequency zero of vt. Following Ng and

Perron (2001) and Perron and Ng (1998), we use an autoregressive estimate defined by

s(λ0)2 = s2ek/(1− b̂ (1))2, (6)

where s2ek = (T − k)−1
PT

t=k+1 ê
2
t,k, b̂ (1) =

Pk
j=1 b̂j, with b̂j and êt,k obtained from the OLS

estimation of

∆eyt = b0eyt−1 + kX
j=1

bj∆eyt−j + et,k, (7)

with eyt = yt − ψ̂
0
zt(λ

0), where ψ̂ minimizes (4). The order of the autoregression k is se-

lected using the modified information criteria suggested by Ng and Perron (2001) with the

modification proposed by Perron and Qu (2007).

Let Wc (r) be an Ornstein-Uhlenbeck process, i.e., the solution to the stochastic differ-

ential equation dWc (r) = cWc (r) dr+ dW (r), with Wc (0) = 0 where W (r) is the standard

Brownian motion. Denoting by “⇒” weak convergence of the associated measure of proba-
bility, the limiting distribution of the test PGLS

T (λ0) is given in the following Theorem.

Theorem 1 Let {yt}Tt=1 be the stochastic process generated according to (1) and (2) with
α = 1+ c/T . Let PGLS

T (λ0) be the statistic defined by (5) and s2(λ0) be a consistent estimate

of σ2.

(i) For Models 0 and 0b:

PGLS
T

¡
λ0
¢⇒ c̄2

Z 1

0

V 2
c,c̄(r)dr + (1− c̄)V 2

c,c̄(1) ≡ KPGLS
T (c, c̄) .

where V 2
c,c̄(r) =Wc(r)− r[bWc(1) + 3(1− b)

R 1
0
sWc(s)ds] and b = (1− c̄)/(1− c̄+ c̄2/3).
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(ii) For Models I, II, and IIb:

PGLS
T

¡
λ0
¢ ⇒ M

¡
c, 0, λ0

¢−M
¡
c, c̄, λ0

¢− 2c̄ Z 1

0

Wc (r) dW (r)

+
¡
c̄2 − 2c̄c¢ Z 1

0

Wc (r)
2 dr − c̄ ≡ HPGLS

T

¡
c, c̄, λ0

¢
,

where M
¡
c, c̄, λ0

¢
= V̄

¡
λ0
¢0
A(λ0)−1V̄

¡
λ0
¢
, V̄

¡
λ0
¢
=
¡
V
¡
λ00
¢
, . . . , V

¡
λ0m
¢¢0
with

V (λ0i ) = (1 + c̄λ0i )[W (1)−W (λ0i ) + (c− c̄)

Z 1

λ0i

Wc(r)dr]

−c̄
Z 1

λ0i

rdW (r)− (c− c̄)c̄

Z 1

λ0i

rWc(r)dr,

and A(λ0) a symmetric matrix defined by

A(λ0) =

⎡⎢⎢⎢⎢⎢⎢⎣
a
¡
λ00, λ

0
0

¢
a
¡
λ00, λ

0
1

¢ · · · a
¡
λ00, λ

0
m

¢
a
¡
λ01, λ

0
1

¢ · · · a
¡
λ01, λ

0
m

¢
. . .

...

a
¡
λ0m, λ

0
m

¢

⎤⎥⎥⎥⎥⎥⎥⎦ (8)

with

a(λ0i , λ
0
j) = (1/6)(1− λj)

£
6c̄(λi − 1) + c̄2{λj(3λi − 1)− 3λi − λ2j + 2}+ 6

¤
The proof for Model II is given in the Appendix. Since Models 0 and I can be viewed as

a special case of Model II, no separate proof is provided. The limiting distribution in (i) is

the same as that of the linear time trend model with no break, which can be found in Elliott

et al. (1996). Because the break dates are assumed known here, the test statistic PGLS
T (λ0)

is exactly invariant to the value of the coefficients associated with all regressors including

those pertaining to the change in the trend. Hence, there is no distinction between Models

0 and 0b, and between Models II and IIb. The limiting distribution of the test statistic for

Models I, II, and IIb depends both on the number of structural breaks and on the vector of

break fractions.

3.1 The choice of the non-centrality parameter c̄

From the limiting distributions in Theorem 1, we can obtain the local Gaussian power enve-

lope for the various cases. ForModels I, II and IIb, it is defined by π∗(c) = Pr[HPGLS
T (c, c, λ0) <
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bP
GLS
T (c, λ0)], where, with υ the size of the test, bP

GLS
T (c, λ0) is such that Pr[HPGLS

T (0, c, λ0) <

bP
GLS
T (c, λ0)] = υ. Furthermore, the power envelope allows us to find the “optimal” non-

centrality parameter c for our models. Elliott et al. (1996) recommended to choose the value

c such that the asymptotic power of the test is 50%, i.e., c̄ is such that Pr[HPGLS
T (c̄, c̄) <

bP
GLS
T (c̄)] = 0.5.

For Models I, II, and IIb the parameter c̄ depends on the number of structural breaks

and their positions. Instead of reporting extensive tables of values, we opted to summarize

the relevant information via a response surface analysis. In order to do so, we obtained

by simulations the parameter c̄ for up to m = 5 structural break points for all possible

combinations of break fraction vectors λ0 = (λ01, · · · , λ0m)0, with λ0i = {0.1, 0.2, · · · , 0.9} (we
used 1,000 steps to approximate the Wiener process and 10,000 replications). This gives

us 382 cases and the response surface presented will allow an accurate approximation for

these and other cases. Visual inspection of the results obtained revealed U-shaped pattern

between the estimated parameters c̄ and the different vectors λ0. Furthermore, the estimated

values of c̄ showed symmetry around λ0i = 0.5. Therefore, we adopted a functional form that

accounts for these two features through the introduction of powers of λ0 and |λ0i − λ0j |,
(i, j = 1, · · · ,m) as regressors. The functional form we settled upon is given by

c̄
¡
λ0k
¢
= β0,0 +

4X
l=1

mX
i=1

βi,l(λ
0
i,k)

l +
4X
l=1

m−1X
i=1

mX
j=i+1

γi,j,l
¯̄
λ0i,k − λ0j,k

¯̄l
+ εk. (9)

The estimates of the coefficients of (9) obtained from the 382 cases simulated are reported

in Table 1. A simple Gauss program to compute the values of c̄(λ0k) for a given vector

λ0 = (λ01, · · · , λ0m)0 is available on the authors’ web pages. Note that for Models 0 and 0b, a
similar analysis holds, though much simpler since the limit distribution is invariant to any

break parameters. The results are described in Elliott et al. (1996) and c̄ = −13.5 (if no
trend is present c̄ = −7).

4 The M-class and related unit root tests

Following Perron and Rodriguez (2003), we suggest the use of the so-called M-class of tests

analyzed in Ng and Perron (2001) allowing for multiple structural breaks. The tests are
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defined by

MZGLS
α

¡
λ0
¢
= (T−1ey2T − s

¡
λ0
¢2
)(2T−2

TX
t=1

ey2t−1)−1, (10)

MSBGLS
¡
λ0
¢
= (s

¡
λ0
¢−2

T−2
TX
t=1

ey2t−1)1/2, (11)

MZGLS
t

¡
λ0
¢
= (T−1ey2T − s

¡
λ0
¢2
)(4s

¡
λ0
¢2
T−2

TX
t=1

ey2t−1)−1/2, (12)

with eyt = yt− ψ̂0zt(λ0), where ψ̂ minimizes (4) and s(λ0)2 is defined in (6). Note that we can
also test the unit root hypothesis using the t-ratio statistic for b0 = 0 in (7). This is akin

to an extension of the Dickey and Fuller (1979) test and is denoted ADFGLS(λ0). Another

statistic considered in Ng and Perron (2001) is a modification of the feasible point optimal

test. In our context with breaks, it is defined by

MPGLS
T

¡
λ0
¢
= [c̄2T−2

TX
t=1

ey2t−1 + (1− c̄)T−1ey2T ]/s ¡λ0¢2 .
This test is based on the same motivation that leads to the definition of the M tests in Stock

(1999), namely, to provide functionals of sample moments that have the same asymptotic

distributions as well known unit root tests. TheMPGLS
T (λ0) is important because its limiting

distribution coincides with that of the feasible point optimal test. The following Theorem

provides the limit null distribution of the various tests considered.

Theorem 2 Let {yt}Tt=1 be the stochastic process generated according to (1) and (2) with
α = 1 + c/T . Then, provided s2(λ0) be a consistent estimate of σ2:

(i) For Models 0 and 0b:

MZGLS
α (λ0) ⇒ 0.5

¡
Vc,c̄(1)

2 − 1¢ (Z 1

0

Vc,c̄(r)
2dr)−1

MSBGLS(λ0) ⇒ (

Z 1

0

Vc,c̄(r)
2dr)1/2

where V 2
c,c̄(r) =Wc(r)− r[bWc(1) + 3(1− b)

R 1
0
sWc(s)ds] and b = (1− c̄)/(1− c̄+ c̄2/3).

(ii) For Models I, II and IIb:

MZGLS
α (λ0) ⇒ 0.5

¡
Vc,c̄(1, λ

0)2 − 1¢ (Z 1

0

Vc,c̄(r, λ
0)2dr)−1 ≡ HMZGLS(c, c̄, λ0)

MSBGLS(λ0) ⇒ (

Z 1

0

Vc,c̄(r, λ
0)2dr)1/2 ≡ HMSBGLS

(c, c̄, λ0)
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where Vc,c̄(r, λ0) =Wc (r)−z2 (r)A(λ0)−1V̄ (λ0) with A(λ0) and V̄ (λ0) as defined in Theorem
1, and z2 (r) = (r, (r − λ01)1(r > λ01), . . ., (r − λ0m)1(r > λ0m)), where 1(·) is the indicator
function.

(iii) The limiting distribution of MZGLS
t (λ0) in all models can be obtained in view of

the fact that MZGLS
t (λ0) = MZGLS

α (λ0) ·MSBGLS(λ0), which in turn is also the limiting

distribution of the test ADFGLS(λ0), denoted by HADFGLS
(c, c̄, λ0).

Again, the limiting distribution in (i) is the same as that of the linear time trend model

with no break given in Ng and Perron (2001). Thus, note that the invariance to the break

parameters holds for all test statistics for Models 0 and 0b. This is not the case for Models

I, II, and IIb, where their limiting distribution depends on the number and location of the

break points. The proof of Model II is given in the Appendix, while the proof for the other

models easily follows (the proof for the test ADFGLS(λ0) is more tedious but follows the

same steps as in Ng and Perron, 2001). This generalizes the results of Perron and Rodriguez

(2003) who showed, for the case of a single break, that each of the M tests and the ADF

statistic has the same limiting distribution across Models I and II.

