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Abstract

In this paper, we propose a least-squares based procedure intended to test for cycli-
cal and/or seasonal integration against fractional alternatives in the time domain. This
approach belongs to the Lagrange-multiplier framework for long-memory series studied
in Robinson (1991, 1994), Agliakloglou and Newbold (1994), Agliakloglou, Newbold and
Wohar (1993), Tanaka (1999), Hassler and Breitung (2002, 2006) and Nielsen (2004). The
family of regression-based tests we discuss has convenient methodological advantages. It
can be easily implemented in practical settings, it is flexible enough to account for a broad
family of long- and short-memory specifications, it has power against different type of al-
ternative hypotheses, and it allows inference to be conducted under critical values which
are drawn from a standard chi-squared distribution, independently of the long-memory
parameters.

∗This version: September 2007. Please do not quote without permission from the authors.
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1 Introduction

Modelling and forecasting macroeconomic cycles as well as financial variables is at the forefront
of the applied time-series econometrics literature. In this paper, we propose a least-squares
based procedure intended to test for cyclical and/or seasonal integration against fractional al-
ternatives in the time domain. This approach belongs to the Lagrange-multiplier framework
for long-memory series studied in Robinson (1991, 1994), Agliakloglou and Newbold (1994),
Agliakloglou, Newbold and Wohar (1993), Tanaka (1999), Hassler and Breitung (2002, 2006)
and Nielsen (2004). The family of regression-based tests we discuss has convenient method-
ological advantages. It can be easily implemented in practical settings, it is flexible enough to
account for a broad family of long- and short-memory specifications, it has power against differ-
ent type of alternative hypotheses, and it allows inference to be conducted under critical values
which are drawn from a standard chi-squared distribution, independently of the long-memory
parameters.
More specifically, we discuss a test formally intended to detect cyclical long memory patterns

embedded in the autoregressive filter

(1− L)d0 (1 + L)dπ
kY

v=1

(1− 2ηvL+ L2)dv

where dl are possibly non-integer values, ηv characterize the cyclical behavior (periodicity) of the
data, and L is the conventional back-shift operator. The filter is able to capture both long-range
dependence and periodic cyclical fluctuations through the convolution of Gegenbauer processes.
These generate theoretical autocovariances that decay hyperbolically and sinusoidally, a feature
that is manifested in a number of periodic time series. Particular cases of this general setting
include pure cyclical and seasonal models, which are routinely applied to fit both economic and
non-economic variables. For instance, cyclical models have been used to explain macroeconomic
dynamics by Gray et al. (1989, 1994), Ramachandran and Beaumont (2001), Barkoulas et al.
(2001), Gil-Alaña (2001, 2004), Caporale and Gil-Alaña (2006) and Smallwood and Norrbin
(2006), among others. Recent studies focusing on non-economic variables have analyzed, for
instance, atmospheric levels of CO2 (Woodward et al., 1998), wind speed (Bouette et al., 2006),
or power demand (Soares and Souza 2006). The literature related to the seasonal models
embedded in this general framework (e.g., both integrated and fractionally integrated seasonal
models) is overwhelming.
The regression-based testing procedure we propose in this paper is intended to provide a

formal tool for pretesting hypothesis about the extent of cyclic and non-cyclic persistence in
these areas.
The remaining of the paper is organized as follows. Section 2 introduces the general setting

and discusses the set of sufficient conditions for the tests. Section 3 discusses the specific form
of the regression to be used as well as the relevant test statistics. The asymptotic distribution is
discussed in several theorems. Section 4 analyzes the finite-sample performance of the tests by
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means of Monte Carlo experimentation. Section 5 summarizes the main conclusions. Finally,
the mathematical proofs of the main results are collected in a technical appendix.
In what follows,⇒, p→,→ denotes weak convergence in distribution, convergence in proba-

bility, and convergence of a series of real numbers, respectively, as the number of observations
is allowed to diverge. The conventional notation o (1) (op (1)) is used to represent a series of
numbers (random numbers) converging to zero (in probability), while O (1) , (Op (1)) denotes
a series of numbers (random numbers) that are bounded (in probability). The notation [x] is
used for the integer value of the real-valued number x, and I(·) is the indicator function that
takes value equal to one if the condition in the subscript is fulfilled and zero otherwise. Finally,
vectors and matrices are denoted through bold letters.

