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Abstract

Perron (1989) introduced unit root tests that are valid when a break at a known
date in the trend function of a time series is present. The motivation was to devise tests
invariant to the magnitude of the shift in level and/or slope and, in particular, to allow
them to occur under both the null and alternative hypotheses. The subsequent litera-
ture aimed to devise procedures valid in the case of an unknown break date. However,
in doing so most, in particular the commonly used test of Zivot and Andrews (1992),
assumed that if a break occurs, it does so only under the alternative hypothesis of
stationarity. This is undesirable for several reasons. Kim and Perron (2006) developed
a methodology that allows a break at an unknown time under both the null and alter-
native hypotheses. Also, when a break is present, the limit distribution of the test is
the same as in the case of a known break date, thereby allowing increased power while
maintaining the correct size. We extend their work in several directions: 1) we allow
for an arbitrary number of changes in both the level and slope of the trend function; 2)
we adopt the quasi-GLS detrending method advocated by Elliott et al. (1996) which
permits tests that have local asymptotic power functions close to the local asymptotic
Gaussian power envelope; 3) we consider a variety of tests, in particular the class of
M-tests introduced in Stock (1999) and analyzed in Ng and Perron (2001).
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1 Introduction

Professor Paul Newbold has made a number of important contributions in econometrics, in
particular in the area of the analysis of non-stationary time series. I (Perron) have been
honoured and privileged to have him participate in a research agenda that I put forward in
Perron (1989). This paper is, in part, a product motivated and made possible by some of
his work.

It is well known that a break in the deterministic trend affects the outcome of unit root
tests. Perron (1989) showed that a standard Dickey-Fuller (1979) (DF) type unit root test
is not consistent if the alternative is that of a stationary noise component with a break in
the slope of the deterministic trend. His main point is that the existence of an exogenous
shock which has a permanent effect will lead to a non rejection of the unit root hypothesis
even though it is not true. Of interest also is the fact that Leybourne, Mills and Newbold
(1998) and Leybourne and Newbold (2000) analyzed the effect of a break on a standard
DF test under the unit root null hypothesis and showed that size distortions can occur,
especially when the break is early in the sample !. Perron (1989, 1990) proposed alternative
unit root tests which allow the possibility of a break under both the null and alternative
hypotheses. These tests have less power than a standard DF type test when there is no
break. Nonetheless, they have a correct size asymptotically and are consistent whether
there is a break or not. Moreover, they are invariant to the break parameters and thus
their performance does not depend on the magnitude of the break. The most controversial
assumption, however, is that its timing is known a priori (see Christiano, 1992).

In order for Perron’s (1989, 1990) test procedures to be valid, the break date should be
chosen independently of the given data. Whenever a systematic search for a break is done,
the limiting distributions in Perron (1989, 1990) are no longer appropriate. Historical facts
can often be a good guidance in choosing a break date independently of the given data.
Even in that case, it is very likely that an imprecise break date is used. Hecq and Urbain
(1993) showed, by simulations, that the use of an incorrect break date in Perron’s (1990)
test, applicable with non-trending data, causes size distortions and power loss, though as
shown by Montanés (1997), this effect disappears asymptotically. Montanés and Olloqui
(1999) extended the analysis to Perron’s (1989) tests, applicable with trending data, and

showed that a loss of power occurs even in large samples. Kim, Leybourne and Newbold

ISee also Montafiés and Reyes (1998, 1999, 2000) who examined the asymptotic behavior of the Aug-
mented Dickey-Fuller test (Dickey and Fuller, 1979, Said and Dickey, 1984) and the Phillips-Perron (1988)
test under the crash alternative hypothesis.



(2000) examined the effect of using a wrong break date under the null hypothesis.

The work by Zivot and Andrews (1992) provide methods that treat the occurrence of
the break date as unknown, and has become quite popular. However, Professor Newbold
and his co-authors have clearly recognized the potential pitfalls of their approach, and in all
fairness to that of Perron (1997) which follows a similar path. In this line of work, a break
is not allowed under the null hypothesis, only under the alternative, mostly because of the
theoretical apparatus adopted. This means, for example, that under the null hypothesis a
level shift must be viewed as coming from the tail of the distribution of the data generating
process, and a slope change involves errors with a different mean in some sub-samples. This
framework is convenient since it allows them to establish various unit root testing procedures;
for example by minimizing the t-statistic related to the sum of the autoregressive coefficients
over each possible break date. This approach is, however, contrary to Perron (1989)’s original
motivation, which was to devise testing procedures that where invariant to the magnitude of
the shift in level and/or slope. In particular, if a change is present it is allowed under both
the null and alternative hypotheses.

The existence of a structural break in the trend function is a problem of long horizon
data; it can happen whether the noise component is stationary or has a unit root. As
argued in Nunes, Newbold and Kuan (1997) and Harvey, Leybourne and Newbold (2001)
(see also Vogelsang and Perron, 1998, and Lee and Strazicich, 2001), if the noise component
has a unit root and a break occurs in the trend function, the Zivot and Andrews’ (1992)
type test statistics often diverge or are not invariant to break parameters. This is a natural
consequence of not permitting a break under the null hypothesis. An added consequence is
that this type of tests have substantially less power than Perron’s (1989) tests, because they
do not fully utilize the information about the break, when one is present.

Despite these shorthcomings, the method of Zivot and Andrews (1992) has remained
popular in empirical work, probably in part because of the lack of sound statistical methods
that could tackle the problem of allowing for changes in the trend function at unknown times
under both the null and alternative hypotheses. Using recent developments on structural
change problems related to non-stationary data by Perron and Zhu (2005) and Perron and
Yabu (2006), Kim and Perron (2006) developed a methodology to devise new test procedures
which allow a break in the trend function at an unknown time under both the null and
alternative hypotheses. Also, when a break is present, the limit distribution of the test
is the same as in the case of a known break date, thereby allowing increased power while

maintaining the correct size. Simulation experiments confirm that it offers an improvement



over commonly used methods in small samples.

In this paper, we extend the work of Kim and Perron (2006) in several directions: 1) we
allow for an arbitrary number of changes in both the level and slope of the trend function ?;
2) we adopt the so-called quasi-GLS detrending method advocated by Elliott et al. (1996)
which permits tests that have local asymptotic power functions close to the local asymptotic
Gaussian power envelope ?; 3) we consider a variety of tests, in particular the class of M-tests
introduced in Stock (1999) and analyzed in Ng and Perron (2001). On the other hand, we
restrict our analysis to the case of the so-called AO (additive outlier) models as defined in
Perron (1989).

The paper is organized as follows. In Section 2, we present the model that allows for
multiple structural breaks in the deterministic trend function. Section 3 discusses the fea-
sible point optimal test with multiple structural breaks assuming the break dates to be
known. Section 3.1 provides details on the methods to construct the relevant non-centrality
parameter arising in the quasi-differencing procedures used. Section 4 analyzes the M-class
and related unit root tests allowing for multiple breaks. Section 5 considers the case with
unknown break dates and show that if these are estimated by minimizing the sum of squared
residuals from the appropriate GLS regression, the limit distributions of the tests are the
same as in the known break date case, provided breaks are present. Section 5.1 provides
details on how to compute the estimate of the break dates. Section 6 provides preliminary
simulations showing that the tests perform well but that they exhibit important size dis-
tortions when no break occurs. A solution to this problem is offered in Section 7 based
on a pre-test for changes in the slope of a trend function allowing the noise component to
be stationary or integrated based on the work of Perron and Yabu (2006). We show that

2Related papers allowing for multiple changes include the following. Lee (1996) and Lumsdaine and Papell
(1997), for trending variables, and Carrion, Sanso and Artis (2004), for non-trending variables, generalized
the approach in Zivot and Andrews (1992), while Clementes, Montafiés and Reyes (1998) extends the work
of Perron and Vogelsang (1992a,b) for non—trending variables. Lee and Strazicich (2003) extend Schmidt
and Phillips’s (1992) LM test to allow for two structural breaks both under the null and the alternative
hypotheses. For multiple structural breaks, Ohara (1999) and Kapetanios (2005) generalized the approach
in Zivot and Andrews (1992). Gadea, Montanés and Reyes (2004) designed a pseudo F statistic to account
for multiple level shifts for non-trending variables. Finally, Bai and Carrion-i-Silvestre (2004) consider the
square of the modified Sargan-Bhargava statistic to the presence of multiple structural breaks that might
affect either the level and/or the slope of the time trend. Hatanaka and Yamada (1999) is most closely related
to the approach of Kim and Perron (2006) and deals with two breaks for the so-called IO (innovational outlier)
type model.

3Perron and Rodriguez (2003) also consider GLS-detrended type procedures allowing a single break. The
approach is, however, quite different. Also, while their treatment yields “optimal” tests when a break is
present, this is not the case if a break is absent.



the resulting procedure involving the pre-test has good size and power superior to that of
alternative methods. Section 8 offers brief concluding remarks and an appendix the proofs

of various theoretical results.

2 The model

Let y; be a stochastic process generated according to

Yy = dy +uy (1)
U = aup_q1+v, t=0,...,T, (2)

where {u;} is an unobserved mean-zero process. We assume that uy = 0, although the
results generally hold for the weaker requirement that E (u3) < oo. The disturbance term
vy is defined by v, = >0 vin,—; with > 2 i|y,| < oo and {n,} a martingale difference
sequence adapted to the filtration F; = o — field{n,_;;7 > 0}. We define the long-run and
short-run variance as 02 = 02y (1)* and 02 = limg_.o T~} S L E (n?), respectively.