For the case of Models I, II and IIb, the limit distributions depend on the number of

breaks and their positions. Instead of reporting extensive tables of values, we again opted to

summarize the relevant information via a response surface analysis. As above for the non-

centrality parameter c̄, we obtained by simulations the 1, 2.5, 5 and 10% percentiles of the

limit distributions of the various tests for up to m = 5 structural break points for all possible

combinations of break fraction vectors λ0 = (λ01, · · · , λ0m)0 with λ0i = {0.1, 0.2, · · · , 0.9}
(again, we used 1,000 steps to approximate the Wiener process and 10,000 replications). This

gives us 382 cases and the response surface presented will allow an accurate approximation

for these and other cases. The functional form adopted is given by

cv
¡
λ0k
¢
= β0,0 +

2X
l=1

mX
i=1

βl,i(λ
0
i,k)

l +
2X
l=1

(γl,0 +
mX
i=1

γl,iλ
0
i,k)c̄

¡
λ0k
¢l

+
4X
l=1

m−1X
i=1

mX
j=i+1

δi,j,l
¯̄
λ0i,k − λ0j,k

¯̄l
c̄
¡
λ0k
¢
+ εk.

The estimates of the coefficients of the response surfaces are reported in Tables 2 to 5. A

simple Gauss program to compute the values of cv
¡
λ0k
¢
for a given vector λ0 = (λ01, · · · , λ0m)0

is available on the authors’ web pages.

The asymptotic power functions of the tests are defined by π∗JGLS(c, c, λ
0) = Pr[HJGLS(c, c̄, λ0)

< bJ
GLS
(c̄, λ0)] for J = MZα, MSB, ADF with HJGLS(c, c̄, λ0) defined in Theorem 2. The
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constants bJ
GLS
(c̄, λ0) are such that Pr[HJGLS(0, c̄, λ0) < bJ

GLS
(c̄, λ0)] = υ, the size of the

tests. To assess the efficiency in terms of local asymptotic power of the various tests, we con-

sider the case with a single break occurring at λ0 = 0.3, 0.5 and 0.7. The asymptotic power

functions are shown in Figure 1 where the solid line is the power envelope. As can be seen,

the local power functions are nearly identical and indeed very close to the Gaussian power

envelope. So from this local asymptotic power perspective, all tests are nearly efficient. For

the case of Models 0 and 0b, we already know from Ng and Perron (2001) that the local

power functions of the various tests considered are very close to the power envelope.

5 The case with unknown break dates

The analysis so far assumed that the timing of the structural breaks is known 5. We need

to establish a procedure to estimate them and deduce what is the effect on the limit distri-

bution of the various unit root tests. We propose to estimate the break dates via a global

minimization of the sum of squared residuals (SSR) of the GLS-detrended model 6, i.e.,

λ̂ = argmin λ∈Λ(ε)S (ᾱ, λ), so that

S(ᾱ, λ̂) = min λ∈Λ(ε)S (ᾱ, λ) , (13)

where the infimum is taken over all possible break fraction vectors defined on the set

Λ(ε)= {(λ1, ..., λm) ; |λi+1 − λi| ≥ ε (i = 1, ...,m− 1), λ1 ≥ ε, λm ≤ 1− ε} ,
with ε some trimming parameter that dictates the minimal length of a segment. A com-

mon value in the related literature is ε = 0.15. The following Proposition establishes the

consistency and rate of convergence of the estimate of the vector of break fractions λ0.

Proposition 1 Let {yt}Tt=1 be the stochastic process generated according to (1) and (2) with
α = 1. Assume that m > 0 and ψj 6= 0 ( j = 1, . . . ,m), so that there are structural breaks
affecting yt under the null hypothesis. Let λ̂ = argmin λ∈Λ(ε)S (ᾱ, λ), then, as T →∞:
(i) in Models I and II:

||λ̂− λ0|| = Op

¡
T−1

¢
,

(ii) in Models 0b and IIb:

||λ̂− λ0|| = op
¡
T−1

¢
.

5In this paper, we shall not address the issue of estimating the number of breaks. One natural possibility
is to use an information criterion such as the BIC as suggested by Yao (1988).

6Note that this approach is different from the one adopted in Perron and Rodriguez (2003), who esti-
mated the location of the break point through the minimization of the SSR under the null and alternative
hypotheses.

11



The proof is given in the Appendix. Following Kim and Perron (2006), the next step

is to derive the limit distribution of the unit root tests when this estimate of the break

fractions is used instead of the true values. The next Proposition, proved in the Appendix,

demonstrates that the rate of convergence is fast enough to guarantee that we recover the

same limit distribution as in the known break date case.

Proposition 2 Let {yt}Tt=1 be the stochastic process generated according to (1) and (2) with
α = 1. Assume that m > 0 and ψj 6= 0 ( j = 1, ...,m) and that s(λ̂)2 is a consistent estimate
of σ2. Let λ̂ = argmin λ∈Λ(ε)S (ᾱ, λ), then the limit distributions of PGLS

T (λ̂), MPGLS
T (λ̂),

MZGLS
α (λ̂), MSBGLS(λ̂), MZGLS

t (λ̂) and ADFGLS(λ̂) are the same as those of PGLS
T (λ0),

MPGLS
T (λ0), MZGLS

α (λ0), MSBGLS(λ0), MZGLS
t (λ0) and ADFGLS(λ0), respectively, for all

Models.

This result is important since even if the break dates are unknown, the use of the particu-

lar estimate λ̂ considered allows us to obtain unit root tests with the same limit distribution

as in the known break date case. Since the latter have a local asymptotic power function

close to the power envelop, this implies that whether the break dates are known or not the

same optimality properties hold, and that in the case of Gaussian errors we cannot do bet-

ter in terms of local asymptotic power. Note that the result is different from that of Kim

and Perron (2006) who considered a framework using OLS based on a regression involving

the raw variables (not quasi-detrended). For Models I and II, the rate of convergence was

not fast enough to obtain such an equivalence and to solve the problem they proposed a

procedure involving data trimmed around the estimate of the break date. No such device is

needed here with the GLS-type procedure.

5.1 Computation of the estimates of the break dates

In practice, the computation of the estimates of the break dates defined in (13) is compu-

tationaly prohibitive using a regular grid search when m > 2. Following Bai and Perron

(2003), we propose to use a dynamic programming approach. The procedure involves, how-

ever, an additional layer of difficulty since the quasi-differencing used in (13) destroys the

block-diagonality of the matrix of regressors. We can, nevertheless, recover a block diagonal

matrix provided appropriate restrictions are imposed on the coefficients. We start by noting

that the matrix of regressors is given by (assuming only two breaks):

12



⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0

(1− ᾱ) (1− ᾱL) 2 0 0 0 0

(1− ᾱ) (1− ᾱL) 3 0 0 0 0
...

...
...

...
...

...

(1− ᾱ) (1− ᾱL)T 01 0 0 0 0

(1− ᾱ) (1− ᾱL) (T 01 + 1) 1 1 0 0

(1− ᾱ) (1− ᾱL) (T 01 + 2) (1− ᾱ) (1− ᾱL) 2 0 0
...

...
...

...
...

...

(1− ᾱ) (1− ᾱL)T 02 (1− ᾱ) (1− ᾱL) (T 02 − T 01 ) 0 0

(1− ᾱ) (1− ᾱL) (T 02 + 1) (1− ᾱ) (1− ᾱL) (T 02 − T 01 + 1) 1 1

(1− ᾱ) (1− ᾱL) (T 02 + 2) (1− ᾱ) (1− ᾱL) (T 02 − T 01 + 2) (1− ᾱ) (1− ᾱL) 2
...

...
...

...
...

...

(1− ᾱ) (1− ᾱL)T (1− ᾱ) (1− ᾱL) (T − T 01 ) (1− ᾱ) (1− ᾱL) (T − T 02 )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

For t = 1, we have

yᾱ1 = μ0 + β0 + u1,

which can be expressed as

yᾱ1 = μ0 + β0 ± μ0 (1− ᾱ)± β0 (1− ᾱL) 1 + u1

= μ0 (1− ᾱ) + β0 (1− ᾱL) 1 + [μ0 + β0 − μ0 (1− ᾱ)− β0 (1− ᾱL) 1] + u1

= μ0 (1− ᾱ) + β0 (1− ᾱL) 1 + [μ0 + β0 − μ0 (1− ᾱ)− β0 (1− ᾱL) 1]D1 (T0) + u1,

where D1 (Tj) denotes an impulse dummy variable defined as Dt (Tj) = 1 for t = Tj + 1 and

zero otherwise, with the convention that T0 = 0. Therefore, the model for 1 ≤ t ≤ T 01 can

be written as

yᾱt = μ01
ᾱ + β0t

ᾱ + γ0Dt

¡
T 00
¢
+ uᾱt ,
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with γ0 = μ0ᾱ+β0−β0(1−ᾱL)·1 = μ0ᾱ, using the fact that (1−ᾱL)t = t−(1+c̄/T )(t−1) =
1− (c̄/T )(t− 1). When t = T 01 + 1 the quasi-differenced variable is given by

yᾱT01+1
= μ0 (1− ᾱ) + β0 (1− ᾱL)

¡
T 01 + 1

¢
+ μ1 + β1 + uᾱT 01+1

= μ0 (1− ᾱ) + β0 (1− ᾱL)
¡
T 01 + 1

¢
±μ1 (1− ᾱ)± β1 (1− ᾱL)

¡
T 01 + 1

¢
+ μ1 + β1 + uᾱT01+1

= μ0 (1− ᾱ) + β0 (1− ᾱL)
¡
T 01 + 1

¢
+μ1 (1− ᾱ) + β1 (1− ᾱL)

¡
T 01 + 1

¢
+
£
μ1 + β1 − μ1 (1− ᾱ)− β1 (1− ᾱL)

¡
T 01 + 1

¢¤
DT 01+1

¡
T 01
¢
+ uᾱT 01+1

= (μ0 + μ1 − β1T
0
1 ) (1− ᾱ) + (β0 + β1) (1− ᾱL)

¡
T 01 + 1

¢
+ᾱμ1DT 01+1

¡
T 01
¢
+ uᾱT01+1

,

and for T 01 < t ≤ T 02 it is given by

yᾱt =
¡
μ0 + μ1 − β1T

0
1

¢
(1− ᾱ) + (β0 + β1) (1− ᾱL)t+ γ1Dt

¡
T 01
¢
+ uᾱt ,

where γ1 = ᾱμ1. A similar expression can be obtained for T
0
2 < t ≤ T , viz.,

yᾱt =
¡
μ0 + μ1 + μ2 − β1T

0
1 − β2T

0
2

¢
(1− ᾱ) + (β0 + β1 + β2) (1− ᾱL)t+ γ2Dt

¡
T 02
¢
+ uᾱt ,

with γ2 = ᾱμ2. In general, y
ᾱ
t in the j

th regime (T 0j−1 < t ≤ T 0j ), j = 1, . . . ,m + 1, can

therefore be written as

yᾱt = μ∗(1− ᾱ) + β∗(1− ᾱL)t+ γj−1Dt(T
0
j−1) + uᾱt , (14)

where the coefficients satisfy the following restrictions

μ∗ = (

j−1X
i=0

μi −
j−1X
i=1

βiT
0
i ),

β∗ = (

j−1X
i=0

βi),

γj−1 = ᾱμj−1.
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Therefore, the moment matrix of the regressors can be expressed via the following block

diagonal matrix,⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(1− ᾱ) (1− ᾱL) 1 1 0

(1− ᾱ) (1− ᾱL) 2 0
...