2 The general fractionally integrated model

Let ξλ (L; δ) be a Gegenbauer polynomial in the lag operator defined as follows,

ξλ (L; δ) = (1− 2 cosλL+ L2)δ (1)

where the long-memory parameter δ can take non-integer values and controls the extent of
time-series dependence. The parameter λ is a so-called Gegenbauer frequency in [0, π] , and
controls the periodicity of the resulting time series.
Define the following generalization of (1) , given the set of long-memory parameters δ =

(δ0, , δ1, ..., δk, δπ)
0, and the vector λ =(λ1, ..., λk) ,

∆λ (L; δ) ≡ (1− L)δ0 (1 + L)δπ
kY

v=1

ξλv (L; δv) (2)

such that 0 < λ1 < · · · < λk < π, and k ≥ 1. Denote γ = (0, λ1, .., λk, π)
0 as the vector

collecting all the frequencies involved, whose elements we denote as γs, s = 1, ..., k + 2. The
resultant filter allows for multiple cyclical components on the seasonal frequencies γs, s > 1,
as well as a long-run trend at the zero frequency. Furthermore, this model encompasses quite
different types of models. Major examples for empirical purposes include pure cyclical models
and fractionally integrated unit-root models (which arise by restricting δ), and pure seasonal
models (which arise by restricting λ). We shall briefly discuss the properties of these restricted
models at the end of this section.
We consider that the observable process, {xt, t = 1, ..., T}, admits the following character-

ization under the null hypothesis
∆̄λ (L; δ)xt = εt (3)

where ∆̄λ (L; δ) is a possibly restricted version of ∆λ (L; δ) in the terms discussed previously,
and εt is a covariance stationary noise process with spectral density that is bounded and
bounded away from zero at all frequencies. In the most general case, ∆̄λ (L; δ) = ∆λ (L; δ) , we
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will say that xt is generated by a General Fractionally Integrated process of order δ, denoted
as xt ∼GFI(δ) .
For empirical purposes, the main interest lies in testing whether δ = d, with d ∈Rn, 1 ≤

n ≤ k + 2, is specified a priori, against the alternative for which the order of integration is d∗,
d∗ = d+ θ, θ 6= 0. Thus, the hypothesis of interest is generally stated as

H0 : θ = 0, (4)

against H1 : θ 6= 0. The set of assumptions that we shall consider throughout the paper (as-
sumption A) is presented and discussed below.

Assumption A :

i) The observable process {xt, t = 1, ..., T} is generated by∆γ (L;d)xt = εtI(t>0), with∆γ (L;d)
defined in (2) , d being a possibly non-integer vector in Rm, m ≡ k + 2, and γ = ∈ [0, π] .
ii) εt ∼ iid (0, σ2) , and E (ε4t ) = κ <∞.

Some comments follow. We consider the most general case under the null hypothesis, which
is given by xt ∼GFI(d) . Simpler specifications (e.g., pure seasonal models) arise considering
restricted versions of∆λ (L;d)xt, i.e., assuming ∆̄λ (L;d)xt = εt with d ∈ Rm∗, 1 ≤ m∗ < k+2.
Condition i) also implies that xj = εj = 0 for any j ≤ 0, i.e., we consider the realizations from
a truncated stochastic process; see Marinucci and Robinson (1999), Robinson (2004) for a
discussion. The i.i.d. assumption in ii) is stronger than necessary and can considerably be
weakened by the martingale-difference sequence (MDS) hypothesis which allows, for instance,
for time-varying conditional variance patterns, and serves as a basis for short-run dynamics.
We shall analyze this possibility later on. Finally, we do not require normality, since this is not
essential to derive the asymptotic theory, but we note that efficiency of Gaussian-score based
procedures would only be attainable under that restriction.