We consider three models: Model 0 (“level shift” or “crash”’), Model I (“slope change”
or “changing growth”), and Model II (“mixed change”) *. Let DUy(T}) = 1 and DT} (T}) =
(t = TP) for t > T and 0 elsewhere, with T? = [T'A]] denoting the j-th break date, with
[-] the integer part, and )\? = T)/T € (0,1) the break fraction parameter. As a matter of
notation, all true break fractions and break dates are denoted with a superscript 0. Estimates
of the break fractions and break dates are denoted with a hat. We also use the convention
that 79 = 0 and 7)., = T. We collect the m break fraction parameters in the vector
A0 = (A9,...,\2). For now it is assumed that the break dates are known; this will be
relaxed later.

The deterministic component in (1) is given by

dy = 2{(Tg o + 2(T)1 + -+ + 2 (T = 21 (A)0) (3)
where
2(\%) = [Z(T5),. .., (1)),
o= (Yo )

The various deterministic components and associated coefficients are defined by

2(TY) = z(0) = (1,t),

4Perron and Rodriguez (2003) also considered Models I and II but only with one break.
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Wlth d}O = (MO?BO), a’nda fOI‘ 1 S] S m,

DU(TY), in Model 0,
2(T7) = DTy (T?), in Model 1,
(DUL(T?), DT (T?))', in Model I,
with 1, = p; in Model 0, ¢; = 3; in Model I, and ¢; = (u;, ;)" in Model IL

For Models 0 and II, we also consider the case where the magnitude of level shifts get
large as the sample size grows, i.e., (ty,...,/,) = TY?* (k... Ky), with n > 0. The
models are then labelled as Models 0Ob and IIb, respectively. These models are useful to
obtain better approximations of the properties of the tests in finite samples. In Models 0
and II, the level shifts belong to the class of “slowly evolving trend” defined by Elliott et
al. (1996) and have no effect on the asymptotic size and power of the tests. When the
magnitude of the shifts are non-negligible, this typically implies that the derived asymptotic
distribution is a bad approximation to the finite sample distribution. In Models 0b and IIb,
the level shifts do not belong to the class of “slowly evolving trend”. As shown in Harvey,
Leybourne and Newbold (2001) this framework provides better approximations. A second
feature of importance is related to the estimation of the unknown break fractions. As shown
by Perron and Zhu (2005), the rate of convergence increases when the level shifts are modeled
to increase as the sample size grows. This phenomenon has important implications for the

properties of the unit root tests, as will be shown in the following sections.

Remark 1 [t is possible to assume that there is no trending deterministic component in
Model 0. We do not explicitly consider this case in the subsequent analysis but it should be
understood that most of our results pertaining to Models 0 and 0b can readily be applied to

the level shift model with no time trend.

The so-called GLS detrended unit root test statistics are based on the use of the quasi-
differenced variables ® and 2%(A\") defined by

v = (1= al)w), 00 = (20, (1 - aL) #(\), t=2,....T,

with @ = 14 ¢/T where ¢ is a non-centrality parameter to be defined below. Once the data
has been transformed, the parameters 1, associated with the deterministic components, can
be estimated by minimizing the following objective function

T

S* (0,6, \°) = 3 (5 — 22 (\)7. (4)

t=1
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We denote the minimum of this function by S (d, )\0).

3 Feasible point optimal test with multiple structural breaks

The choice of the non-centrality parameter ¢ is related to the Gaussian point optimal statistic
to test the null hypothesis of @ = 1 in (2) against the alternative hypothesis that o = @,
as suggested by Elliott et al. (1996). Following their analysis and Perron and Rodriguez
(2003), the feasible point optimal statistic is given by

PEES (A%) = {S (&, A°) — aS (1,A%) } /s*(\), (5)

where s2(\°) is an estimate of the spectral density at frequency zero of v;. Following Ng and

Perron (2001) and Perron and Ng (1998), we use an autoregressive estimate defined by

(AP = 53/ (1= b(1))?, (6)

where s, = (T — k) ' S0, 1 €2, b(1) = Zle b;, with b; and &, obtained from the OLS
estimation of .
Agt = bO@/t—l + Z bjAgt_j + €tk (7)
j=1
with 4, = y; — {ﬂ,zt()\o), where ¢ minimizes (4). The order of the autoregression k is se-
lected using the modified information criteria suggested by Ng and Perron (2001) with the
modification proposed by Perron and Qu (2007).
Let W, (r) be an Ornstein-Uhlenbeck process, i.e., the solution to the stochastic differ-
ential equation dW. (r) = ¢W, (r) dr + dW (r), with W, (0) = 0 where W (r) is the standard
Brownian motion. Denoting by “=" weak convergence of the associated measure of proba-

bility, the limiting distribution of the test PS“%(\°) is given in the following Theorem.

Theorem 1 Let {yt}thl be the stochastic process generated according to (1) and (2) with
a=1+c/T. Let PS"3(\°) be the statistic defined by (5) and s*(\°) be a consistent estimate
of 2.

(1) For Models 0 and 0b:
1
PEES () = & / VEA(r)dr + (1 - e)VA(1) = K777 (c,0).
0

where V2 (r) = We(r) — r[bWe.(1) + 3(1 — b) fol sW.(s)ds| and b= (1—¢)/(1 —c+c*/3).



(ii) For Models I, II, and IIb:
1
PEES (X)) = M (c,0,)°) — M (c,¢,\°) —2¢ / W, (r)dW (r)
0
1
+ (62 — 260) / W. (7“)2 dr —é= HPF"™ (c, c, )\0) ,
0

where M (¢,6,\°) =V (A°)" AN~V (X°), V (X°) = (V (A) ...,V (\2)) with

V) = 1+ W) —WO) + (c—e) y We(r)dr]

—z A 1 rdW(r) — (c — ) /A 1 FIV(r)dr,

and A(\°) a symmetric matriz defined by

a()\g,)\g) a()\g,)\?) a()\o )\O)

0 'm

a(A,A)) - a (A AD)

AN =

a (A?n, )\gl)

with

a(A),A)) = (1/6)(1 — \)) [62(X; — 1) + &{X;(3Ni — 1) — 3\ — A2 + 2} + 6]

1777%)

The proof for Model II is given in the Appendix. Since Models 0 and I can be viewed as
a special case of Model II, no separate proof is provided. The limiting distribution in (7) is
the same as that of the linear time trend model with no break, which can be found in Elliott
et al. (1996). Because the break dates are assumed known here, the test statistic PS*5(\")
is exactly invariant to the value of the coefficients associated with all regressors including
those pertaining to the change in the trend. Hence, there is no distinction between Models
0 and Ob, and between Models II and IIb. The limiting distribution of the test statistic for
Models I, II, and IIb depends both on the number of structural breaks and on the vector of

break fractions.

3.1 The choice of the non-centrality parameter ¢

From the limiting distributions in Theorem 1, we can obtain the local Gaussian power enve-
lope for the various cases. For Models I, IT and IIb, it is defined by 7*(¢) = Pr[HPT"" (¢, ¢, A°) <
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b7 (¢, \)], where, with v the size of the test, b7~ (¢, A°) is such that Pr[HT" (0, ¢, \°) <
b7 LS(C, )\0)] = v. Furthermore, the power envelope allows us to find the “optimal” non-
centrality parameter ¢ for our models. Elliott et al. (1996) recommended to choose the value
¢ such that the asymptotic power of the test is 50%, i.e., ¢ is such that Pr[HPTC‘;LS (¢c,c) <
bPF(E)] = 0.5.

For Models I, II, and IIb the parameter ¢ depends on the number of structural breaks
and their positions. Instead of reporting extensive tables of values, we opted to summarize
the relevant information via a response surface analysis. In order to do so, we obtained
by simulations the parameter ¢ for up to m = 5 structural break points for all possible
combinations of break fraction vectors A\° = (A2 .-+ \Y ) with \) = {0.1,0.2,--- ,0.9} (we
used 1,000 steps to approximate the Wiener process and 10,000 replications). This gives
us 382 cases and the response surface presented will allow an accurate approximation for
these and other cases. Visual inspection of the results obtained revealed U-shaped pattern
between the estimated parameters ¢ and the different vectors A°. Furthermore, the estimated
values of & showed symmetry around A) = 0.5. Therefore, we adopted a functional form that
accounts for these two features through the introduction of powers of \° and |)\? — )\2|,

(1,7 =1,--+ ,m) as regressors. The functional form we settled upon is given by

4 m m—1

c ()\2) = Boo + Z Zﬁi,l(Agk>l + Z Z i Viji ’)‘?,k - )‘?,k|l + &k (9)

=1 =1 =1 =1 j=i+1

The estimates of the coefficients of (9) obtained from the 382 cases simulated are reported
in Table 1. A simple Gauss program to compute the values of ¢(\}) for a given vector
A2 = (X\})--- A% Y is available on the authors’ web pages. Note that for Models 0 and 0b, a
similar analysis holds, though much simpler since the limit distribution is invariant to any
break parameters. The results are described in Elliott et al. (1996) and ¢ = —13.5 (if no

trend is present ¢ = —7).

4 The M-class and related unit root tests

Following Perron and Rodriguez (2003), we suggest the use of the so-called M-class of tests

analyzed in Ng and Perron (2001) allowing for multiple structural breaks. The tests are



defined by

T
MZE (X°) = (T7'52 — s (\°)? Z (10)
MSBGLS ()\O) _ 2Zyt_ 1/27 (11)
T
MZEES (X)) = (T8 — s (A")")(ds (\)* 7723 52 )72, (12)
t=1

with 7, =y, — {b/zt()\o), where ¢ minimizes (4) and s(\°)? is defined in (6). Note that we can
also test the unit root hypothesis using the t-ratio statistic for by = 0 in (7). This is akin
to an extension of the Dickey and Fuller (1979) test and is denoted ADFS*5(\%). Another
statistic considered in Ng and Perron (2001) is a modification of the feasible point optimal

test. In our context with breaks, it is defined by

MPEES (\0) = [T Zyt (1= TR s (W)

t=1

This test is based on the same motivation that leads to the definition of the M tests in Stock
(1999), namely, to provide functionals of sample moments that have the same asymptotic
distributions as well known unit root tests. The M PSL%(A\°) is important because its limiting
distribution coincides with that of the feasible point optimal test. The following Theorem

provides the limit null distribution of the various tests considered.