...
...

(1− ᾱ) (1− ᾱL)T 01 0

(1− ᾱ) (1− ᾱL) (T 01 + 1) 1

(1− ᾱ) (1− ᾱL) (T 01 + 2) 0
...

...
...

(1− ᾱ) (1− ᾱL)T 02 0

(1− ᾱ) (1− ᾱL) (T 02 + 1) 1

(1− ᾱ) (1− ᾱL) (T 02 + 2) 0
...

...
...

0 (1− ᾱ) (1− ᾱL)T 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and the dynamic programming algorithm can be used provided the appropriate restrictions

on the coefficients of the system (14) are imposed. With this specification, the estimation of

the break dates can be done using an iterative procedure similar to that of Perron and Qu

(2006). The exact steps are as follows.

1. Compute initial estimates of the break dates and associated break fractions λ̂ =

(λ̂1, . . . , λ̂m) and coefficients, ψ̂ = (ψ̂
0
0, ψ̂

0
1, . . . , ψ̂

0
m)

0 using an OLS method applied to

(1). This involves a standard application of the algorithm described in Bai and Perron

(2003).

2. For a given set of preliminary estimates of the break dates, obtain an initial value of

c̄(λ̂) using (9).

3. Let T ∗(ψ, r, n) = (T ∗1 (ψ, r, n), . . . , T
∗
r (ψ, r, n)) be the vector of the optimal r break dates

using the first n observations for a given vector of coefficients ψ, andRSSR(T ∗(ψ, r, n))

be the associated restricted sum of squared residuals. Then, compute the restricted

sum of squared residuals RSSR(T ∗(ψ, 1, n)) for 2h ≤ n ≤ T − (m− 1)h by

RSSR(T ∗(ψ̂, 1, n)) = min
h≤j≤n−h

[RSSR1(1, j) +RSSR2(j + 1, n)]
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and

T ∗(ψ̂, 1, n) = arg min
h≤j≤n−h

[RSSR1(1, j) +RSSR2(j + 1, n)],

where

RSSR1(1, j) =

jX
t=1

(yᾱt − zᾱt (T0)
0 φ̂0 − γ̂0Dt(T0))

2,

with φ̂0 = ψ̂0 and γ̂0 = ᾱμ̂0, and

RSSR2(j + 1, n) =
nX

t=j+1

(yᾱt − zᾱt (T0)
0 φ̂1(j)− γ̂1Dt(j))

2,

with φ̂1(j) = (μ̂0 + μ̂1 − β̂1j, β̂0 + β̂1)
0 and γ̂1 = ᾱμ̂1. Then, sequentially compute

and store RSSR(T ∗(ψ̂, r, n)) for r = 2, . . . ,m − 1, with n ranging from (r + 1)h to

T − (m− r)h. This is done solving

RSSR(T ∗(ψ̂, r, n)) = min
rh≤j≤n−h

[RSSR(T ∗(ψ̂, r − 1, n)) +RSSRr+1(j + 1, n)].

The last rth element is

T ∗(ψ̂, r, n) = arg min
rh≤j≤n−h

[RSSR(T ∗(ψ̂, r − 1, n)) +RSSRr+1(j + 1, n)],

where

RSSRr+1(j + 1, n) =
nX

t=j+1

(yᾱt − zᾱt (T0)
0 φ̂r(j)− γ̂rDt(j))

2, (15)

with φ̂r(j) = (
Pr

i=0 μ̂i −
Pr−1

i=1 β̂iT
∗
i (ψ̂, r− 1, j)− βrj,

Pr
i=0 β̂i)

0 and γ̂r = ᾱμr. Finally

compute

RSSR(T ∗(ψ̂,m− 1, n)) = min
mh≤j≤T−h

[RSSR(T ∗(ψ̂,m− 1, n)) +RSSRm+1(j + 1, T )],

where RSSRm+1(j + 1, T ) is computed as in (15). Then store the estimated break

dates and update c̄(λ̂) accordingly.

4. Repeat steps 2 and 3 until convergence.

6 Preliminary simulations

Even though we have assumed the existence of a break in the trend function so far, it is

instructive to analyze the properties of the tests proposed. We consider cases with a single
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break without loss of generality. The data generating process used in the simulations is given

by

yt = dt + ut (16)

dt = μbDUt(T
0
1 ) + βbDT ∗t (T

0
1 ) (17)

ut = αut−1 + vt, (18)

vt ∼ i.i.d. N (0, 1), u0 = 0. We specified four values for the magnitude of the level shift

μb = {0, 0.5, 1, 5}. For each value of μb, we considered values of βb ranging from -4 to 4 in

increments of 0.2. We investigated the sensitivity of the results using three different values

of the fraction λ0 = 0.3, 0.5, and 0.7. The sample size is set at T = {100, 200, 300} and the
results are based on 1,000 replications. The empirical size is analyzed setting α = 1, while

the power is evaluated with α = ᾱ = 1 + c̄/T , where the parameter c̄ depends on the break

fractions and is obtained from (9). Hence, in large samples, the power is 50% in all cases.

In this paper, we only report results for λ0 = 0.5 and for the tests PGLS
T (λ̂),MZGLS

α (λ̂) and

ADFGLS(λ̂) (the properties ofMPGLS
T (λ̂) are similar to those of PGLS

T (λ̂), and the properties

of MSBGLS(λ̂) and MZGLS
t (λ̂) similar to those of MZGLS

α (λ̂)). The full set of results are

available on the authors’ web sites.

Figures 2 to 4 present the results of the empirical size using the asymptotic critical values

at the 5% level of significance drawn from the estimated response surfaces, while Figures 5

to 7 present results for power. For size, the following features are worthy of note. First, for

all tests, the exact size is close to the nominal size as |βb| increases and more so the larger
the sample. This is in accordance with our theoretical results. When |βb| and |μb| are small,
the tests show liberal size distortions and more so as the sample size increases. This is due

to the fact that our theoretical results so far assumed βb 6= 0 so that a break is present.

The limit null distributions when no break occurs are indeed different since the estimate of

the break fraction has a non-degenerate limit distribution on the interval [0, 1] instead of

converging to either 0 or 1. When comparing the tests, the PGLS
T (λ̂) and MZGLS

α (λ̂) tests

perform similarly while the ADFGLS(λ̂) test clearly exhibits more size distortions even when

|βb| is very large. What is of special interest is the fact that when |μb| is large, the exact size
of the PGLS

T (λ̂) and MZGLS
α (λ̂) tests are close to the nominal 5% level irrespective of the

value of βb. This suggests that a correction will be needed to account for cases with both

|βb| and |μb| small.
With respect to power, the following features emerge. First, the power of the tests

PGLS
T (λ̂) and MZGLS

α (λ̂) quickly approaches the 50% limit value suggested by the local
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asymptotic power analysis unless T is small. This is so even if |βb| is not very large. For very
small value of |βb|, the power is above 50% but only because of the presence of important size
distortions. The power of the ADFGLS(λ̂) is also above the target 50% level suggesting a

superior performance but again this is simply the consequence of important size distortions.

7 Extension to the case where a break need not occur

Up to this point, we assumed that a break occurs under both the null and alternative

hypotheses. When no break occurs, the asymptotic results described in the previous sections

do not hold because, under the null hypothesis of a unit root, the estimates of the break

fractions have a non-degenerate limit distribution on the interval [0, 1] instead of converging

to either 0 or 1 (see, Nunes, Kuan and Newbold, 1995, Bai, 1998). If there is no break in

the trend, then the proper unit root test procedure is to simply apply a standard Dickey-

Fuller (1979) type test with no break dummies. Hence, what is needed is a pre-test to assess

whether a break is present or not. This pre-test for a break should have the correct size if the

noise is integrated but should also be powerful whether the noise is stationary or has a unit

root in order to ensure a specification that allows a unit root test procedure with good power.

This testing problem has recently been addressed by Vogeslang (2001) and Perron and Yabu

(2006). Since the procedure of Perron and Yabu (2006) has better size and power, we shall

use it as the pre-test. It is based on a quasi-GLS approach using an autoregression for the

noise component, with a truncation to 1 when the sum of the autoregressive coefficients is in

some neighborhood of 1, along with a bias correction. For given break dates, one constructs

the F-test for the null hypothesis of no structural change in the deterministic components.

The final statistic uses the Exp functional of Andrews and Ploberger (1994). The test has

virtually the same asymptotic size whether the noise component is stationary or integrated.

We label this test as Exp-WFS and define the alternative estimate of the break fraction, eλ,
as eλ = λ̂ · 1(Exp-WFS > cv)

where cv is the critical value for a test with, say, nominal size p%. When there is a break,eλ consistently estimates λ0, as long as λ̂ consistently estimates λ0, given that Exp-WFS is a

consistent test. When there is no break, eλ will yield a non zero estimate p% of times even

with infinitely many observations, if cv is fixed. Now, suppose that Exp-WFS = Op(T
'),

' > 0 under the alternative of a break. Let cv = cT'−ε, 0 < ε < '. While such an

increasing sequence of critical values does not harm the consistency of the test, the size
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converges to zero as T increases, which ensures the consistency of eλ for λ0 ∈ [0, 1]. Given
the consistency of eλ, the modified test procedure is to use a DF type test when eλ = 0 and
the procedure described above when eλ 6= 0.
7.1 Simulation evidence

We performed simulations with the same data generating process and design as used in

Section 6 but this time for the version of our statistics involving the pre-test. The results

are presented in Figures 8 to 10 (for size) and 11 to 13 (for power). With respect to the size

of the test, one can see that the size distortions for values of |βb| near zero disappear to a
large extent. The tests PGLS

T (λ̂) and MZGLS
α (λ̂) with the pre-test for break in trend have

an exact size close to the nominal level in all cases. The ADFGLS(λ̂) test does, however,

still show important liberal size distortions and is therefore not recommended for practical

implementations.

The power function of PGLS
T (λ̂) and MZGLS

α (λ̂) with the pre-test for break approaches

the target 50% level quickly as T increases when |βb| is moderate to large. When |βb| is near
zero, the power is actually higher than 50%. This is due to the fact that with βb = 0 the test

performed without allowing for a change in trend has a local power function that is actually

higher than the test that does allow for breaks. So there is improvements in terms of power

as well. The only drawback is for values of |βb| neither moderate nor small. Here, the power
dips down. This is due to the fact that the pre-test for break is not powerful enough for this

range of values for |βb| so that a standard test without breaks is applied. Yet, the break
is large enough to affect the power of the test which decreases for the reasons explained in

Perron (1989).