2.1 Restricted long-memory models

It is worth referring to some leading models nested in (2). First, pure cyclical models arise by
setting δ0 = δπ = 0, which leads to

∆̄λ (L; δ) ≡
kY

v=1

ξλv (L; δv) . (5)

When k = 1, xt is said to be generated by a GARMA model, whereas k > 1 leads to the
so-called k-factor GARMA models; see Gray et al. (1996) and Ramachandran and Beaumont
(2001) for a discussion of the statistical properties of these models. Further generalizations (for
instance, allowing for stationary short-run dynamics) are able to encompass both ARMA and
ARFIMA models as particular cases.
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Pure seasonal models arise by restricting both the dimension and the value of λ aiming
to relate its frequencies to the periodicity of the data, say S. For instance, if S is even, then
k = [S/2]− 1, λv = 2πv/S, v = 1, ..., k, thereby leading to

∆̄λ (L; δ) ≡ (1− L)δ0 (1 + L)δπ
[S/2]−1Y
v=1

ξλv (L; δv) (6)

with δ ∈ Rk+2. When S is odd, the component (1 + L)dπ , which corresponds to a cycle of two
periods, is simply omitted and the model has [S/2] parameters. A special case is ∆̄λ (L;1) =¡
1− LS

¢
, i.e., the well-known seasonal random-walk filter. By allowing non-integer values in

δ, xt is said to be generated by a seasonal fractionally integrated process of order δ; see, among
others, Hassler (1994) and references therein.
Finally, the well-known fractional unit root model also arises after removing all the terms

related to the non-zero frequencies, i.e., by considering ∆̄λ (L; d0) = (1− L)δ0 .

3 Testing procedures: asymptotic analysis

We start our analysis by introducing notation and defining some important variables in this
context. The first definition introduces the weighting scheme that, for any frequency α ∈ [0, π],
allows us to construct partial sum processes that convey statistical information about the
order of integration at the α frequency under the alternative. The second and third definitions
introduce the way these processes are computed, and some relevant vector notation, respectively.

Definition 3.1. For all j ≥ 1 and α ∈ [0, π] , define the weighting variable ωj (α) as follows,

ωj (α) =

⎧⎨⎩
1/j, if α = 0
2j−1 cos (jα) , if α ∈ (0, π)
(−1)j /j, if α = π

. (7)

Definition 3.2. Given the real-valued stochastic process {xt, t ≥ 1} , the filtered series, bεt,
which obtains under H 0 : xt ∼GFI (d) , is determined as

bεt = ∆λ (L;d)xt. (8)

Also, given {bεt, t ≥ 1} and some α ∈ [0, π] , define the (truncated) partial sum process bε∗α,t−1 as
bε∗α,t−1 = t−1X

j=1

ωj (α)bεt−j. (9)
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Definition 3.3. Given γ ≡ (0, λ1, ..., λk, π)
0 , define bε∗γ,t−1 = ³bε∗γ1,t−1, ...,bε∗γk+2,t−1´0 , i.e.,

bε∗γ,t−1 = t−1X
j=1

ωj (γ)bεt−j, with ωj (γ) =
¡
ωj (γ1) , ..., ωj

¡
γk+2

¢¢0
and where each element is as

defined in Definition 3.1.

Following Robinson (1991, 1994b), Agiakloglou and Newbold (1994), Tanaka (1999), and
Hassler and Breitung (2002, 2006), we can define a general testing strategy based on the score
principle which allows us to carry out individual or joint inference in the general fractionally
integrated context. In particular, assume that the researcher wants to test a hypothesis in-
volving n, 1 ≤ n ≤ m, long-memory parameters of the model ∆γ (L;d) xt = εt. Without
loss of generality, and only for simplicity of notation, we assume that these correspond to the
first n elements in d, related to the first n frequencies in γ. Recall that the null hypothesis
H0 : θ = 0, and that the alternative hypothesis implies the partition θ =

¡
θ0∗n ,0

0
m−n

¢0
, with

θ∗n = (τ 1, ..., τn)
0 , and some τ s 6= 0.

Proposition 3.1. Given {xt, t = 1, ..., T} , the null hypothesis H0 : xt ∼GFI(d) , for d ∈ Rm,
can be tested against the alternative H1 : xt ∼GFI(d+ θ), with θ =(θ∗n,0m−n)

0 , θ 6= 0, and
1 ≤ n ≤ m, through the squares of the t-statistic for the joint significance of the estimated
{φs}ns=1 parameters , say Υ(n), in the auxiliary regression:

bεt = nX
s=1

φsbε∗γs,t−1 + et (10)

i.e.,

Υ(n) =

"
TX
t=2

ε̂t
¡bε∗γ,t−1¢

#0 "bσ2e TX
t=2

¡bε∗γ,t−1bε∗0γ,t−1¢
#−1 " TX

t=2

ε̂t
¡bε∗γ,t−1¢

#
, (11)

with bσ2e being the LS estimate of the variance of the residuals et, and bεt and bε∗γ,t−1, as given in
Definitions 3.2 and 3.3, respectively.