Theorem 2 Let {y;},_, be the stochastic process generated according to (1) and (2) with
o =14 ¢/T. Then, provided s*(\°) be a consistent estimate of o>:
(i) For Models 0 and 0b:

MZEHS(N) = 05 (Ve(1)? — 1) ( / ()
MSBELS(\0) = / V()2

where V2 (r) = We(r) — r[bWe(1) + 3(1 — b) fo sW.(s)ds| and b= (1 —¢)/(1 —c+c*/3).
(i1) For Models I, II and IIb:

1
= . c.C ]_, -1 c.e\T, )= C,E,
MZGH5 (X0 0.5 (Vee(1, )2 Veoe(r, A%)2dr) = = HMZ7 (c,2, \°
0
1
MSBES(\%) = ( / Veel(r, A0)2dr) /% = HMSBY (¢, 6, \0)
0

9



where V, (1, \°) = W, (1) — 23 (1) AA°)V(\°) with A(A\°) and V(\°) as defined in Theorem
1, and 2 (r) = (r, (r = XD1(r > XY, ..., (r = X0)1(r > \2)), where 1(-) is the indicator
function.

(iii) The limiting distribution of MZE"S(\°) in all models can be obtained in view of
the fact that MZEES(\Y) = MZEES(A\) - MSBCEES(\°), which in turn is also the limiting
distribution of the test ADFSLS(\Y), denoted by HAPT" (¢, \0).

Again, the limiting distribution in (%) is the same as that of the linear time trend model
with no break given in Ng and Perron (2001). Thus, note that the invariance to the break
parameters holds for all test statistics for Models 0 and Ob. This is not the case for Models
I, IT, and IIb, where their limiting distribution depends on the number and location of the
break points. The proof of Model II is given in the Appendix, while the proof for the other
models easily follows (the proof for the test ADF&S(\?) is more tedious but follows the
same steps as in Ng and Perron, 2001). This generalizes the results of Perron and Rodriguez
(2003) who showed, for the case of a single break, that each of the M tests and the ADF
statistic has the same limiting distribution across Models I and II.

For the case of Models I, II and IIb, the limit distributions depend on the number of
breaks and their positions. Instead of reporting extensive tables of values, we again opted to
summarize the relevant information via a response surface analysis. As above for the non-
centrality parameter ¢, we obtained by simulations the 1, 2.5, 5 and 10% percentiles of the
limit distributions of the various tests for up to m = 5 structural break points for all possible
combinations of break fraction vectors \° = (A\},---  A\2) with \) = {0.1,0.2,---,0.9}
(again, we used 1,000 steps to approximate the Wiener process and 10,000 replications). This
gives us 382 cases and the response surface presented will allow an accurate approximation

for these and other cases. The functional form adopted is given by

2 m 2 m
o) = ot 3 A0+ Yo+ 3 e O
=1 i=1 =1
4 m—1 m
+Z Z (5”1‘)\ | ¢ (A)) + e
=1 i=1 j=i+1

The estimates of the coefficients of the response surfaces are reported in Tables 2 to 5. A
simple Gauss program to compute the values of cv ()\2) for a given vector A’ = (A0, .- | A2y
is available on the authors’ web pages.

The asymptotic power functions of the tests are defined by 7%¢.s(c,¢, \°) = Pr[ H’ e, N0
< b (E,\0)] for J = MZ,, MSB, ADF with H'“"*(¢,¢, \°) defined in Theorem 2. The

10



constants 077" (¢, \°) are such that Pr[H’“"(0,¢ \%) < 079" (¢, \°)] = v, the size of the
tests. To assess the efficiency in terms of local asymptotic power of the various tests, we con-
sider the case with a single break occurring at \” = 0.3, 0.5 and 0.7. The asymptotic power
functions are shown in Figure 1 where the solid line is the power envelope. As can be seen,
the local power functions are nearly identical and indeed very close to the Gaussian power
envelope. So from this local asymptotic power perspective, all tests are nearly efficient. For
the case of Models 0 and Ob, we already know from Ng and Perron (2001) that the local

power functions of the various tests considered are very close to the power envelope.

5 The case with unknown break dates

The analysis so far assumed that the timing of the structural breaks is known °. We need
to establish a procedure to estimate them and deduce what is the effect on the limit distri-
bution of the various unit root tests. We propose to estimate the break dates via a global
minimization of the sum of squared residuals (SSR) of the GLS-detrended model ¢, i.e.,

~

A = arg min yeae)S (@, A), so that
S(@, \) = min xep)S (@, A) (13)
where the infimum is taken over all possible break fraction vectors defined on the set
Ae)={( A\, ) i — N >e(i=1,....om—=1), A\ > e, N\, <1 —¢€},

with € some trimming parameter that dictates the minimal length of a segment. A com-
mon value in the related literature is ¢ = 0.15. The following Proposition establishes the

consistency and rate of convergence of the estimate of the vector of break fractions \°.

Proposition 1 Let {y,},_, be the stochastic process generated according to (1) and (2) with
a=1. Assume that m >0 and; #0 (j=1,... ,m), so that there are structural breaks
affecting y, under the null hypothesis. Let A = argmin yep(o)S (@, A), then, as T — oco:
(i) in Models I and II:
A= =0, (T7),
(1) in Models 0b and I1b:
A =2l =0, (T7).

°In this paper, we shall not address the issue of estimating the number of breaks. One natural possibility
is to use an information criterion such as the BIC as suggested by Yao (1988).

®Note that this approach is different from the one adopted in Perron and Rodriguez (2003), who esti-
mated the location of the break point through the minimization of the SSSR under the null and alternative
hypotheses.
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The proof is given in the Appendix. Following Kim and Perron (2006), the next step
is to derive the limit distribution of the unit root tests when this estimate of the break
fractions is used instead of the true values. The next Proposition, proved in the Appendix,
demonstrates that the rate of convergence is fast enough to guarantee that we recover the

same limit distribution as in the known break date case.

Proposition 2 Let {y;},_, be the stochastic process generated according to (1) and (2) with
a=1. Assume thatm >0 and+; #0 (j=1,...,m) and that s(\)?2 is a consistent estimate
of 0. Let A = argmin ren@)S (@, A), then the limit distributions of PSLS()), MPSLS()),
MZCGLS(N), MSBYLS(X), MZELS(X) and ADFCLS()) are the same as those of PSLS(\Y),
MPERS (NN, MZEGES (A, MSBEES (), MZELS(\) and ADFCEES()\°), respectively, for all

Models.

This result is important since even if the break dates are unknown, the use of the particu-
lar estimate A considered allows us to obtain unit root tests with the same limit distribution
as in the known break date case. Since the latter have a local asymptotic power function
close to the power envelop, this implies that whether the break dates are known or not the
same optimality properties hold, and that in the case of Gaussian errors we cannot do bet-
ter in terms of local asymptotic power. Note that the result is different from that of Kim
and Perron (2006) who considered a framework using OLS based on a regression involving
the raw variables (not quasi-detrended). For Models I and II, the rate of convergence was
not fast enough to obtain such an equivalence and to solve the problem they proposed a
procedure involving data trimmed around the estimate of the break date. No such device is

needed here with the GLS-type procedure.

5.1 Computation of the estimates of the break dates

In practice, the computation of the estimates of the break dates defined in (13) is compu-
tationaly prohibitive using a regular grid search when m > 2. Following Bai and Perron
(2003), we propose to use a dynamic programming approach. The procedure involves, how-
ever, an additional layer of difficulty since the quasi-differencing used in (13) destroys the
block-diagonality of the matrix of regressors. We can, nevertheless, recover a block diagonal
matrix provided appropriate restrictions are imposed on the coefficients. We start by noting

that the matrix of regressors is given by (assuming only two breaks):
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(1—a) (1—al)2 0 0 0 0
(1-a) (1-alL)3 0 0 0 0
(1-a) (1—aL)T? 0 0 0 0
(1—-a) (1—aL)(T?+1) 1 1 0 0
1-a) A-al)(T?+2) (1-—a) (1—aL)2 0 0
1-a) @1-al)7y (1-a) (1-al)(Ty-17) 0 0

) (1—aLl)(T9—-TY +1) 1 1

1 1-—
1-a) A—-al)(T9+1) (1-
1 l—a) (1—-al)(T9-1T0+2) (1—a) (1—aL)2

1-a) (1-aLl)(I3+2) (1-a

(1-a) (1—al)T (1-a) (1—aL)(T -1TY) (1-a) (1—-aL)(T-1T9)

For t = 1, we have
Yyt = o + By + u,
which can be expressed as

Y= motBotpml—a)xf(1-al)l+u
= po(l—a)+ By (1 —aLl)l+[uy+ By —py(l—a) =By (1 —al)l]+wu
= po(l—a)+ By (1 —al)l+ [ug+By—po(l—a)—By(1—al)l]Di(To) + ui,
where D; (7}) denotes an impulse dummy variable defined as D; (T;) =1 for t = T; + 1 and
zero otherwise, with the convention that Ty = 0. Therefore, the model for 1 < ¢ < T} can

be written as
yta = Mola + ﬁota + oDy (T(?) + U?7
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with vy = poa+LBy—LBo(1—al)-1 = uya, using the fact that (1—aL)t =t—(14+¢/T)(t—1) =
1—(¢/T)(t —1). When t = T? + 1 the quasi-differenced variable is given by

y%)ﬂ = po(l—a)+B,(1—al) (Tlo—l—l
= p(l—a)+B,(1—al) (1Y +1)
+u, (1—-a)£p,(1-al) <T10+1)+N1+51+U%)+1
= po(l—a)+ B, ( l—aL)(T +1)
+u (1—a)+ 6, (1 —aL) (17 + 1)
+ [/vh +By—m(l—a)—-p5,(1—-al) (Tlo + 1)} Droyy (Tlo) + “?{41
= (N0+M1_BlT{))(l_@)+(50+51)(1_@L)(Tlo"‘l)
oy Droyy <T10>+U%0+17