Overall, the performance of the PGLS
T (λ̂) and MZGLS

α (λ̂) tests is quite satisfactory and

offers an improvement in terms of both size and power over existing procedures. It avoids

the large size distortions of the Zivot and Andrews (1992) procedure while still allowing for

much improved power by taking advantage of the information about the presence or absence

of a break whether it be under the null or the alternative hypotheses. The performance of the

testsMPGLS
T (λ̂), MSBGLS(λ̂) andMZGLS

t (λ̂) is similar as evidenced by results unreported.

8 Conclusion

Following the work of Kim and Perron (2006), the procedures suggested in this paper solve

many of the problems raised in the introduction that plague most existing unit root tests
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designed for series with a breaking trend function. First, the tests allow for a break under

both the null and the alternative hypotheses. This is desirable for several reasons. It imposes

a symmetric treatment when allowing for a break, so that the tests do not reject when the

noise is integrated but the trend is changing. Also, if a break is present, this information is

exploited to improve power. Second, when a break is present, the limit distributions of the

tests are the same as in the case of a known break date, thereby allowing increased power

while maintaining the correct size. Our paper used the quasi-GLS procedure suggested by

Elliott et al. (1996) to obtain tests that have a local asymptotic power close to the power

envelop, except perhaps is a small neighborhood where the change in slope is small but

non-zero. We have also extended the analysis to the multiple break case made possible by

a modification of the dynamic programming algorithm as described used in Bai and Perron

(2003) and Perron and Zhu (2006). Simulation experiments confirm that our procedures offer

an improvement over commonly used methods in small samples. Our tests should therefore

be useful in empirical applications.
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Appendix

We start by presenting some results that will be used throughout. We have, by definition

DT ∗ᾱ(Ti) =

⎧⎨⎩ 0,

1− c̄(t− Ti − 1)/T,
t ≤ Ti

t ≥ Ti + 1
and DU ᾱ(Ti) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0,

1,

−c̄/T,

t ≤ Ti

t = Ti + 1

t ≥ Ti + 2

Also, for Tj > Ti,

DT ∗ᾱ(Tj)−DT ∗ᾱ(Ti) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0,

−1 + c̄(t− Ti − 1)/T,
c̄(λj − λi),

t ≤ Ti

Ti + 1 ≤ t ≤ Tj

Tj + 1 ≤ t

and

DU ᾱ(Tj)−DU ᾱ(Ti) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−1,
c̄/T,

1 + c̄/T,

0,

t = Ti + 1

Ti + 2 ≤ t ≤ Tj

t = Tj + 1

otherwise

We can then show that, with Ti ≤ Tj,

T−1DT ∗ᾱ(Ti)0DT ∗ᾱ(Tj) (A.1)

= (1/6)(1− λj)
£
6c̄(λi − 1) + c̄2{λj(3λi − 1)− 3λi − λ2j + 2}+ 6

¤
+ o(1)

≡ a(λi, λj) + o(1)

and
DU ᾱ(Ti)

0DU ᾱ(Tj) = 1(|Ti − Tj| = 0) + o(1). (A.2)

Also,⎧⎨⎩ DU ᾱ(Ti)
0DT ∗ᾱ(Tj) = 1(|Ti − Tj| = 0)− c̄(1− λj) + c̄2(1− λj)

2/2 + o(1),

DU ᾱ(Tj)
0DT ∗ᾱ(Ti) = 1− c̄(λj − λi)− c̄(1− λj) + c̄2(1 + λj − 2λi)(1− λj)/2 + o(1),

(A.3)
where 1(·) denotes the indicator function. From (A.1)-(A.3), we have, with Ti ≤ Tj,⎧⎨⎩ DU ᾱ(Tj)

0[DU ᾱ(Tj)−DU ᾱ(Ti)] = 1(|Ti − Tj| 6= 0) + o(1),

DU ᾱ(Ti)
0[DU ᾱ(Tj)−DU ᾱ(Ti)] = −1(|Ti − Tj| 6= 0) + o(1),

(A.4)
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
DU ᾱ(Tj)

0[DT ∗ᾱ(Tj)−DT ∗ᾱ(Ti)] = c̄(λj − λi)− c̄2(λj − λi)(1− λj) + o(1)

DU ᾱ(Ti)
0[DT ∗ᾱ(Tj)−DT ∗ᾱ(Ti)]

= −1(|Ti − Tj| 6= 0) + c̄(λj − λi)− c̄2(λj − λi)
2/2− c̄2(λj − λi)(1− λj) + o(1),

(A.5)

⎧⎨⎩ DT ∗ᾱ(Tj)0[DU ᾱ(Tj)−DU ᾱ(Ti)] = 1(|Ti − Tj| 6= 0) + o(1)

DT ∗ᾱ(Ti)0[DU ᾱ(Tj)−DU ᾱ(Ti)] = −c̄2(λj − λi)
2/2 + o(1),

(A.6)

and⎧⎪⎪⎪⎨⎪⎪⎪⎩
T−1DT ∗ᾱ(Tj)0[DT ∗ᾱ(Tj)−DT ∗ᾱ(Ti)] = c̄(λj − λi)[(1− λj)− c̄(1− λj)

2/2] + o(1)

T−1DT ∗ᾱ(Ti)0[DT ∗ᾱ(Tj)−DT ∗ᾱ(Ti)]

= −(λj − λi) + c̄(λj − λi)(1− λi)− c̄2(λj − λi){3(1− λi)
2 − (λj − λi)

2}/6 + o(1).

(A.7)
From (A.4)-(A.7), we have (with Tj ≥ Ti)

||DU ᾱ(Tj)−DU ᾱ(Ti)||2 = 2 · 1(|Tj − Ti| 6= 0) + o(1), (A.8)

T−1||DT ∗ᾱ(Tj)−DT ∗ᾱ(Ti)||2 (A.9)

= (λj − λi)− c̄(λj − λi)
2 + c̄2(λj − λi)

3/3 + c̄2(λj − λi)
2(1− λj) + o(1),

and

(DU ᾱ(Tj)−DU ᾱ(Ti))
0(DT ∗ᾱ(Tj)−DT ∗ᾱ(Ti)) (A.10)

= 1(|Ti − Tj| 6= 0) + c̄(λj − λi)
2/2 + o(1).

Noting that uᾱ1 = v1 and uᾱt = vt + T−1(c− c̄)ut−1 (t = 2, . . . , T ), we deduce that

DU ᾱ(Ti)
0uᾱ = vTi+1 + T−1(c− c̄)uTi + c̄T−1

TX
t=Ti+2

(vt + T−1(c− c̄)ut−1) (A.11)

= vTi+1 + op(1)

and

T−1/2DT ∗ᾱ(Ti)0uᾱ = T−1/2
TX

Ti+1

(vt+T−1(c− c̄)ut−1)(1− c̄(t−Ti− 1)/T )⇒ σV (λi), (A.12)

where

V (λi) = (1 + c̄λi)[W (1)−W (λi) + (c− c̄)

Z 1

λi

Wc(r)dr] (A.13)

−c̄
Z 1

λi

rdW (r)− (c− c̄)c̄

Z 1

λi

rWc(r)dr.
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Proof of Theorem 1: Define the quadratic form MT

¡
c, c̄, λ0

¢
= (uᾱ0zᾱ) (zᾱ0zᾱ)−1 (zᾱ0uᾱ),

where zᾱ is the vector of the quasi-differences of zt(λ0) defined in (3). From Elliott et al.
(1996) and Perron and Rodriguez (2003), we have

s2(λ0)PGLS
T

¡
c, c̄, λ0

¢
= MT

¡
c, 0, λ0

¢−MT

¡
c, c̄, λ0

¢− 2c̄T−1 TX
t=2

ut−1vt (A.14)

+
¡
c̄2 − 2c̄c¢T−2 TX

t=2

u2t−1 − c̄T−1u10u1 + op (1) .

From the invariance principle and the ContinuousMapping Theorem (CMT), T−1
PT

t=2 ut−1vt ⇒
σ2[
R 1
0
Wc (r) dW (r) + γ] and T−2

PT
t=2 u

2
t−1 ⇒ σ2

R 1
0
Wc (r)

2 dr where γ = (σ2 − σ2v)/(2σ
2)

and σ2v = Ev2t . By the law of large numbers, p limT−1u10u1 = σ2v. Note that expression
given in (A.14) is similar to that in Elliott et al. (1996) and Perron and Rodriguez (2003),
where the only difference comes from the definition of the quadratic forms MT

¡
c, 0, λ0

¢
and

MT

¡
c, c̄, λ0

¢
. Let z0t =

¡
z0t,1, z

0
t,2

¢
be a rearranged version of zt(λ

0) so that zt,1 collects the
m+1 regressors that correspond to the constant and the impulse dummy variables, and zt,2
the m + 1 trending regressors. Also, let zᾱ0t = (zᾱ0t,1, z

ᾱ0
t,2) be the quasi-differenced zt. Then,

the scaled matrix MT

¡
c, c̄, λ0

¢
can be expressed as

MT

¡
c, c̄, λ0

¢
= (uᾱ0zᾱDT ) (DTz

ᾱ0zᾱDT )
−1
(DT z

ᾱ0uᾱ) ,

where DT = diag{D1,T ,D2,T} = diag
¡
1, · · · , 1, T−1/2, · · · , T−1/2¢. From (A.11) and (A.12),

we have

DTz
ᾱ0uᾱ = σ(v1/σ, ..., vTj+1/σ, ..., vTm+1/σ, V (λ

0
0), ..., V (λ

0
j), ..., V (λ

0
m))

0 + op(1). (A.15)

Using (A.1)-(A.3), the limit of DTz
ᾱ0zᾱDT is given by the following block diagonal matrix:

DTz
ᾱ0zᾱDT →

⎡⎣ Im+1 0

0 A(λ0)

⎤⎦ , (A.16)

where Im+1 is the identity matrix of order m + 1 and A(λ0) is a symmetric matrix defined
by

A(λ0) =

⎡⎢⎢⎢⎢⎢⎢⎣
a
¡
λ00, λ

0
0

¢
a
¡
λ00, λ

0
1

¢ · · · a
¡
λ00, λ

0
m

¢
a
¡
λ01, λ

0
1

¢ · · · a
¡
λ01, λ

0
m

¢
. . .