Theorem 3.1. Let Assumption A hold true, and let Υ(n) be the test statistic defined previously.
Under H0 : θ = 0, and as T →∞, it follows that

Υ(n) ⇒ χ2(n)

where χ2(n) stands for a Chi-squared distribution with n degrees of freedom.

Corollary 3.1. Individual inference on the long-memory parameter related to the s-th fre-
quency, 1 ≤ s ≤ m, is embedded in Proposition 3.1. Under the alternative, θ is now restricted
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to take value τ 6= 0 in its s-th entry, and zero otherwise. In particular, the auxiliary regression
reduces to bεt = φs bε∗γs,t−1 + es,t,

and the relevant test statistic, say Υγs , is the squared t-statistic for the significance of the
estimate of φs, i.e.,

Υγs =

Ã
TX
t=2

bεtbε∗γs,t−1
!2Ãbσ2s,e TX

t=2

³bε∗γs,t−1´2
!−1

. (12)

Corollary 3.2. Similarly, it could be of interest to test for the restricted joint hypothesis
θ∗n = (τ , ..., τ )0 = τ10n, τ 6= 0. This is the case, for instance, when analyzing the suitability
of so-called rigid models, which assume homogeneity in the order of fractional integration, see
Porter-Hudak (1990) and Hassler (1994). Since this implies φl = φ, l = 1, ...,m, the auxiliary
regression reduces to bεt = φ bε∗γ,t−1 + et,

with bε∗γ,t−1 ≡ nX
l=1

bε∗γl,t−1, and the relevant statistic, say Ῡ(n), is now given by

Ῡ(n) =

Ã
TX
t=2

bεtbε∗γ,t−1
!2Ãbσ2e TX

t=2

¡bε∗γ,t−1¢2
!−1

. (13)

Then, under Assumption A, and as T →∞, it holds that

Υφ,s ⇒ χ2(1)

Ῡ(n) ⇒ χ2(1)

because only one restriction is implied.

Remark 3.1. The tests are asymptotically equivalent to the frequency domain LM tests studied
in Robinson (1994), and the time domain LM test considered in Tanaka (1999) —restricted to
the fractional unit root model. In our case, the Fisher Information matrix is estimated as
the outer product of gradients. The tests are also asymptotically equivalent to the general
likelihood-based tests in Nielsen (2004), discussed in the context of maximum-likelihood model
estimation. The LM regression-based test in Breitung and Hassler (2002), focused on the
fractional unit root model, ∆̄λ (L; δ) = (1− L)d0 , arises as a restricted case in our context; see
also Nielsen (2005), Hassler and Breitung (2006), and Demetrescu,Kuzin and Hassler (2007).
It is worth mentioning that, as remarked in Nielsen (2004), the experimental simulations in
Tanaka (1999), and Breitung and Hassler (2002), show that in finite samples the time domain
fractionally-integrated unit-root tests tend to be superior to the frequency domain test, both
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in size and power behavior, so a similar performance is likely to be observed in a more general
setting as well.

Remark 3.3. As discussed in Breitung and Hassler (2002), the auxiliary regression centered
on the zero frequency, bεt = φ0 bε∗0,t−1+ et, is reminiscent of the Dickey-Fuller regression and the
Wald-test in Dolado, Gonzalo and Mayoral (2002). Meaningful difference arise, nevertheless,
since in the DF test the regressor is FI(0) under the alternative, whereas bε∗γ1,t−1 is FI(d+ τ)
owing to the different types of weights used in constructing these variables. Similarly, for pure
seasonal models, the general auxiliary regression in Proposition 3.1. is reminiscent of the HEGY
regression, in the sense that the regressors bε∗γs,t−1 are weighted linear combinations of lags of
ε̂t related to a specific frequency. Further differences arise in this case, because regressors in
the HEGY context are ensured to be mutually orthogonal by construction, whereas the LM
regressors in (10) are not. This feature warns against estimating the auxiliary regression (10)
with n parameters, and then testing a hypothesis on the basis of this which involves a smaller
subset of n1 parameters (as it is nevertheless possible in the HEGY test).