) +u + 5 +u%)+1

and for TY < ¢t < Ty it is given by

Yo = (Mo + py — ﬁlTlo) (1 —a)+ (Bo+ B81) (1 —al)t + v, Dy (Tlo) +uf,

where v; = ay;. A similar expression can be obtained for Ty < t < T, viz.,

yf = (No"’ﬂl +N2—ﬁ1T1()_ﬁ2T20) (1—-a)+ (50+ﬁ1 "’ﬁz)(l _@L)t+V2Dt (T20) "’U?,

with v, = @iy, In general, g in the j™ regime (T9, <t < T7), j =1,...,m+1, can

therefore be written as

yf =t (1= @) + B"(1 = aL)t + 7, D(T),) + of, (14)

where the coefficients satisfy the following restrictions

j—1

pro= Zm > 8.1,

i=1
6* = (261)7
=0

Vji-1 = Qg

14



Therefore, the moment matrix of the regressors can be expressed via the following block

diagonal matrix,

(1-a) (1-al)T9 0
1-a) (1—-aL)(T9+1) 1
1-a) (1-aLl)(T?+2) 0

0 (1-a) (Q-aL)T 0

and the dynamic programming algorithm can be used provided the appropriate restrictions
on the coefficients of the system (14) are imposed. With this specification, the estimation of
the break dates can be done using an iterative procedure similar to that of Perron and Qu

(2006). The exact steps are as follows.

1. Compute initial estimates of the break dates and associated break fractions A =
(5\1, . 5\m) and coefficients, 1) = (1%, {p'l, . ,1Z;n)’ using an OLS method applied to
(1). This involves a standard application of the algorithm described in Bai and Perron
(2003).

2. For a given set of preliminary estimates of the break dates, obtain an initial value of

¢(A) using (9).

3. Let T*(¢,r,n) = (T} (¢, r,n),..., T (¢, r,n)) be the vector of the optimal r break dates
using the first n observations for a given vector of coefficients ¢, and RSSR(T*(¢,r,n))
be the associated restricted sum of squared residuals. Then, compute the restricted
sum of squared residuals RSSR(T*(¢,1,n)) for 2h <n <T — (m — 1)h by

RSSR(T*(¢,1,n)) = min [RSSRY(1,j)+ RSSR*(j +1,n)]

h<j<n—h
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and

~

T*(1,1,n) = arg min [RSSR'(1,j) + RSSR*(j + 1,n)],

h<j<n—h

where

M“

RSSR'(1,j) = — 2% — 4o Di(Ty))?,

t=1
with ¢, = 1, and 4, = &y, and

n

RSSR*(j+1,n) = Y (4 — 28 (To) d1(j) — 1 Di(h))?,

t=j+1

with ¢,(j) = (fig + fi, — B1js Bo + B1) and 4, = @ji;. Then, sequentially compute
and store RSSR(T*(¢,r,n)) for r = 2,...,m — 1, with n ranging from (r + 1)h to
T — (m — r)h. This is done solving

RSSR(T*(,r,n)) = min [RSSR(T*(¢,r —1,n)) + RSSR™(j +1,n)].

rh<j<n—h

The last r* element is

T*(,r,n) = arg min [RSSR(T*(’J}, r—1,n))+ RSSR™(j +1,n)],

rh<j<n—h
where .
RSSR™(j+1,n) = Y (4 — 27 (To) 6,(j) — 9. D:(4))*, (15)
t=j+1
with ¢,(j) = (3o ft; — Soimy BT (1 = 1,§) = B4, Y1 B,) and 4, = ap,. Finally
compute

RSSR(T*(¢p,m —1,n)) = min [RSSR(T*(¢,m —1,n)) + RSSR™(j +1,T)),

mh<j<T—h

where RSSR™(j + 1,T) is computed as in (15). Then store the estimated break
dates and update () accordingly.

4. Repeat steps 2 and 3 until convergence.
6 Preliminary simulations

Even though we have assumed the existence of a break in the trend function so far, it is

instructive to analyze the properties of the tests proposed. We consider cases with a single
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break without loss of generality. The data generating process used in the simulations is given
by

Y = dt + Ut (16)
dy = wDU(TY) + B,DT;(T7) (17)
Uy = QUz_1 + Vg, (18)

vy ~ i.4.d. N(0,1), ugp = 0. We specified four values for the magnitude of the level shift
w, = {0,0.5,1,5}. For each value of 1, we considered values of (, ranging from -4 to 4 in
increments of 0.2. We investigated the sensitivity of the results using three different values
of the fraction \° = 0.3, 0.5, and 0.7. The sample size is set at 7' = {100,200, 300} and the
results are based on 1,000 replications. The empirical size is analyzed setting o = 1, while
the power is evaluated with o« = @ = 1 + ¢/T', where the parameter ¢ depends on the break
fractions and is obtained from (9). Hence, in large samples, the power is 50% in all cases.
In this paper, we only report results for A° = 0.5 and for the tests PSE5()), MZSLS(S\) and
ADFCLS()) (the properties of M PGS () are similar to those of PS%5()), and the properties
of MSBELS(X) and MZEES()) similar to those of MZS5(X)). The full set of results are
available on the authors” web sites.

Figures 2 to 4 present the results of the empirical size using the asymptotic critical values
at the 5% level of significance drawn from the estimated response surfaces, while Figures 5
to 7 present results for power. For size, the following features are worthy of note. First, for
all tests, the exact size is close to the nominal size as |/,| increases and more so the larger
the sample. This is in accordance with our theoretical results. When |5,| and |y,| are small,
the tests show liberal size distortions and more so as the sample size increases. This is due
to the fact that our theoretical results so far assumed (5, # 0 so that a break is present.
The limit null distributions when no break occurs are indeed different since the estimate of
the break fraction has a non-degenerate limit distribution on the interval [0, 1] instead of
converging to either 0 or 1. When comparing the tests, the PSZ5(X) and MZGL5()) tests
perform similarly while the ADFSLS()) test clearly exhibits more size distortions even when
|3,| is very large. What is of special interest is the fact that when |, is large, the exact size
of the PSLS(X\) and M ZSES()) tests are close to the nominal 5% level irrespective of the
value of 3,. This suggests that a correction will be needed to account for cases with both
|5, and |p,| small.

With respect to power, the following features emerge. First, the power of the tests
PSES(N) and MZSLS()\) quickly approaches the 50% limit value suggested by the local
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asymptotic power analysis unless 7" is small. This is so even if |5,| is not very large. For very
small value of |3,|, the power is above 50% but only because of the presence of important size
distortions. The power of the ADF&ES (5\) is also above the target 50% level suggesting a

superior performance but again this is simply the consequence of important size distortions.

7 Extension to the case where a break need not occur

Up to this point, we assumed that a break occurs under both the null and alternative
hypotheses. When no break occurs, the asymptotic results described in the previous sections
do not hold because, under the null hypothesis of a unit root, the estimates of the break
fractions have a non-degenerate limit distribution on the interval [0, 1] instead of converging
to either 0 or 1 (see, Nunes, Kuan and Newbold, 1995, Bai, 1998). If there is no break in
the trend, then the proper unit root test procedure is to simply apply a standard Dickey-
Fuller (1979) type test with no break dummies. Hence, what is needed is a pre-test to assess
whether a break is present or not. This pre-test for a break should have the correct size if the
noise is integrated but should also be powerful whether the noise is stationary or has a unit
root in order to ensure a specification that allows a unit root test procedure with good power.
This testing problem has recently been addressed by Vogeslang (2001) and Perron and Yabu
(2006). Since the procedure of Perron and Yabu (2006) has better size and power, we shall
use it as the pre-test. It is based on a quasi-GLS approach using an autoregression for the
noise component, with a truncation to 1 when the sum of the autoregressive coeflicients is in
some neighborhood of 1, along with a bias correction. For given break dates, one constructs
the F-test for the null hypothesis of no structural change in the deterministic components.
The final statistic uses the Fxp functional of Andrews and Ploberger (1994). The test has
virtually the same asymptotic size whether the noise component is stationary or integrated.
We label this test as Fxp-Wrg and define the alternative estimate of the break fraction, X,
as
X=X 1(Exp-Wps > cv)

where cv is the critical value for a test with, say, nominal size p%. When there is a break,
A consistently estimates \°, as long as A consistently estimates \°, given that Eaxp-Wrg is a
consistent test. When there is no break, X will yield a non zero estimate p% of times even
with infinitely many observations, if cv is fixed. Now, suppose that Exp-Wps = O,(T%),
w > 0 under the alternative of a break. Let cv = ¢TI ¢, 0 < ¢ < w. While such an

increasing sequence of critical values does not harm the consistency of the test, the size
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converges to zero as T increases, which ensures the consistency of X for \0 € [0,1]. Given
the consistency of X, the modified test procedure is to use a DF type test when =0 and
the procedure described above when by # 0.

7.1 Simulation evidence

We performed simulations with the same data generating process and design as used in
Section 6 but this time for the version of our statistics involving the pre-test. The results
are presented in Figures 8 to 10 (for size) and 11 to 13 (for power). With respect to the size
of the test, one can see that the size distortions for values of |3, near zero disappear to a
large extent. The tests PSL5(A) and M ZSES()) with the pre-test for break in trend have
an exact size close to the nominal level in all cases. The ADFEL5()) test does, however,
still show important liberal size distortions and is therefore not recommended for practical
implementations.