...

a
¡
λ0m, λ

0
m

¢

⎤⎥⎥⎥⎥⎥⎥⎦ . (A.17)

with a
¡
λ0i , λ

0
j

¢
as given in (A.1). Therefore, we have

MT

¡
c, c̄, λ0

¢
= v21 +

mX
j=1

v2Tj+1 + σ2M
¡
c, c̄, λ0

¢
+ op(1),

A-3



whereM
¡
c, c̄, λ0

¢
= V̄

¡
λ0
¢0
A(λ0)−1V̄

¡
λ0
¢
, with V̄

¡
λ0
¢
=
¡
V
¡
λ00
¢
, . . . , V

¡
λ0m
¢¢0
and V (λ0j)

as defined in (A.13). This weak convergence result also holds when c̄ = 0 and, thus,

MT

¡
c, 0, λ0

¢
= v21 +

mX
j=1

v2Tj+1 + σ2M
¡
c, 0, λ0

¢
+ op(1).

Finally, it follows that the limiting distribution of the test statistic is

PGLS
T

¡
c, c̄, λ0

¢ ⇒ M
¡
c, 0, λ0

¢−M
¡
c, c̄, λ0

¢− 2c̄Z 1

0

Wc (r) dW (r)

+
¡
c̄2 − 2c̄c¢ Z 1

0

Wc (r)
2 dr − c̄ ≡ HPGLS

T
¡
c, c̄, λ0

¢
.

Proof of Theorem 2: Note that the scaled detrended variable eyt is given by
T−1/2eyt = T−1/2ut − T−1/2z0tDT (DTz

ᾱ0zᾱDT )
−1

DTz
ᾱ0uᾱ.

Using (A.15), (A.16) and the asymptotic block diagonality of (DTz
ᾱ0zᾱDT )

−1, we obtain

T−1/2eyt = T−1/2ut − T−1/2z0t,1 (z
ᾱ0
1 z

ᾱ
1 )
−1

zᾱ01 u
ᾱ

−T−1/2z0t,2D2,T (D2,Tz
ᾱ0
2 z

ᾱ
2D2,T )

−1
D2,T z

ᾱ0
2 u

ᾱ + op(1).

Note that T−1/2z0[Tr],1 (z
ᾱ0
1 z

ᾱ
1 )
−1 zᾱ01 u

ᾱ p→ 0, provided that T−1/2vTb,j+1/σ
p→ 0, ∀j = 0, . . . ,m.

Also, T−1/2D2,Tz[Tr],2 → z2 (r) uniformly on r ∈ [0, 1], where z2 (r) = (r, (r − λ01)1(r > λ01),
. . ., (r − λ0m)1(r > λ0m)). Therefore,

T−1/2ey[Tr] ⇒ σ
£
Wc (r)− z2 (r)A(λ

0)−1V̄ (λ0)
¤
= σVc,c̄(r, λ

0),

with A(λ0) and V̄
¡
λ0
¢
as defined above. Using this weak convergence result and the CMT,

we have

MSBGLS
¡
λ0
¢
= (s

¡
λ0
¢−2

T−2
TX
t=1

ey2t−1)1/2 ⇒ (

Z 1

0

Vc,c̄(r, λ
0)2dr)1/2,

provided s
¡
λ0
¢2 p→ σ2. For MZGLS

α

¡
λ0
¢
, we have

MZGLS
α

¡
λ0
¢
= (T−1ey2T − s

¡
λ0
¢2
)(2T−2

TX
t=1

ey2t−1)−1
⇒ 0.5

¡
Vc,c̄(1, λ

0)2 − 1¢ (Z 1

0

Vc,c̄(r, λ
0)2dr)−1,
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and for MZGLS
t

¡
λ0
¢
,

MZGLS
t

¡
λ0
¢
= (T−1ey2T − s

¡
λ0
¢2
)(4s

¡
λ0
¢2
T−2

TX
t=1

ey2t−1)−1/2
⇒ 0.5

¡
Vc,c̄(1, λ

0)2 − 1¢ (Z 1

0

Vc,c̄(r, λ
0)2dr)−1/2.

Finally, it can be shown that the ADFGLS
¡
λ0
¢
test has the same limiting distribution as

the MZGLS
t

¡
λ0
¢
test.

Proof of Proposition 1: Let λ0 denotes the true break fraction and λ a generic one.
Except when indicated, ᾱ is computed using λ. Note that

S(ᾱ, λ) = (zᾱ(λ0)ψ + uᾱ)0M ᾱ
λ (z

ᾱ(λ0)ψ + uᾱ) (A.18)

= (dᾱ (λ)ψ + uᾱ)0M ᾱ
λ (d

ᾱ (λ)ψ + uᾱ)

= ψ0dᾱ0 (λ)M ᾱ
λ d

ᾱ (λ)ψ − 2uᾱ0M ᾱ
λ d

ᾱ (λ)ψ + uᾱ0M ᾱ
λ u

ᾱ

≡ Qᾱ (λ)− 2Gᾱ (λ) + uᾱ0M ᾱ
λ u

ᾱ

where dᾱ (λ) = zᾱ (λ)− zᾱ(λ0), M ᾱ
λ = I − P ᾱ

λ , and

P ᾱ
λ = zᾱ (λ)DT (DTz

ᾱ0 (λ) zᾱ (λ)DT )
−1

DTz
ᾱ0 (λ) .

When the break fraction is correctly specified, λ = λ0 and S(ᾱ0, λ
0) = uᾱ00M ᾱ0

λ0
uᾱ0 . Note

that the above expression consists of uᾱ0 and zᾱ0(λ0), which are quasi-differenced with ᾱ0,
i.e. the parameter ᾱ computed using the true break fraction λ0. The difference between
these two sum of squared residuals is given by

S(ᾱ, λ)− S(ᾱ0, λ
0) = Qᾱ (λ)− 2Gᾱ (λ) + uᾱ0M ᾱ

λ u
ᾱ − uᾱ00M ᾱ0

λ0
uᾱ0 .

Consider first
Qᾱ (λ) = ψ0dᾱ0 (λ) dᾱ (λ)ψ − ψ0dᾱ0 (λ)P ᾱ

λ d
ᾱ (λ)ψ.

For simplicity, assume that there is only one break. In Models II and IIb,

ψ0dᾱ0 (λ) dᾱ (λ)ψ = μ21||DU ᾱ(T1)−DU ᾱ(T 01 )||2 + β21||DT ∗ᾱ(T1)−DT ∗ᾱ(T 01 )||2
+2μ1β1[DU ᾱ(T1)−DU ᾱ(T 01 )]

0[DT ∗ᾱ(T1)−DT ∗ᾱ(T 01 )].

From (A.8)-(A.10), we have, in Model II, (if λ > λ0)

T−1ψ0dᾱ0 (λ) dᾱ (λ)ψ

= β21
£
(λ− λ0)− c̄(λ− λ0)2 + c̄2(λ− λ0)3/3 + c̄2(λ− λ0)2(1− λ)

¤
+ o(1)

and, in Model IIb,

T−1−2ηψ0dᾱ0 (λ) dᾱ (λ)ψ = 2κ21 · 1(|T1 − T 01 | 6= 0) + o(1).
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Also,

dᾱ0 (λ)P ᾱ
λ d

ᾱ (λ) = dᾱ0 (λ) zᾱ (λ)DT (DTz
ᾱ0 (λ) zᾱ (λ)DT )

−1
DTz

ᾱ0 (λ) dᾱ (λ) .

We have shown that (DTz
ᾱ0 (λ) zᾱ (λ)DT )

−1 = O(1) with the limit a block-diagonal matrix.
It also follows from (A.2)-(A.7) that

DTz
ᾱ0 (λ) dᾱ (λ)ψ (A.19)

= [ιᾱ,DU ᾱ (T1) , T
−1/2τ ᾱ, T−1/2DT ∗ᾱ (T1)]0

×[DU ᾱ (T1)−DU ᾱ
¡
T 01
¢
,DT ∗ᾱ (T1)−DT ∗ᾱ

¡
T 01
¢
](μ1, β1)

0

=

⎛⎜⎜⎜⎜⎜⎜⎝
o(1) O(T−1 |T1 − T 01 |)

1 + o(1) 1(T1 < T 01 ) +O(T−1 |T1 − T 01 |)
o(1) O(T−1/2 |T1 − T 01 |)
o(1) O(T−1/2 |T1 − T 01 |)

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎝ μ1

β1

⎞⎠ .

Hence, we have in Model II

T−1ψ0dᾱ0 (λ)P ᾱ
λ d

ᾱ (λ)ψ

= β21

⎛⎝a(0, λ)− a(0, λ0)

a(λ, λ)− a(λ, λ0)

⎞⎠0

A(λ)−1

⎛⎝a(0, λ)− a(0, λ0)

a(λ, λ)− a(λ, λ0)

⎞⎠+ o(1)

=
¯̄
T1 − T 01

¯̄2
O(T−2).

with a(λi, λj) as defined in (A.1) and, in Model IIb, T−1−2ηψ0dᾱ0 (λ)P ᾱ
λ d

ᾱ (λ)ψ = o(1). An
entirely analogous argument applies to Models 0b and I. Therefore, collecting terms,

Qᾱ (λ) =

⎧⎨⎩ O(T 1+2η) · eI,
|T1 − T 01 |O(1),

in Models 0b and IIb,

in Models I and II,
(A.20)

where eI = 1(|T1 − T 01 | 6= 0). Consider now
Gᾱ (λ) = uᾱ0dᾱ (λ)ψ − uᾱ0P ᾱ

λ d
ᾱ (λ)ψ.

As before, we first analyze the order of magnitude of uᾱ0dᾱ (λ)ψ. Note first that

uᾱ0
¡
DU ᾱ (T1)−DU ᾱ

¡
T 01
¢¢

= −uᾱλ0T+1 + c̄T−1
λTX

t=λ0T+2

uᾱt +
¡
1 + c̄T−1

¢
uᾱλT+1

= − ¡vλ0T+1 + T−1 (c− c̄)uλ0T
¢
+ c̄T−1

λTX
t=λ0T+2

¡
vt + T−1 (c− c̄)ut−1

¢
+
¡
1 + c̄T−1

¢ ¡
vλT+1 + T−1 (c− c̄) uλT

¢
= −vλ0T+1 + vλT+1 + op (1) = Op(1) · eI,
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and

uᾱ0
¡
DT ∗ᾱ (T1)−DT ∗ᾱ

¡
T 01
¢¢

= −uᾱλ0T+1 −
λT+1X

t=λ0T+2

¡−c̄T−1t+ 1 + λ0c̄+ c̄T−1
¢
uᾱt + uᾱλT+1

+
TX

t=λT+2

¡¡−c̄T−1t+ 1 + λc̄+ c̄T−1
¢− ¡−c̄T−1t+ 1 + λ0c̄+ c̄T−1

¢¢
uᾱt

= uᾱλT+1 − uᾱλ0T+1 −
λT+1X

t=λ0T+2

¡−c̄T−1t+ 1 + λ0c̄
¢
uᾱt +

¡
λ− λ0

¢
c̄

TX
t=λT+2

(vt +
c− c̄

T
ut−1) + op(1)

= |T1 − T 01 |Op(T
−1/2).