Remark 3.5. We assume that the vector of frequencies γ is known. Indeed, this is the case for
pure seasonal models, but in general terms it may be restrictive when analyzing cyclical models
by means of Gegenbauer polynomials. Several approaches with high rate of convergence have
been proposed to estimate consistently Gegenbauer-frequencies in the semi-parametric litera-
ture; see, among others, Yajima (1996), Giriatis, Hidalgo, and Robinson (2001), Hidalgo and
Soulier (2004), and Hidalgo (2005). In any case, when using sample estimates for subsequent
inference, it should be noticed that the performance of the test statistics may be subject to the
potential distortions that often arises as a result of (small-sample) biases when inferring the
unknown elements of γ.

Example: Consider the pure seasonal quarterly case to illustrate the general testing principle
we have discussed. Assume that the interest lies in testing the suitability of the seasonal
unit root model, (1− L4) xt = εt, against a more general case in which the order of seasonal
integration is possibly a non-integer value 1 + τ , τ 6= 0, but believed to be common at all
frequencies, i.e., (1− L4)

d+τ
xt = εt. Therefore, we have γ = (0, π/2, π)0 , m = n = 3, and

the testing procedure for these rigid models is that described in Corollary 3.2. Therefore, we
first compute {bεt} by differencing the series under the null hypothesis, thereby obtaining bεt =
xt − xt−4, and then compute the regressor bε∗γ,t−1 as discussed, i.e.,bε∗γ,t−1 = bε∗0,t−1 + bε∗π/2,t−1 +bε∗π,t−1

=
t−1X
j=1

Ã
1

j
+
(−1)j

j
+
2 cos (jπ/2)

j

!bεt−j = t−1X
j=1

bεt−4j
j

with bεt = 0 for all t ≤ 0. Note that the resulting weighting scheme, (j−1L4) , corresponds to
the expansion of log[(1− L4)] , which by construction ensures power against quarterly seasonal
fractional integration.
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3.1 Short-memory dynamics

Assumption A imposes the particularly restrictive condition that εt ∼ iid(0, σ2). A more
realistic approach allows for weakly dependent errors in the model. In particular, we require
(say, Assumption A∗) the observable time series {xt, t = 1, ..., T} to be a realization of the
stochastic process:

∆λ (L;d)xt = εtI(t>0), t = 1, ..., T

α (L) εt = ut (14)

where α (L) = 1−
Pp

j αjL
j, p ≥ 0, such that α (z) has all its roots outside of the unit circle,

and {ut} is a MDS with respect to Ft, Ft = σ (uj : j ≤ t) such that E (|ut|4+ν) <∞ for some
v > 0.
More generally, for practical purposes, the short-run dynamics of the process may be char-

acterized by any stationary and invertible general linear process, εt =
P∞

s=0 bjut−j, under
conditions which ensure that the AR(p) model is a good approximation for a finite p of the
underlying AR representation of the true model. Demetrescu, Kuzin and Hassler (2007) discuss
these conditions, which require only mild summability restrictions on the coefficients {bj} , and
the finiteness of certain high-order cumulants. The value of p may then be inferred through
standard lag-selection methods.
We consider two alternative ways to deal with short-run dynamics. The first one is similar

to Agiakloglou and Newbold (1994) and Breitung and Hassler (2002), and is based on the
estimated residuals from an appropriate autoregression. The second approach is based on the
same strategy as in Demetrescu et al. (2007), and considers inference in a suitably augmented
regression framework.

Proposition 3.2. Given bεt = ∆λ (L;d)xt, let {ũt} be the least-squares residuals from the p-th
order autoregression:

bεt = α1bεt−1 + ...+ αpε̂t−p + ũt, t = p+ 1, ..., T. (15)

Then, the null hypothesis can be tested, under Assumption A∗, through the squared statistic for
the joint-significance of the {φ∗l }

k+2
l=1 estimates, l = 1 ..., n, in the following regression:

ũt =
nX
l=1

φ∗l bu∗γs,t−1 + pX
k=1

γkε̂t−k + et (16)

where

bu∗γs,t−1 ≡ t−p−1X
j=1

ωj (γs) ũt−j. (17)

Proposition 3.3. Alternatively, the p-th order augmented regression in Proposition 3.1., i.e.,
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bεt = nX
l=1

φlbε∗γs,t−1 +
Ã

pX
k=1

ζkbεt−k
!
+ et, (18)

ensures asymptotic invariance against stationary short-run dynamics in the the (squared) test
statistic for the joint significance of {φ∗l }

k+2
l=1 . The test statistic uses in this case White’s cor-

rection to estimate the asymptotic covariance matrix.