The power function of PFX5(X) and M ZGL5()\) with the pre-test for break approaches
the target 50% level quickly as T" increases when |3, | is moderate to large. When |f3,] is near
zero, the power is actually higher than 50%. This is due to the fact that with 5, = 0 the test
performed without allowing for a change in trend has a local power function that is actually
higher than the test that does allow for breaks. So there is improvements in terms of power
as well. The only drawback is for values of |3,| neither moderate nor small. Here, the power
dips down. This is due to the fact that the pre-test for break is not powerful enough for this
range of values for |5,| so that a standard test without breaks is applied. Yet, the break
is large enough to affect the power of the test which decreases for the reasons explained in
Perron (1989).

Overall, the performance of the PSE5(\) and M ZGL5()) tests is quite satisfactory and
offers an improvement in terms of both size and power over existing procedures. It avoids
the large size distortions of the Zivot and Andrews (1992) procedure while still allowing for
much improved power by taking advantage of the information about the presence or absence
of a break whether it be under the null or the alternative hypotheses. The performance of the
tests MPSES(N), MSBELS(X) and M ZELS(X) is similar as evidenced by results unreported.

8 Conclusion

Following the work of Kim and Perron (2006), the procedures suggested in this paper solve

many of the problems raised in the introduction that plague most existing unit root tests
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designed for series with a breaking trend function. First, the tests allow for a break under
both the null and the alternative hypotheses. This is desirable for several reasons. It imposes
a symmetric treatment when allowing for a break, so that the tests do not reject when the
noise is integrated but the trend is changing. Also, if a break is present, this information is
exploited to improve power. Second, when a break is present, the limit distributions of the
tests are the same as in the case of a known break date, thereby allowing increased power
while maintaining the correct size. Our paper used the quasi-GLS procedure suggested by
Elliott et al. (1996) to obtain tests that have a local asymptotic power close to the power
envelop, except perhaps is a small neighborhood where the change in slope is small but
non-zero. We have also extended the analysis to the multiple break case made possible by
a modification of the dynamic programming algorithm as described used in Bai and Perron
(2003) and Perron and Zhu (2006). Simulation experiments confirm that our procedures offer
an improvement, over commonly used methods in small samples. Our tests should therefore

be useful in empirical applications.
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Appendix

We start by presenting some results that will be used throughout. We have, by definition

0, t<T;

0, t<T, )
and DU(T}) = 1, t=T+1

DT*(T)) =
1—ct—T,—1)/T, t>T+1

—¢/T, t>T,+2

Also, for T; > T,

0, t<T,
DT**(Ty) = DT**(T3) = § —1+¢(t—T,—1)/T, T,+1<t<T,
e\ — i), Ti+1<t
and )
~1, t=T,+1

) ) ) ¢/T, T,+2<t<Tj
1+¢/T, t=T+1

0, otherwise
We can then show that, with T; < Tj,

T-'DT*(T;) DT**(T) (A.1)

(1/6)(1 — A;) [62(A; — 1) +&{A; (3N — 1) — 3\, — A3 + 2} + 6] + o(1)

= a(A\, \j) +o(1)
and
DUS(LY DUS(T}) = 1(|T; — Tj| = 0) + of1). (A.2)

Also,

DU(T;)' DT**(Tj) = W(|T; — Tj| = 0) — e(1 — Aj) + (1 — A;)*/2+ o(1),
DU(T;) DT*(T;) = 1 —e(Aj — i) —e(1 = ;) + (1 + A5 — 20)(1 = A;)/2 + o(1),

(A.3)
where 1(-) denotes the indicator function. From (A.1)-(A.3), we have, with T; < T},
DUS(L,Y [DU(T,) ~ DUS(E,)] = 1(|T; ~ T #0) + o(1), "
DU(Ty[DU(T;) = DUNT)] = —1(|Ti = T3 # 0) + o(1),

A-1



DUS(T,) [DT*(T;) — DT*(T)] = e(A; — A) — (A, — A)(1 = A) + o(1)
DU(T,Y[DT*(T}) — DT*(T,)] (A.5)
= LT~ T3] # 0) + (A — M) — 20\ — A)?/2 = 20 = A)(L = ) + (L),

(A.6)

DT**(T;)[DU(T}) = DUS(T})] = 1(|T; = T3] # 0) + o(1)
DT*S(T,Y[DU(T;) — DUNT)] = ~&(A; — A)2/2 + o(1),

and
T DT (1) (DT (T}) — DT*(T)] = 20 = MI(L = Ay) — (1 = A,)*/2) + o(1)

T\ DT*(T,) [DT*(T;) — DT**(Ty)
==\ =) +e(N =)L =X) =N = {301 = X) = (N — N)?H/6+0(D).

(A7)
From (A.4)-(A.7), we have (with T; > T;)
|DU(T;) — DUNT)|* = 2- W(|Tj — To| # 0) + o(1), (A.8)
T7H|DT*(Ty) — DT(T,)|? (A9)
= (A= A) =N = )2+ = X)P /342 (N = NP1 = Ay) +o(1),
and
(DU(T}) — DU(T;)) (DT**(T;) — DT*(T;)) (A.10)
= 1(|T; — Tj| # 0) + e(\; — M)?*/2 + o(1).
Noting that u§ =v; and vw& = v, + T He—2)uyy (t=2,..., T), we deduce that
T
DU(T)u® = vpp+T H(c—)ur, +eTt Z (v + T He—2)u) (A1)
t=T;+2
= Uri41t 01)(1)
and
T
T72DT™(T)u® =T (0 + T (e = @)ur )1 — &t = T, — 1)/T) = oV(N;), (A.12)
T;+1
where
1
VW) = (L+a)W(L) - W)+ (c—2) / W.(r)dr] (A.13)
A
1

_E/Aj rdW(r) — (c — E)E//\i rWe(r)dr.
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Proof of Theorem 1: Define the quadratic form My (c, ¢ \°) = (u®2%) (2* 27 (2%u®),
where 2% is the vector of the quasi-differences of z,(\°) defined in (3). From Elliott et al.
(1996) and Perron and Rodriguez (2003), we have

T
SA)PES (e, )) = My (c,0,)°) = My (6, A\°) =267 “wqvy (A.14)

t=2

T
+ (¢ —2¢ec) T2 Z u? | — el utut 40, (1).
=2

From the invariance principle and the Continuous Mapping Theorem (CMT), T~ Zthz Up_ 1V =
G?[[ W (r)dW (r) + ] and T2 31, u? | = o [} W, (r)*dr where v = (0 — 02)/(20?)
and 02 = Ev?. By the law of large numbers, plim 7 'u'u! = o2. Note that expression
given in (A.14) is similar to that in Elliott et al. (1996) and Perron and Rodriguez (2003),
where the only difference comes from the definition of the quadratic forms Mp (c, 0, )\0) and
Mr (c,e,X°). Let 2, = (24, 2,,) be a rearranged version of z(A°) so that z; collects the
m + 1 regressors that correspond to the constant and the impulse dummy variables, and 2 »
the m + 1 trending regressors. Also, let 2 = (2{], 2f3) be the quasi-differenced ;. Then,

the scaled matrix My (c, c, )\0) can be expressed as
My (¢, /\0) = (u¥z*Dr) (DTza'zaDT)_l (Dr2%u®),

where Dy = diag{ D17, Dor} = diag (1,--- , 1,772 ... ' T7Y/2). From (A.11) and (A.12),
we have

Drz®u® = 0(v1/0, ..., 01,41/, s U141/ 0, V(A), o, VD), ., VL)) + 0p(1). (AL15)
Using (A.1)-(A.3), the limit of D72%2*Dr is given by the following block diagonal matrix:

- Ijsr 0
Dpz*2%Dp — , (A.16)
0 AW

where I,,4; is the identity matrix of order m + 1 and A(\°) is a symmetric matrix defined
by

a (A3, N) a (A, AY) o a (A, A,)

0 'm

A()\O) _ @ ()‘(1)7 )‘(1)) Coa ()‘(1)7 )‘Sn) (A.17)

a ()\En, )\gl)

with a (A7, /\?) as given in (A.1). Therefore, we have

My (c,e,\°) = v} + ZU%H +02M (c,e,X°) + o,(1),

=1
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where M (c,,\°) =V (X°)" A"~V (A°), with V (\°) = (V (A) ...V (A%,)) and V(\Y)
as defined in (A.13). This weak convergence result also holds when ¢ = 0 and, thus,

My (¢,0,X°%) = o} + ZU%H +02M (c,0,)°) + 0,(1).
j=1

Finally, it follows that the limiting distribution of the test statistic is
1
PEE (e,e,A%) = M (c,0,A°) — M (c,e,\°) —2¢ / W, (r) dW (r)
+(c —QCc / W ( dr—c HPGLS(C,E,)\O).

Proof of Theorem 2: Note that the scaled detrended variable y; is given by
T2, = T=Y2u, — T~V Dy (Dp2™2°Dy) " Dpz™u®.
Using (A.15), (A.16) and the asymptotic block diagonality of (D72%2z%Dy) ™", we obtain
TV = TPy =T, (7)o
T 7Y% Dy (Dor28' 25 Dor) ™ Dopzu® + 0,(1).