Then,

uᾱ0dᾱ (λ)ψ =

⎧⎨⎩ Op(T
1/2+η) · eI,

|T1 − T 01 |Op(T
−1/2),

in Models 0b and IIb,

in Models I and II.

Now,

uᾱ0P ᾱ
λ d

ᾱ (λ)ψ = uᾱ0zᾱ (λ)DT (DTz
ᾱ0 (λ) zᾱ (λ)DT )

−1
DTz

ᾱ0 (λ) dᾱ (λ)ψ

= Op(1)DTz
ᾱ0 (λ) dᾱ (λ)ψ

=

⎧⎨⎩ op(T
1/2+η) · eI,

|T1 − T 01 |Op(T
−1/2),

in Models 0b and IIb,

in Models I and II.

Therefore, we have

Gᾱ (λ) =

⎧⎨⎩ Op(T
1/2+η) · eI,

|T1 − T 01 |Op(T
−1/2),

in Models 0b and IIb,

in Models I and II.
(A.21)

For the last term is follows from previous results that

uᾱ0M ᾱ
λ u

ᾱ − uᾱ00M ᾱ0
λ0
uᾱ0 ≤ Op(1) · eI.

Therefore, collecting terms,

T−1
¡
S(ᾱ, λ)− S(ᾱ0, λ

0)
¢
= T−1Qᾱ (λ) + op (1) .

Furthermore, note that for a given estimate of the break fraction vector, λ̂, the inequality
T−1S(ᾱ, λ̂) ≤ T−1S(ᾱ0, λ0) is always satisfied. Now suppose that λ̂9p λ

0. Then, according
to this inequality, we will need that, for large T , T−1Qᾱ(λ̂) ≤ 0, but we have shown that
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Qᾱ(λ) > 0 when λ 6= λ0. Hence, a contradiction and the only way that the inequality is
satisfied is when λ̂→p λ

0. Thus, the minimization of S(ᾱ, λ) over all possible values of the
break fraction vector λ results in a consistent estimate of the break fractions. Although our
derivations have considered only one structural break, the arguments are also valid for the
multiple break case.
To establish the convergence rate for Models I and II, we first define the sets V� =

{Tk : |Tk − T 01 | < �T} for � ∈ (0, 1) and V� (C) = {Tk : |Tk − T 01 | < �T, |Tk − T 01 | > C} for
C > 0, so that V� (C) ⊂ V�. Note that S(ᾱ, λ̂) ≤ S(ᾱ0, λ

0) with probability 1 and Pr(T̂1 ∈
V�)→ 1, as T →∞. Given the previous results, there is a constant C > 0 such that

Pr

µ
min

λT∈V�(C)
S(ᾱ, λ)− S(ᾱ0, λ

0)

|λ− λ0|T ≤ 0
¶
< ζ

for some small ζ > 0, because when C is properly chosen,

Pr

µ
min

λT∈V�(C)
S(ᾱ, λ)− S(ᾱ0, λ

0)

|λ− λ0|T ≤ 0
¶

= Pr

Ã
min

λT∈V�(C)
Qᾱ (λ)− 2Gᾱ (λ) + uᾱ0M ᾱ

λ u
ᾱ − uᾱ00M ᾱ0

λ0
uᾱ0

|λ− λ0|T ≤ 0
!

< ζ

since

Qᾱ (λ)− 2Gᾱ (λ) + uᾱ0M ᾱ
λ u

ᾱ − uᾱ00M ᾱ0
λ0
uᾱ0

|λ− λ0|T = O(1)− 2Op(T
−1/2) +

Op(1) · eI
C

with the O(1) and Op(1) terms positive. Hence,

S(ᾱ, λ)− S(ᾱ0, λ
0)

|λ− λ0|T > 0

on V� (C) with large probability. This implies that the minimum cannot be achieved on V� (C)
and, thus, Pr(T |λ̂ − λ0| ≥ C) ≤ ζ, so that (λ̂ − λ0) = Op (T

−1). For Models 0b and IIb, a
similar argument can be applied to show that (λ̂− λ0) = op (T

−1).

Proof of Proposition 2: Consider first the statistic PGLS
T (c, c̄, λ̂) in Models I and II.

s(λ̂)2PGLS
T (c, c̄, λ̂)

= S(ᾱ, λ)− ᾱS(1, λ̂)

= Qᾱ(λ̂)− 2Gᾱ(λ̂) + uᾱ0M ᾱ
λ̂
uᾱ − (1 + c̄/T )[Q1(λ̂)− 2G1(λ̂) + u10M1

λ̂
u1]

= [Qᾱ(λ̂)−Q1(λ̂)]− c̄T−1Q1(λ̂)− 2[Gᾱ(λ̂)− (1 + c̄/T )G1(λ̂)]

+[uᾱ0M ᾱ
λ̂
uᾱ − (1 + c̄/T )u10M1

λ̂
u1]

= [Qᾱ(λ̂)−Q1(λ̂)] + [uᾱ0M ᾱ
λ̂
uᾱ − (1 + c̄/T )u10M1

λ̂
u1] + op(1).
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The last equality follows from (A.20), (A.21) and Proposition 1. From this expression,
we can see that if [Qᾱ(λ̂) − Q1(λ̂)] is asymptotically negligible, the limit distribution of
s(λ̂)2PGLS

T (c, c̄, λ̂) will be the same as that of s(λ0)2PGLS
T (c, c̄, λ0). Now,

Qᾱ(λ̂)−Q1(λ̂) = ψ0dᾱ0(λ̂)dᾱ(λ̂)ψ − ψ0dᾱ0(λ̂)P ᾱ
λ̂
dᾱ(λ̂)ψ

−ψ0d10(λ̂)d1(λ̂)ψ + ψ0d10(λ̂)P 1
λ̂
d1(λ̂)ψ

From (A.8)-(A.10),
ψ0dᾱ0(λ̂)dᾱ(λ̂)ψ − ψ0d10(λ̂)d1(λ̂)ψ = op(1).

and we recall that

dᾱ0(λ̂)P ᾱ
λ d

ᾱ(λ̂) = dᾱ0(λ̂)zᾱ(λ̂)DT

³
DT z

ᾱ0(λ̂)zᾱ(λ̂)DT

´−1
DTz

ᾱ0(λ̂)dᾱ(λ̂).

Then, from (A.19) and Proposition 1, we have (assuming for simplicity a single break)

DTz
ᾱ0(λ̂)dᾱ(λ̂)ψ

= [ιᾱ, DU ᾱ(T̂1), T
−1/2τ ᾱ, T−1/2DT ∗ᾱ(T̂1)]0

×[DU ᾱ(T̂1)−DU ᾱ
¡
T 01
¢
,DT ∗ᾱ(T̂1)−DT ∗ᾱ

¡
T 01
¢
](μ1, β1)

0

=

⎛⎜⎜⎜⎜⎜⎜⎝
op(1) op(1)

1 + op(1) 1(T1 < T 01 ) + op(1)

op(1) op(1)

op(1) op(1)

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎝ μ1

β1

⎞⎠ ,

and, similarly,

DTz
10(λ̂)d1(λ̂)ψ =

⎛⎜⎜⎜⎜⎜⎜⎝
op(1) op(1)

1 + op(1) 1(T1 < T 01 ) + op(1)

op(1) op(1)

op(1) op(1)

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎝ μ1

β1

⎞⎠ .

Given the asymptotic block diagonality of DTz
ᾱ0(λ̂)zᾱ(λ̂)DT and DTz

10(λ̂)z1(λ̂)DT , we have

ψ0dᾱ0(λ̂)P ᾱ
λ̂
dᾱ(λ̂)ψ − ψ0d10(λ̂)P 1

λ̂
d1(λ̂)ψ = op(1)

We focus onMSBGLS(λ) defined by (11). Note that ey0−1ey−1 is of the same order of magnitude
as ey0ey, so we concentrate on ey0ey. First, note that, in Models I and II,

ψ̂ = (zᾱ(λ̂)0zᾱ(λ̂))−1zᾱ(λ̂)0yᾱ

= (zᾱ(λ̂)0zᾱ(λ̂))−1zᾱ(λ̂)0zā(λ0)ψ + (zᾱ(λ̂)0zᾱ(λ̂))−1zᾱ(λ̂)0uᾱ

= ψ + (zᾱ(λ̂)0zᾱ(λ̂))−1zᾱ(λ̂)0uᾱ

+(zᾱ(λ̂)0zᾱ(λ̂))−1zᾱ(λ̂)0[zā(λ0)− zā(λ̂)]ψ,
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and

ey = y − z(λ̂)ψ̂

= z(λ0)(ψ − ψ̂) + u+ [z(λ0)− z(λ̂)]ψ̂

= u− z(λ0)(zᾱ(λ̂)0zᾱ(λ̂))−1zᾱ(λ̂)0uᾱ

−z(λ0)(zᾱ(λ̂)0zᾱ(λ̂))−1zᾱ(λ̂)0[zā(λ0)− zā(λ̂)]ψ + [z(λ0)− z(λ̂)]ψ̂.

We need to show that the last two terms are asymptotically negligible compared to the first
two. Note that the first two terms are such that

||u− z(λ0)(zᾱ(λ̂)0zᾱ(λ̂))−1zᾱ(λ̂)0uᾱ|| = Op(T ).

For the third term,

||z(λ0)(zᾱ(λ̂)0zᾱ(λ̂))−1zᾱ(λ̂)0[zā(λ0)− zā(λ̂)]ψ||
= (ψ[zā(λ0)− zā(λ̂)]zᾱ(λ̂)DTSTDTz(λ

0)0z(λ0)DTSTDTz
ᾱ(λ̂)0[zā(λ0)− zā(λ̂)]ψ)1/2

= (ψ[zā(λ0)− zā(λ̂)]zᾱ(λ̂)DTSTDTz(λ
0)0z(λ0)DTSTDTz

ᾱ(λ̂)0[zā(λ0)− zā(λ̂)]ψ)1/2

= Op(T
1/2)

where ST = (DTz
ᾱ(λ̂)0zᾱ(λ̂)DT )

−1. The last equality follows from the fact that ST = Op(1),
DTz(λ

0)0z(λ0)DT = Op(T
2) and, from the previous proof, DTz

ᾱ(λ)0[zā(λ0) − zā(λ̂)]ψ =
Op(T

−1/2). For the last term,

||[z(λ0)− z(λ̂)]ψ̂|| = (ψ̂
0
[z(λ0)− z(λ̂)]0[z(λ0)− z(λ̂)]ψ̂)1/2

= |λ̂− λ0|Op(T
3/2) = Op(T

1/2)

The CMT with the consistency of s2(λ) completes the proof for MSBGLS(λ). An entirely
analogous argument applies to eyT and the proofs for MZGLS

α (λ) and MZGLS
t (λ) directly

follow.
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Table 1: Response surface for the non-centrality parameter c̄.
(calibrated using up to five breaks)

c̄
¡
λ0k
¢
= β0,0+

P4
l=1

Pm
i=1 βi,l(λ

0
i,k)

l+
P4

l=1

Pm−1
i=1

Pm
j=i+1 γi,j,l

¯̄
λ0i,k − λ0j,k

¯̄l
+εk

β̂0,0 -13.18286 γ̂1,2,2 97.82579

β̂1,1 0 γ̂1,3,2 -80.1268

β̂2,1 -15.15442 γ̂1,4,2 0

β̂3,1 13.31425 γ̂1,5,2 102.8916

β̂4,1 0 γ̂2,3,2 105.6941

β̂5,1 -16.22433 γ̂2,4,2 -4.307576

β̂1,2 -33.78199 γ̂2,5,2 -132.0563

β̂2,2 22.58485 γ̂3,4,2 97.34824

β̂3,2 -36.2509 γ̂3,5,2 0

β̂4,2 22.46891 γ̂4,5,2 41.693

β̂5,2 0 γ̂1,2,3 -135.8274

β̂1,3 91.03556 γ̂1,3,3 124.6953

β̂2,3 0 γ̂1,4,3 0

β̂3,3 47.48599 γ̂1,5,3 -164.1035

β̂4,3 -64.27211 γ̂2,3,3 -149.0709

β̂5,3 16.75663 γ̂2,4,3 0

β̂1,4 -59.56566 γ̂2,5,3 176.9245

β̂2,4 -12.5647 γ̂3,4,3 -129.1821

β̂3,4 -26.72178 γ̂3,5,3 7.431114

β̂4,4 45.11246 γ̂4,5,3 -19.47382

β̂5,4 0 γ̂1,2,4 70.8171

γ̂1,2,1 -30.94839 γ̂1,3,4 -64.20535

γ̂1,3,1 18.72925 γ̂1,4,4 0

γ̂1,4,1 0 γ̂1,5,4 84.80697

γ̂1,5,1 -22.3687 γ̂2,3,4 76.87244

γ̂2,3,1 -32.9363 γ̂2,4,4 8.074889

γ̂2,4,1 0 γ̂2,5,4 -84.9944

γ̂2,5,1 40.8027 γ̂3,4,4 64.40906

γ̂3,4,1 -32.43146 γ̂3,5,4 0

γ̂3,5,1 -5.192179 γ̂4,5,4 0

γ̂4,5,1 -24.78274

All parameters are statistically significant at the 10% level of significance, based on the
Newey-West robust estimates of the standard errors. The fit of the regression is R̄2 = 0.99.
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Table 2: Response surfaces for the asymptotic critical values of the PGLS
T (λ0) and

MPGLS
T (λ0) tests.

1% 2.5% 5% 10% 1% 2.5% 5% 10%

β̂0,0 4.055894 4.859365 5.161226 6.150693 δ̂1,2,2 1.23375 1.100153 0.940944 0.892073

β̂1,1 11.51475 12.63712 8.518757 0 δ̂1,3,2 -1.68662 -1.734786 -1.679684 -2.458478

β̂1,2 3.115981 3.588129 6.946073 7.278113 δ̂1,4,2 0 0 0 0.110596

β̂1,3 -1.306252 -5.281776 -3.707751 -7.923907 δ̂1,5,2 0.921445 1.001851 0.471427 1.251522

β̂1,4 3.407912 2.324983 0 0 δ̂2,3,2 0.451639 0.743685 0.663688 0.879386

β̂1,5 3.620994 18.03549 11.12886 3.137351 δ̂2,4,2 -0.311286 -0.295055 -0.095371 -0.106705

β̂2,1 -2.655818 -3.078526 0 0 δ̂2,5,2 -1.53942 -1.975341 -2.421515 -3.001195

β̂2,2 -3.250386 -3.860014 -5.835792 -6.181602 δ̂3,4,2 0.388264 0.621287 0.19538 0.606314

β̂2,3 2.614622 2.497937 1.813979 2.516522 δ̂3,5,2 0 -0.255309 -0.123388 -0.265931

β̂2,4 -2.274934 -2.057081 0 -0.330465 δ̂4,5,2 0.727344 0.739337 0.479379 0.939676

β̂2,5 -4.417777 -5.213466 -3.474126 -3.990784 δ̂1,2,3 -1.728258 -1.406565 -1.224558 -1.142063

γ̂1,0 0 0 0 0 δ̂1,3,3 2.586695 2.611613 2.457355 3.701562

γ̂1,1 0.955323 1.085752 0.983646 0.154939 δ̂1,4,3 -0.048782 0 0 -0.064941

γ̂1,2 0 0 0 0 δ̂1,5,3 -1.183585 -1.443684 -0.244345 -1.67659

γ̂1,3 0 -0.381929 -0.29598 -0.642286 δ̂2,3,3 -0.257283 -0.791042 -0.744158 -1.14751

γ̂1,4 0.077336 0.03169 0 0 δ̂2,4,3 0.278711 0.28051 0.11773 0.132598

γ̂1,5 0 1.055363 0.628211 0 δ̂2,5,3 2.155698 2.829167 3.131708 3.963276

γ̂2,0 0 0 0.003024 0.004403 δ̂3,4,3 -0.155567 -0.637582 0 -0.742643

γ̂2,1 0.022188 0.026568 0.025276 0.007184 δ̂3,5,3 0 0.476813 0.166595 0.509547

γ̂2,2 0 0 -0.004154 -0.00437 δ̂4,5,3 -0.88688 -0.904828 -0.408659 -1.251418

γ̂2,3 -0.001744 -0.010641 -0.0086 -0.016969 δ̂1,2,4 0.917618 0.692854 0.648943 0.595435

γ̂2,4 0 0 0 0 δ̂1,3,4 -1.343122 -1.316134 -1.201767 -1.890047

γ̂2,5 0.001693 0.021468 0.012495 0.001007 δ̂1,4,4 0.051256 0 0 0

δ̂1,2,1 -0.396601 -0.385792 -0.349046 -0.330487 δ̂1,5,4 0.545985 0.717176 0 0.767657

δ̂1,3,1 0.414869 0.427932 0.42681 0.616974 δ̂2,3,4 0 0.324915 0.296849 0.519356

δ̂1,4,1 0 0 0 -0.054503 δ̂2,4,4 0 0 0 0

δ̂1,5,1 -0.266495 -0.26978 -0.253912 -0.351478 δ̂2,5,4 -1.080734 -1.469398 -1.483281 -1.913977

δ̂2,3,1 -0.247819 -0.310463 -0.254685 -0.283661 δ̂3,4,4 0 0.306692 -0.039153 0.366979

δ̂2,4,1 0.084386 0.066374 0 0 δ̂3,5,4 0.104506 -0.186638 0 -0.203043

δ̂2,5,1 0.44952 0.578628 0.792345 0.961128 δ̂4,5,4 0.42572 0.445571 0.188279 0.618035

δ̂3,4,1 -0.245902 -0.28617 -0.166305 -0.226597

δ̂3,5,1 -0.053076 0 0 0

δ̂4,5,1 -0.274101 -0.282583 -0.248772 -0.299152

All parameters are statistically significant at the 10% level of significance, based on the Newey-West
robust estimates of the standard errors. The fit of the regression is R̄2 = 0.99.
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Table 3: Response surfaces for the asymptotic critical values of the ADF (λ0) and
MZGLS

t (λ0) tests.
1% 2.5% 5% 10% 1% 2.5% 5% 10%

β̂0,0 -1.51581 -1.126706 -1.123596 -1.038084 δ̂1,2,2 0 -0.104406 -0.137608 -0.211755

β̂1,1 -2.178373 -4.857866 -5.798566 -5.669399 δ̂1,3,2 0.020127 0.015155 0.016302 0.0395

β̂1,2 0 0 0 0.300595 δ̂1,4,2 0.02695 -0.189128 -0.037523 0

β̂1,3 0 0 1.653186 0 δ̂1,5,2 -0.278515 -0.12443 -0.236102 -0.251287

β̂1,4 0.124969 0 -2.196662 -0.535774 δ̂2,3,2 -0.372539 -0.317224 -0.329327 -0.251578

β̂1,5 -1.311585 -4.891795 -4.511033 -5.597538 δ̂2,4,2 -0.096979 -0.045713 -0.014796 -0.018481

β̂2,1 0.591577 1.241862 1.657028 2.062049 δ̂2,5,2 0.266535 0.194159 0.221897 0.03972

β̂2,2 0.818683 0.645065 0.588629 0 δ̂3,4,2 -0.220092 -0.20317 -0.19438 -0.245119

β̂2,3 0.58507 0 0 0 δ̂3,5,2 0 -0.054685 -0.176222 -0.042657

β̂2,4 0 0.170083 0 0.526901 δ̂4,5,2 -0.243996 -0.200769 -0.214864 -0.211097

β̂2,5 1.234374 2.171167 2.529067 2.485652 δ̂1,2,3 -0.104316 0.061932 0.089751 0.225271

γ̂1,0 0.18779 0.216186 0.196932 0.183799 δ̂1,3,3 -0.024748 -0.018097 -0.020127 -0.090121

γ̂1,1 -0.190572 -0.401023 -0.435843 -0.393639 δ̂1,4,3 -0.081937 0.228386 0.016277 0

γ̂1,2 0.136419 0.099371 0.062566 0.022889 δ̂1,5,3 0.504402 0.307872 0.488632 0.511341

γ̂1,3 0.050768 0.002468 0.163426 0 δ̂2,3,3 0.61749 0.472924 0.47128 0.326607

γ̂1,4 0 0 -0.200122 0 δ̂2,4,3 0.070219 0.028355 0 0

γ̂1,5 0 -0.215186 -0.158317 -0.252778 δ̂2,5,3 -0.323152 -0.238925 -0.324188 -0.102894

γ̂2,0 0.003162 0.004896 0.004811 0.004938 δ̂3,4,3 0.343959 0.27736 0.246337 0.308088

γ̂2,1 -0.004964 -0.00985 -0.010007 -0.009021 δ̂3,5,3 -0.019057 0.024773 0.20944 0.016733

γ̂2,2 0.004586 0.003079 0.001324 0 δ̂4,5,3 0.375573 0.293829 0.29008 0.292033

γ̂2,3 0.001166 0 0.003972 0 δ̂1,2,4 0.098532 0 0 -0.078764

γ̂2,4 -0.000475 -0.000469 -0.004671 0 δ̂1,3,4 0 0 0 0.053363

γ̂2,5 0 -0.004392 -0.003355 -0.005326 δ̂1,4,4 0.057367 -0.103705 0 0

δ̂1,2,1 0.022779 0.051586 0.061712 0.078724 δ̂1,5,4 -0.285799 -0.189041 -0.28817 -0.301665