Note that T’l/Qz[T 11 (2227)” P20 250, provided that T v, /o 20,V =0,....m
Also, T7Y2Dy r2i14) 2 — 2o (1) uniformly on r € [0, 1], where 2 (r) = (1, (1 — AD)1(r > A)),
S (r=22)1(r > \2))). Therefore,
T g = 0 [We (r) — 22 (r) AQAY) TV (A)] = aVe(r, A7),

with A(\?) and V ()\0) as defined above. Using this weak convergence result and the CMT,
we have

T 1
MSBGLS ()\0) _ T QZ T 1 1/2 / %,E(Ty /\())QdT,)l/?7
- 0

t=1

provided s ()\0)2 £ 02 For MZSH (\°), we have
T
MZGES (X)) = (T2 — s (\°)? Z

0.5 (Vi LAY — 1) ( / Vaelr, \O)2dr) ™,

0



and for M Z&L5 ()\0),

MZEES () = (T — s (\))(ds (1) e

IIMﬂ

1
= 0.5 (V.o(1,A\°)?—1) (/ V,a(r, AO)er)*l/?
0
Finally, it can be shown that the ADF&9 ()\0) test has the same limiting distribution as
the MZEES (%) test.

Proof of Proposition 1: Let A\’ denotes the true break fraction and A a generic one.
Except when indicated, & is computed using A. Note that

Sa ) = (z (AO)w +u) M (25 (") + u®) (A.18)
= (d* (N ¥ +u®)M(d* (\) ¥ +u?)
= P'd” (A )Mi“d“ (A) ¥ = 2u™ MR d™ (A) o + u™ Myu®
= Q%(\) —2G* (\) + u¥ MJu®
where d® (\) = 2% (\) — 2%(A\°), M{ = I — Pg, and
P& = 2% (\) Dy (Dpz™ (A) 2% (A) D)~ Dpz®™ ().

When the break fraction is correctly specified, A = \° and S (v, )\O) = u™'M f‘oouao. Note
that the above expression consists of u® and 2%0(\?), which are quasi-differenced with ay,
i.e. the parameter & computed using the true break fraction \°. The difference between
these two sum of squared residuals is given by

S(@,A) = S(@0, A%) = Q% (A) — 2G* (A) + u® Mu® — u® M30u’.

Consider first
Q% (\) =¢'d¥ (N)d* (N\) o —'d™ () PLd™ (\) .
For simplicity, assume that there is only one break. In Models II and IIb,

Yd¥ (\)d* (N ¢ = @||DUN(Ty) — DUNTY)II* + Bi||DT*(Ty) — DT(TY)|?
+2p 5, [DU(Th) — DUN(TY) [DT*(T1) — DT*(T7)].

From (A.8)-(A.10), we have, in Model II, (if A > \%)

T_lﬂ)’da/ (/\) d% ()\) ¢
BIIA =X =X = X0+ (A= X /3+ (A= A°)*(1 = N)] +o(1)

and, in Model IIb,
T2 (V) d (A ¢ = 262 - 1(| T = T7| # 0) + o(1).
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Also,
d (\) PZd® (\) = d () 2% (A) Dy (Dpz® (A) 2% (A\) D) ™" Dpz® (M) d® () .
We have shown that (Dyz® (\) 2% (A) D) ™" = O(1) with the limit a block-diagonal matrix.
It also follows from (A.2)-(A.7) that
Drz® (N)d™ (\) (A.19)
= [\% DU (T}) ’T—l/zTa’ T-1/2 p*a (T
x[DU" (Ty) = DU (IY) , DT** (Ty) — DT (17)] (11, B1)'

o(1) o1 T - 1Y)

1o um <10+ 0T T - T)) ( " )
o(1) O(T~"2|T; - T?)) 6 )
o(1) O(T—'2|1y — 1Y)

Hence, we have in Model 11

TH'd™ (N) PRd® (\)
_ (a((),)\) a(O,)\Z)) Aoy (a((), A) — a(0, )\‘;)) o
a(A, ) —a(A,\Y) a(A,A) —a(A\A\)
= |1 =T Oo(T?).

with a(\;, ;) as defined in (A.1) and, in Model IIb, T71721'd® (\) P#d® (A\) ¢ = o(1). An
entirely analogous argument applies to Models Ob and I. Therefore, collecting terms,

(A.20)

_ O(T**21). T, in Models Ob and IIb,
Ty — TP O(1),  in Models T and TI,

where I = 1(|Ty — T?| # 0). Consider now
GO (\) = u¥d® (\) o) — u™ PAd® (\) 9.
As before, we first analyze the order of magnitude of u®d® (\) 1. Note first that
u (DU (Ty) — DU® (1Y)
AT
= o+ Y uf+ (Ll ) uiry,

t=X0T+2
T

t=\0T"+2
+ (1 + ET_I) (U/\T—‘rl + /T_1 (C — E) U,\T)
= —Uopgs +oari1 +0p (1) = Op(1) - I,
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and

u (DT** (T1) — DT** (17))
AT+1
= _U§OT+1 - Z (—ET_lt + 14+ X+ ET_l) ul + ui‘TH
t=A0T+2
T
+ Y (et 1+ Ae el ) = (=Tt + L+ A e+ T uf
t=AT"+2
AT+1 T .
= W o= Y (FTMH LN U+ (=X Y o+ ) + o)
t=\T+2 t=\T"+2

= |1 = TPI0,(T™7).

. O,(TY*t) . T, in Models Ob and IIb,
ud® (N\) ¢ =
Ty — TP| O,(T~Y%),  in Models I and 1L

Now,

u¥ P (N = u™2® (N) Dp (Dpz™ (X) 2% (\) D) " Dpz® (M) d® (A) ¥
= Op(1)Drz™ (A)d™ (\) ¢
0, (TH+n) . T, in Models Ob and IIb,

Ty — TP) O,(T~Y/?),  in Models I and 1L
Therefore, we have

O,(T2*1). T, in Models Ob and IIb,

G*(\) =
Ty — TP| O,(T~1/%),  in Models I and II.

(A.21)

For the last term is follows from previous results that
u® Myu® — u™' Mgu® < Op(1) - I
Therefore, collecting terms,
T (S(@,A) — S(ag, X)) =T7'Q* () + 0, (1) .
Furthermore, note that for a given estimate of the break fraction vector, 5\, the inequality

T-1S(a, \) < T~1S(ap, A°) is always satisfied. Now suppose that A —, A’ Then, according
to this inequality, we will need that, for large T', T71Q%(\) < 0, but we have shown that
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Q%(\) > 0 when A # \°. Hence, a contradiction and the only way that the inequality is
satisfied is when \ —, A’. Thus, the minimization of S(&, \) over all possible values of the
break fraction vector /\ results in a consistent estimate of the break fractions. Although our
derivations have considered only one structural break, the arguments are also valid for the
multiple break case.

To establish the convergence rate for Models I and II, we first define the sets V.
{Ty, : | Ty — T?| < €T’} for € € (0,1) and Ve (C ) = {1} : |Tk —T?| < €T, [T}, — T?| > C} for
C > 0, so that V, (C) C V.. Note that S(a, \) < S(ap, \°) with probability 1 and Pr(T; €
Vi) — 1, as T — oo. Given the previous results, there is a constant C' > 0 such that

N T7A
Pr( min 5@, ) S;(QO’A ) < 0) <(
XT€V(C) A= \°|T

for some small ¢ > 0, because when C' is properly chosen,

_ Q(~ 10
Pr( min 5@ 5;(040,)\ ) <0
ATEV.(C) A= \°|T

a A _QG@ A + alNfa,, o aO/M&o o
= Pr< min LAY W) +uP M~ u 0 §O><(

ATEV.(0) A =T
since
Q% (\) —2G*(\) + ua’Mf‘u& — u‘j‘O’M/‘\j‘Oou‘10 0,(1) - T
= 0(1) —20,(TY?) 4 222/~

with the O(1) and O,(1) terms positive. Hence,

S(a, \) — S(ag, \°)
A= \|T

>0

on V, (C) with large probability. This implies that the minimum cannot be achieved on V¢ ()
and, thus, Pr(T|\ — \°| > C) < ¢, so that (A — A°) = O, (T1). For Models 0b and IIb, a
similar argument can be applied to show that (A — \°) = o, (T 1).

~

Proof of Proposition 2: Consider first the statistic PS19(c, ¢, \) in Models T and 1I.

~

s(\PPF"5(e,e, \)

= S(a@ ) —as(1,\)
= Q%(N) —2G*(\) + v MZu® — (1 +¢/T)[Q*(N) — 2G*(N) + u"' Mlu']
= [Q"‘(_A)j "W =R = 2[G7 (V) — (1+¢/T)GH (W)
+u¥ M{u® — (14 ¢/T)u" Mju']
= [@*(N) = Q"(V)] + [V Mu® — (1+¢&/T)u" Miu'] + 0,(1).
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The last equality follows from (6.2()), (A.21) and Proposition 1. From this expression,
we can see that if [Q%(\) — Q'())] is asymptotically negligible, the limit distribution of
s(A\)2PS3(c, ¢, \) will be the same as that of s(A\”)2P%%%(c, ¢, \°). Now,

QM) = Q'(N) = ¢dV(Nd* (N — ¢'d™ (N P{d* (N
—y'd" (N)d' (A +¢'dV (N PLd* (A
From (A.8)-(A.10), ) ) o
P A¥ (N (N — ¢'d" (\)d (M) = 0,(1).
and we recall that
d (AP (A) = d(\)="(N) Dr (Drz"'(3)z ()\)DT) Drz¥(3)d*(A).
Then, from (A.19) and Proposition 1, we have (assuming for simplicity a single break)
Dyz™(X)d* (M)
_ [La,DU&(Tl),T_1/2 a T 1/2DT*a(T )]
x[DU*(Th) — DU* (TIO) DT (Ty) = DT (T7)) (11, 51)'

op(1) op(1)
rrem imemsam | (n
0p(1) op(1) b )
op(1) op(1)
and, similarly,
op(1) op(1)
D le<5\)d1(5\)’¢ _ 1+ Op(l) l(Tl < Tlo) + Op(l) Hq
Op(l) Op(l) b1
op(1) 0p(1)

Given the asymptotic block diagonality of D7z%(\)2%(A\) Dy and DyzY(X)z!(X) Dy, we have
YA (NP (N — ' d" (A PLd (V) = o,(1)

We focus on M SBEL9()\) defined by (11). Note that 4 ,7_; is of the same order of magnitude
as y'y, so we concentrate on 3'y. First, note that, in Models I and II,

b= ERYE) Ay
= (YA A
= Y+ (z*(\)z 12



and

g o= y—z(\)Y
= 2O =) +ut [2(A) - (V)Y
= u-— z()\o)(zf‘ )\)'z‘f‘(/\))_lz‘f‘(/\)’ua ) o
—2(A) (2% (A) 2% (V) T2 (V) [7(A) = 2 (W] + [2(A") = z(W)]w

We need to show that the last two terms are asymptotically negligible compared to the first
two. Note that the first two terms are such that

[l = 2(A) (2% (A)'2% (X)) "2 (AYu®|| = O,(T).

For the third term,

|
= (WL 00) = (VAN Dy SrDy= (0 () Dy 7 D (A [7(1°) — 27(W)])
= (Y[z"(\°) = 2"(N)]2"(N) DrSrDrz(X°) 2(X°) DrSrDrz®(A) [27(X°) — 2 (A)]¥) /*
= Op(Tl/z)

~ ~

where St = (Dr2%(A)'2%(A\)Dr)~". The last equality follows from the fact that S = O,(1),
Drz(\°Y2(\°)Dy = O,(T?) and, from the previous proof, Drz%(\)[2%(\°) — 2%(\)]y) =
O,(T~/?). For the last term,

112000 = 2Vl = @ 20) — 2D [=(X°) — 2(A)]) 7
|5‘ - )‘0|Op(T3/2) = Op(T1/2)

The CMT with the consistency of s2(\) completes the proof for MSBEL5()). An entirely
analogous argument applies to 77 and the proofs for MZSE5()\) and M ZEL9(N) directly
follow.
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Table 1: Response surface for the non-centrality parameter c.

(calibrated using up to five breaks)
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@4,4
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V1,21
V1,31
V1,41
V1,51
V2,31
V2,41
V2,51
V3,4,
V3,5,1
Va5

-13.18286
0
-15.15442
13.31425
0
-16.22433
-33.78199
22.58485
-36.2509
22.46891
0
91.03556
0
47.48599
-64.27211
16.75663
-59.56566
-12.5647
-26.72178
45.11246
0
-30.94839
18.72925
0
-22.3687
-32.9363
0
40.8027
-32.43146
-5.192179
-24.78274

Y1,2,2
Y1,3,2
V1,4,2
Y1,5,2
Y2,3,2
Y2,4,2
V2,52
V3,4,2
V35,2
Va5.2
Y1,2,3
Y1,3,3
V1,4,3
Y1,5,3
¥2,3.3
Y2,4,3
Y2,5,3
¥3,4,3
V3,5,
Va,5.3
V1,24
V1,34
V1,44
V1,54
V2,34
Y2,4.4
V2,54
V3,44
V3,5,4

Y4,5,4

97.82579
-80.1268
0
102.8916
105.6941
-4.307576
-132.0563
97.34824
0
41.693
-135.8274
124.6953
0
-164.1035
-149.0709
0
176.9245
-129.1821
7.431114
-19.47382
70.8171
-64.20535
0
84.80697
76.87244
8.074889
-84.9944
64.40906
0
0

All parameters are statistically significant at the 10% level of significance, based on the
Newey-West robust estimates of the standard errors. The fit of the regression is R? = 0.99.



Table 2: Response surfaces for the asymptotic critical values of the PS*%(\°) and
M PEES () tests.

1% 2.5% 5% 10% 1% 2.5% 5% 10%
Boo 4055804  4.859365 5.161226  6.150693 | 0120 123375  1.100153  0.940944  0.892073
By, 1151475  12.63712  8.518757 0 0132 -1.68662 -1.734786 -1.679684 -2.458478
Bro 3.115981  3.588120  6.946073  7.278113 | &1.4. 0 0 0 0.110596
Brs 1306252 -5.281776 -3.707751 -7.923907 | d152 0.921445 1.001851  0.471427  1.251522
Bia 3407912  2.324983 0 0 0332 0.451639  0.743685  0.663688  0.879386
Bis  3.620994 18.03549 11.12886  3.137351 | do40 -0.311286 -0.295055 -0.095371 -0.106705
By, -2.655818 -3.078526 0 0 0a52 -1.53942 -1.975341 -2.421515 -3.001195
By -3.250386 -3.860014 -5.835792 -6.181602 | d342 0.388264 0.621287  0.19538  0.606314
Bps  2.614622 2497937  1.813979  2.516522 | 935, 0 -0.255309 -0.123388  -0.265931
Byy -2.274934 -2.057081 0 -0.330465 | dy50 0.727344  0.739337  0.479379  0.939676
Bys -4ALTTTT 5213466 -3.474126 -3.990784 | 8125 -1.728258 -1.406565 -1.224558 -1.142063
A1.0 0 0 0 0 0133 2586695 2.611613 2457355  3.701562
A1, 0.955323  1.085752  0.983646  0.154939 | 3143 -0.048782 0 0 -0.064941
1.9 0 0 0 0 0153 -1.183585 -1.443684 -0.244345 -1.67659
1.3 0 -0.381929  -0.29598  -0.642286 | da35 -0.257283 -0.791042 -0.744158 -1.14751
4.4 0077336 0.03169 0 0 0343 0278711  0.28051  0.11773  0.132598
A1 0 1.055363  0.628211 0 0255 2155698  2.829167  3.131708  3.963276
20 0 0 0.003024  0.004403 | 343 -0.155567 -0.637582 0 -0.742643
Apq  0.022188  0.026568  0.025276  0.007184 | J35 0 0.476813  0.166595  0.509547
a0 0 0 -0.004154  -0.00437 | d4553 -0.88688 -0.904828 -0.408659 -1.251418
Ay3 -0.001744 -0.010641  -0.0086  -0.016969 | 0124 0.917618  0.692854  0.648943  0.595435
Ao 0 0 0 0 0134 -1.343122 -1.316134 -1.201767 -1.890047
45  0.001693  0.021468  0.012495  0.001007 | §144 0.051256 0 0 0
6121 -0.396601 -0.385792 -0.349046 -0.330487 | 4154 0.545985  0.717176 0 0.767657
6131 0414869  0.427932  0.42681  0.616974 | d5.5.4 0 0.324915  0.296849  0.519356
01,41 0 0 0 -0.054503 | d2.4.4 0 0 0 0
0151 -0.266495 -0.26978 -0.253912 -0.351478 | dg54 -1.080734 -1.469398 -1.483281 -1.913977
0231 -0.247819 -0.310463 -0.254685 -0.283661 | d3.4.4 0 0.306692 -0.039153  0.366979
0241 0.084386  0.066374 0 0 0354 0.104506 -0.186638 0 -0.203043
0251 044952 0578628  0.792345 0.961128 | 454 0.42572  0.445571  0.188279  0.618035
0341 -0.245902 -0.28617 -0.166305 -0.226597
351 -0.053076 0 0 0
0151 -0.274101 -0.282583 -0.248772 -0.299152

All parameters are statistically significant at the 10% level of significance, based on the Newey-West
robust estimates of the standard errors. The fit of the regression is R? = 0.99.



Table 3: Response surfaces for the asymptotic critical values of the ADF(A®) and
MZEES () tests.

1% 2.5% 5% 10% 1% 2.5% 5% 10%
Boo  -1.51581  -1.126706 -1.123596 -1.038084 | &1 2. 0 -0.104406 -0.137608 -0.211755
By, -2.178373 -4.857866 -5.798566 -5.669399 | 4132 0.020127  0.015155  0.016302  0.0395
Bia 0 0 0 0.300595 | 6142  0.02695 -0.189128 -0.037523 0
Bis 0 0 1.653186 0 0152 -0.278515 -0.12443 -0.236102 -0.251287
Bi4  0.124969 0 2196662 -0.535774 | o35 -0.372539 -0.317224 -0.329327 -0.251578

B15 -1.311585 -4.891795 -4.511033 -5.597538 | d242 -0.096979 -0.045713 -0.014796 -0.018481
3271 0.591577  1.241862  1.657028  2.062049 327572 0.266535  0.194159  0.221897  0.03972

Bao  0.818683  0.645065  0.588629 0 5374,2 -0.220092  -0.20317  -0.19438  -0.245119
[3273 0.58507 0 0 0 5375,2 0 -0.054685 -0.176222 -0.042657
,32 4 0 0.170083 0 0.526901 34,572 -0.243996 -0.200769 -0.214864 -0.211097

32’5 1.234374  2.171167  2.529067  2.485652 | 123 -0.104316 0.061932  0.089751  0.225271
Y1,0 0.18779  0.216186  0.196932  0.183799 317373 -0.024748 -0.018097 -0.020127 -0.090121

Y11 -0.190572 -0.401023 -0.435843  -0.393639 517473 -0.081937  0.228386  0.016277 0
V1,2 0.136419  0.099371  0.062566  0.022889 517573 0.504402  0.307872  0.488632  0.511341
Y13 0.050768  0.002468  0.163426 0 32,373 0.61749  0.472924 047128  0.326607
1,4 0 0 -0.200122 0 32,4’3 0.070219  0.028355 0 0
1,5 0 -0.215186  -0.158317 -0.252778 32,5’3 -0.323152  -0.238925 -0.324188 -0.102894