δ̂1,3,1 0 0 0 0 δ̂2,3,4 -0.345561 -0.253067 -0.252921 -0.17318

δ̂1,4,1 0 0.062864 0.020838 0 δ̂2,4,4 0 0 0 0

δ̂1,5,1 0.055794 0 0.0227 0.029488 δ̂2,5,4 0.145831 0.109136 0.177514 0.070759

δ̂2,3,1 0.089138 0.093459 0.106417 0.095085 δ̂3,4,4 -0.184917 -0.143545 -0.121028 -0.154975

δ̂2,4,1 0.037545 0.020494 0.013095 0.016575 δ̂3,5,4 0.027204 0 -0.098903 0

δ̂2,5,1 -0.097963 -0.06841 -0.066707 0 δ̂4,5,4 -0.199539 -0.157302 -0.156001 -0.157956

δ̂3,4,1 0.060277 0.069592 0.071404 0.092617

δ̂3,5,1 0 0.033671 0.066019 0.029572

δ̂4,5,1 0.065901 0.065087 0.081222 0.078205

All parameters are statistically significant at the 10% level of significance, based on the Newey-West
robust estimates of the standard errors. The fit of the regression is R̄2 = 0.99.
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Table 4: Response surfaces for the asymptotic critical values of the MSB(λ0) test.
1% 2.5% 5% 10% 1% 2.5% 5% 10%

β̂0,0 0.235156 0.27254 0.298518 0.339452 δ̂1,2,2 0 -0.002252 -0.002201 -0.004365

β̂1,1 -0.053846 -0.100709 -0.132435 -0.206157 δ̂1,3,2 0.000523 0.000337 0.000468 0.000435

β̂1,2 -0.034397 -0.045047 -0.028955 -0.023594 δ̂1,4,2 -0.00158 -0.004256 -1.05E-03 0

β̂1,3 -0.00149 -0.002293 0 0 δ̂1,5,2 -0.004808 -0.002652 -0.005415 -0.003924

β̂1,4 0 -0.030204 -0.082574 -0.060301 δ̂2,3,2 -0.008026 -0.007591 -0.008165 -0.008996

β̂1,5 -0.122035 -0.13815 -0.150719 -0.22106 δ̂2,4,2 -0.001759 -0.001075 -0.005693 -2.57E-04

β̂2,1 0.016143 0.02972 0.042159 0.070304 δ̂2,5,2 0.002139 0.001692 0.006675 0

β̂2,2 0.01831 0.013661 0.015549 0.011052 δ̂3,4,2 -0.00482 -0.005143 -0.006215 -0.007964

β̂2,3 0 0 0 0 δ̂3,5,2 0 -0.00043 -0.003768 -0.000345

β̂2,4 0 0 0 0 δ̂4,5,2 -0.005092 -0.005456 -0.00635 -0.006938

β̂2,5 0.032573 0.042876 0.054106 0.068993 δ̂1,2,3 -0.002506 0.001396 0 3.14E-03

γ̂1,0 0.009329 0.011935 0.013541 0.016024 δ̂1,3,3 -0.000615 -0.000395 -0.000543 -0.000569

γ̂1,1 -0.004717 -0.007873 -0.00957 -0.014127 δ̂1,4,3 0.000869 0.005294 0.000459 -9.61E-05

γ̂1,2 0 -0.001497 0 0 δ̂1,5,3 0.009846 0.006583 0.011188 9.86E-03

γ̂1,3 0 0 0 8.96E-05 δ̂2,3,3 0.013073 0.011614 0.011948 0.012671

γ̂1,4 -0.000477 -0.00303 -0.007561 -0.005529 δ̂2,4,3 0.001308 0.000675 0.008277 0.00E+00

γ̂1,5 -0.007053 -0.007677 -0.007735 -0.01235 δ̂2,5,3 -0.001289 -0.001064 -0.009523 -4.66E-05

γ̂2,0 0.000188 0.000251 0.000296 0.000348 δ̂3,4,3 0.007706 0.007412 0.008731 0.011019

γ̂2,1 -0.000127 -0.000187 -0.000214 -0.000302 δ̂3,5,3 -0.001114 0 0.004648 0.00E+00

γ̂2,2 4.10E-05 0 2.66E-05 2.07E-05 δ̂4,5,3 0.008022 0.008192 0.009249 0.009561

γ̂2,3 0 0 0 0 δ̂1,2,4 0.00237 0 0.0014 0.00E+00

γ̂2,4 -2.60E-05 -7.79E-05 -0.000176 -0.000131 δ̂1,3,4 0 0 0 0

γ̂2,5 -0.000138 -0.000156 -0.000158 -0.000251 δ̂1,4,4 0 -0.002474 0 0.00E+00

δ̂1,2,1 0.000549 0.001053 0.001247 0.001755 δ̂1,5,4 -0.005788 -0.004077 -0.006638 -0.006235

δ̂1,3,1 0 0 0 0 δ̂2,3,4 -0.007103 -0.006111 -0.006246 -0.006539

δ̂1,4,1 0.00072 1.38E-03 0.000566 0 δ̂2,4,4 0 0 -0.004467 0

δ̂1,5,1 0.000666 0 0.000548 0 δ̂2,5,4 0 0 0.005018 0

δ̂2,3,1 0.001845 0.001951 0.002329 2.70E-03 δ̂3,4,4 -0.004255 -0.00377 -0.004446 -0.005689

δ̂2,4,1 0.000654 4.61E-04 1.67E-03 0.000201 δ̂3,5,4 0.000914 0 -0.002247 0

δ̂2,5,1 -0.001146 -0.00086 -0.002054 0 δ̂4,5,4 -0.004267 -0.004338 -0.004949 -0.00518

δ̂3,4,1 0.001265 0.001488 0.001908 0.00255

δ̂3,5,1 0.000309 0.00041 0.001396 0.000357

δ̂4,5,1 0.001273 0.001564 2.01E-03 0.002465

All parameters are statistically significant at the 10% level of significance, based on the Newey-West
robust estimates of the standard errors. The fit of the regression is R̄2 = 0.99.
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Table 5: Response surfaces for the asymptotic critical values of the MZGLS
α (λ0) test.

1% 2.5% 5% 10% 1% 2.5% 5% 10%

β̂0,0 0 0 0 0 δ̂1,2,2 0 -1.68057 -2.034615 -3.0747

β̂1,1 -49.1033 -80.67152 -94.27681 -98.84623 δ̂1,3,2 4.03E-01 0.276249 0.510663 0.579879

β̂1,2 0 0 12.49052 20.9028 δ̂1,4,2 -1.215439 -3.085302 -6.20E-01 0

β̂1,3 0 0 23.0744 0 δ̂1,5,2 -3.836227 -2.058806 -4.221065 -4.01E+00

β̂1,4 2.918982 0 -31.38412 -3.7837 δ̂2,3,2 -6.37027 -4.771726 -5.320661 -4.366065

β̂1,5 -63.22623 -77.26193 -71.25859 -82.4666 δ̂2,4,2 -1.436885 -0.506785 -0.228244 -0.241011

β̂2,1 8.784032 20.5504 26.39792 28.95034 δ̂2,5,2 4.865784 3.309329 4.088078 3.160059

β̂2,2 13.59995 12.24087 9.484542 5.060179 δ̂3,4,2 -3.466125 -3.609057 -3.347742 -3.774296

β̂2,3 10.66119 0 0 3.414974 δ̂3,5,2 0 -1.22858 -2.505554 -4.84E-01

β̂2,4 0 2.326462 0 4.519052 δ̂4,5,2 -3.883586 -3.34232 -3.544715 -3.137332

β̂2,5 27.43303 39.56724 44.62572 40.67509 δ̂1,2,3 -1.870192 9.48E-01 1.249212 3.239319

γ̂1,0 2.375973 2.195192 1.999918 1.703449 δ̂1,3,3 -0.478586 -0.319396 -1.033132 -1.277379

γ̂1,1 -4.867309 -6.865216 -7.250681 -7.417863 δ̂1,4,3 0.689558 3.66918 0.270516 0

γ̂1,2 2.118534 1.659905 2.182285 2.477604 δ̂1,5,3 7.50E+00 5.136119 8.72E+00 8.090656

γ̂1,3 0.90565 0 2.109357 0.135494 δ̂2,3,3 10.35363 6.897478 7.766915 6.068159

γ̂1,4 0 0 -2.871627 0 δ̂2,4,3 1.022642 0 0 0

γ̂1,5 -2.634858 -2.940626 -2.176966 -3.451044 δ̂2,5,3 -6.274483 -3.896799 -6.192235 -5.130324

γ̂2,0 0.044459 0.053587 0.055731 0.050724 δ̂3,4,3 5.14785 5.012848 4.208394 4.743969

γ̂2,1 -1.30E-01 -0.173241 -0.169697 -0.169337 δ̂3,5,3 -3.49E-01 0.579267 2.928145 0.25584

γ̂2,2 0.068723 0.047938 0.048509 0.051411 δ̂4,5,3 5.740102 4.77502 4.656132 4.089741

γ̂2,3 0.020546 0 0.04765 0 δ̂1,2,4 1.69E+00 0 0 -1.159203

γ̂2,4 -0.010131 -0.007096 -0.067457 -0.002892 δ̂1,3,4 0 0 0.509457 7.05E-01

γ̂2,5 -0.048732 -0.058498 -0.046657 -0.073174 δ̂1,4,4 0.00E+00 -1.645225 0 -0.023476

δ̂1,2,1 4.35E-01 0.866429 0.9477 1.120894 δ̂1,5,4 -4.41E+00 -3.160568 -5.134323 -4.801537

δ̂1,3,1 0 0 0 0 δ̂2,3,4 -5.830718 -3.713127 -4.264494 -3.337409

δ̂1,4,1 0.551608 1.045441 0.348485 0 δ̂2,4,4 0.00E+00 2.72E-01 0 0

δ̂1,5,1 0.69457 0 0.413073 0.513954 δ̂2,5,4 3.016158 1.752061 3.435033 2.920029

δ̂2,3,1 1.62511 1.51E+00 1.700349 1.526902 δ̂3,4,4 -2.81E+00 -2.632964 -2.103161 -2.40406

δ̂2,4,1 0.567561 0.298429 0.201404 0.214627 δ̂3,5,4 0.504965 0 -1.352122 0

δ̂2,5,1 -1.685065 -1.231651 -1.165914 -0.806751 δ̂4,5,4 -3.071827 -2.561458 -2.508772 -2.244213

δ̂3,4,1 1.089693 1.209827 1.25E+00 1.428157

δ̂3,5,1 0 0.742667 0.957106 0.30942

δ̂4,5,1 1.166946 1.12E+00 1.380954 1.273161

All parameters are statistically significant at the 10% level of significance, based on the Newey-West robust
estimates of the standard errors. The fit of the regression is R̄2 = 0.99.
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Figure 1: Gaussian Local Power envelope and the Asymptotic Local Power Functions
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