Y20  0.003162  0.004896  0.004811  0.004938 | 34,3 0.343959  0.27736  0.246337  0.308088
V2,1 -0.004964  -0.00985  -0.010007 -0.009021 537573 -0.019057  0.024773  0.20944  0.016733

435  0.004586  0.003079  0.001324 0 0s53 0.375573  0.293829  0.29008  0.292033
A3 0.001166 0 0.003972 0 5124 0.098532 0 0 -0.078764
Hy4  -0.000475 -0.000469 -0.004671 0 0134 0 0 0 0.053363
Ha.5 0 -0.004392  -0.003355 -0.005326 | 8144 0.057367 -0.103705 0 0
S121  0.022779  0.051586  0.061712  0.078724 | 6154 -0.285799 -0.189041 -0.28817  -0.301665
0131 0 0 0 0 o34 -0.345561 -0.253067 -0.252921  -0.17318
01,41 0 0.062864  0.020838 0 09.4.4 0 0 0 0
d151 0.055794 0 0.0227  0.029488 | do5.4 0.145831  0.109136  0.177514  0.070759
231 0.089138  0.093459  0.106417  0.095085 | 0344 -0.184917 -0.143545 -0.121028 -0.154975
do41 0.037545  0.020494  0.013095  0.016575 | 6354 0.027204 0 -0.098903 0
da51 -0.097963 -0.06841 -0.066707 0 054 -0.199539 -0.157302 -0.156001 -0.157956
0341 0.060277  0.069592  0.071404  0.092617

8351 0 0.033671  0.066019  0.029572

0451 0.065901  0.065087  0.081222  0.078205

All parameters are statistically significant at the 10% level of significance, based on the Newey-West

robust estimates of the standard errors. The fit of the regression is R? = 0.99.



Table 4: Response surfaces for the asymptotic critical values of the M SB(\°) test.

1% 2.5% 5% 10% 1% 2.5% 5% 10%

Boo 0235156 027254  0.298518  0.339452 | 192 0 -0.002252  -0.002201  -0.004365
Bri  -0.053846 -0.100709 -0.132435 -0.206157 | §132 0.000523  0.000337  0.000468  0.000435
Br, -0.034307 -0.045047 -0.028955 -0.023594 | §y40 -0.00158 -0.004256 -1.05E-03 0

Brs  -0.00149  -0.002293 0 0 0152 -0.004808 -0.002652 -0.005415 -0.003924
Bia 0 -0.030204  -0.082574 -0.060301 | 6555 -0.008026 -0.007591 -0.008165 -0.008996
Brs 0122035 -0.13815 -0.150719 -0.22106 | do4o -0.001759 -0.001075 -0.005693 -2.57E-04
Bay 0016143  0.02972  0.042159  0.070304 | dos52 0.002139  0.001692  0.006675 0

Bpp  0.01831  0.013661 0.015549  0.011052 | 6342 -0.00482 -0.005143 -0.006215 -0.007964
Bas 0 0 0 0 33,52 0 -0.00043  -0.003768  -0.000345
Baa 0 0 0 0 0152 -0.005092 -0.005456 -0.00635  -0.006938
Bas  0.032573  0.042876  0.054106  0.068993 | d123 -0.002506  0.001396 0 3.14E-03

Y10 0.009329  0.011935  0.013541  0.016024 | 6133 -0.000615 -0.000395 -0.000543 -0.000569
Y11 -0.004717  -0.007873  -0.00957  -0.014127 3174,3 0.000869  0.005294  0.000459  -9.61E-05
V1,2 0 -0.001497 0 0 5175,3 0.009846  0.006583  0.011188  9.86E-03
1,3 0 0 0 8.96E-05 527373 0.013073  0.011614 0.011948  0.012671
V1,4 -0.000477  -0.00303  -0.007561 -0.005529 32,473 0.001308  0.000675  0.008277  0.00E4-00
Y15 -0.007053 -0.007677 -0.007735  -0.01235 32,5,3 -0.001289 -0.001064 -0.009523 -4.66E-05
Yo,0  0.000188  0.000251  0.000296  0.000348 33,4,3 0.007706  0.007412  0.008731  0.011019

A1 -0.000127 -0.000187 -0.000214 -0.000302 | 355 -0.001114 0 0.004648  0.00E400
9o 410E-05 0 2.66E-05 2.07E-05 | 6455 0.008022  0.008192  0.009249  0.009561
A2s 0 0 0 0 S124  0.00237 0 0.0014  0.00E+00
94 -2.60E-05 -7.79E-05 -0.000176 -0.000131 | 6134 0 0 0 0
fy5  -0.000138 -0.000156 -0.000158 -0.000251 | 6144 0 -0.002474 0 0.00E~+00
S121  0.000549 0.001053  0.001247  0.001755 | d154 -0.005788 -0.004077 -0.006638 -0.006235
0131 0 0 0 0 0234 -0.007103 -0.006111 -0.006246 -0.006539
8141 0.00072  1.38E-03  0.000566 0 82.4.4 0 0 -0.004467 0
8151 0.000666 0 0.000548 0 82.5.4 0 0 0.005018 0
0231 0.001845 0.001951  0.002329 2.70E-03 | d544 -0.004255 -0.00377 -0.004446 -0.005689
0241 0.000654 4.61E-04 1.67E-03  0.000201 | d35.4 0.000914 0 -0.002247 0
0251 -0.001146 -0.00086  -0.002054 0 0154 -0.004267 -0.004338 -0.004949  -0.00518

03,41 0.001265  0.001488  0.001908 0.00255
33,571 0.000309  0.00041 0.001396  0.000357
34,5,1 0.001273  0.001564  2.01E-03  0.002465

All parameters are statistically significant at the 10% level of significance, based on the Newey-West

robust estimates of the standard errors. The fit of the regression is R? = 0.99.



Table 5: Response surfaces for the asymptotic critical values of the M ZSG5(\°) test.

1% 2.5% 5% 10% 1% 2.5% 5% 10%
Boo 0 0 0 0 0122 0 -1.68057  -2.034615  -3.0747
Bii  -49.1033  -80.67152 -94.27681 -98.84623 | d132  4.03E-01  0.276249  0.510663  0.579879
Bia 0 0 1249052 20.9028 | §140 -1.215439 -3.085302 -6.20E-01 0
Bis 0 0 23.0744 0 d152 -3.836227 -2.058806 -4.221065 -4.01E+00
Bi4  2.918982 0 -31.38412  -3.7837 | doso  -6.37027  -4.771726  -5.320661  -4.366065

By -63.22623 -77.26193 -71.25859 -82.4666 | do4» -1.436885 -0.506785 -0.228244 -0.241011
Bpy 8784032 205504  26.39792  28.95034 | dos.  4.865784  3.309329  4.088078  3.160059
Bop 1359995  12.24087  9.484542  5.060179 | 6542 -3.466125 -3.609057 -3.347742  -3.774296
Bas  10.66119 0 0 3.414974 | 835, 0 -1.22858  -2.505554  -4.84E-01
Baa 0 2.326462 0 4519052 | 0450 -3.883586  -3.34232  -3.544715  -3.137332
Bps 2743303  39.56724  44.62572  40.67509 | 6105 -1.870192  9.48E-01  1.249212  3.239319
A10 2375973 2.195192 1999918  1.703449 | &35 -0.478586 -0.319396 -1.033132  -1.277379

Y11 4867309 -6.865216 -7.250681 -7.417863 | 6143  0.689558 3.66918 0.270516 0
Y12 2118534 1.659905  2.182285  2.477604 517573 7.50E4+00  5.136119 8.72E+00  8.090656
1,3 0.90565 0 2.109357  0.135494 527373 10.35363  6.897478  7.766915 6.068159
V1,4 0 0 -2.871627 0 52,473 1.022642 0 0 0

Y15 -2.634858 -2.940626 -2.176966 -3.451044 | o253 -6.274483  -3.896799 -6.192235  -5.130324
Yo,0  0.044459  0.053587  0.055731  0.050724 83,4’3 5.14785 5.012848  4.208394  4.743969
Y2, -1.30E-01 -0.173241  -0.169697 -0.169337 3353 -3.49E-01  0.579267  2.928145 0.25584
Ya2,2  0.068723  0.047938  0.048509  0.051411 547573 5.740102 4.77502 4.656132 4.089741

Ay 0.020546 0 0.04765 0 8124 L.6IE+00 0 0 -1.159203
94  -0.010131  -0.007096 -0.067457 -0.002892 | &1.3.4 0 0 0.509457  7.05E-01
fy5  -0.048732  -0.058498 -0.046657 -0.073174 | §144 0.00E+00 -1.645225 0 -0.023476
121 A35E-01  0.866429  0.9477  1.120894 | 0154 -4.41E+00 -3.160568 -5.134323  -4.801537
8131 0 0 0 0 S23.4 -5.830718 -3.713127 -4.264494  -3.337409
S1.41 0551608  1.045441  0.348485 0 8244 0.00E400  2.72E-01 0 0

151 0.69457 0 0413073 0513954 | Ju54  3.016158  1.752061  3.435033  2.920029
J231 162511  151E400 1700349  1.526902 | 0344 -2.81E+00 -2.632064 -2.103161  -2.40406
241 0.567561  0.298429  0.201404  0.214627 | d354  0.504965 0 -1.352122 0

827571 -1.685065 -1.231651 -1.165914 -0.806751 | d45.4 -3.071827 -2.561458 -2.508772  -2.244213

337471 1.089693  1.209827 1.25E400  1.428157

33)571 0 0.742667  0.957106 0.30942

84,5’1 1.166946 1.12E400 1.380954  1.273161
All parameters are statistically significant at the 10% level of significance, based on the Newey-West robust
estimates of the standard errors. The fit of the regression is R? = 0.99.
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Figure 1: Gaussian Local Power envelope and the Asymptotic Local Power Functions
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