Theorem 3.2. Let Υ∗(n)a and Υ
∗(n)
b be the squared test statistics as described in Proposition

3.4 and 3.5. Then, under Assumption A∗, H 0 : θ = 0, and as T is allowed to diverge, it follows
that:

Υ∗(n)a ⇒ χ2(n)

Υ
∗(n)
b ⇒ χ2(n)

Proof. See appendix.

Remark 3.6. Demetrescu et al. (2007) analyze the performance of data-dependent methods
to determine the order of augmentation, p, in finite samples. The rule of thumb proposed by
Schwert (1989), which sets p =

£
c(T/100)1/4

¤
, where c is a positive constant, shows a relatively

good performance in finite-samples over several alternative approaches.

Remark 3.7. Note that we have focused on the model ∆λ (L;d) (xt − µt) = εtI(t>0), by
allowing different dynamics in εt, and restricting µt = 0. As commented in Breitung and Hassler
(2002), the simplest way to deal with non-zero deterministic patterns, µt 6= 0, is to detrend xt
prior to computing the relevant test statistics. This does not affect the limit distributions of
the relevant statistics; see the discussion in Robinson (1994b).

4 Finite-sample analysis

In this section we address the empirical properties of the regression-based LM test statistic in
finite samples. The case for the fractionally-integrated unit root process, ∆̄λ (L; δ) = (1− L)d0 ,
has been considered previously in Breitung and Hassler (2002) and Nielsen (2004), showing
the good performance of the LM test, both in absolute terms and in relation to alternative
procedures. We therefore focus on cyclical and seasonal models through different specifications
of ∆̄λ (L; δ), as our experiment study contributes to the better understanding of the LM test out
of the fractionally-integrated unit root context. We conduct three Monte Carlo experiments.
First, we first consider the simple pure cyclic model,

(1− 2 cosλsL+ L2)d+θxt = εt
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in order to analyze the empirical size and power of Υλs, asymptotically distributed as χ(1),
when testing against d = 1 with θ in [−0.3, 0.3] . We consider 5000 replications with sample
sizes T = {100, 250}, and εt ∼ iidN (0, 1). The Gegenbauer frequency is set λs = sπ/10, with
s = 1, ..., 9. The rejection frequencies for a nominal significance level of 5% are shown in Table
1.

[Insert Table 1 around here]

The test shows approximately correct sizes even in small samples, and only minor differences
following no particular pattern arise across the frequencies λs considered. For non-zero vales
of θ, we observe several interesting features in the empirical power functions. First, given λs
and T , power tends to exhibit a symmetric U-shape figure around the π/2 frequency, which is
more evident for small values of |θ|. Hence, the larger the difference |λs − π/2| , λs ∈ (0, π) ,
the more powerful the testing procedure seems to become. The dependence on the frequency
the test is related to is not surprising, since the variance of the regressor (and hence, the
signal-to-noise ratio and, eventually, the power of the test) depends on the specific frequency
λ, and more generally, on γ; see Appendix B for further technical details. Furthermore, if we
compare the evidence obtained forΥλ to the experimental results in Breitung and Hassler (2002)
for the zero-frequency case [see Table 1, pp.176], the power observed on the latter frequency
is approximately of the same order as that for λ = π/2. This suggest that, everything else
equal, fractionally-integrated dynamics are generally much more easily detected in the cyclical
framework than in the zero-frequency context. Dealing with the non-zero frequency also has
other benefits in terms of power. For fixed T and λs, the power functions tend to be symmetric
around θ = 0, since only the size of θ − 0, and not its sign, seems to drive the probability of
rejection. This does not seem to be the case for the zero-frequency case analyzed in Breitung
and Hassler (2002), where the LM test is prone to reject more easily if θ < 0. Finally, power is
largely enhanced for T = 250, thus showing the consistency of the testing procedure even for
finite small samples.
Second, we consider a more general two-factor cyclical model given by,

(1− 2 cosλ1L+ L2)d1+θ1(1− 2 cosλ2L+ L2)d2+θ2xt = εt.

We want to address the ability of unrestricted joint test Υ(2), distributed asymptotically as
χ(2), as well as the joint restricted test Ῡ

(2) and the individual tests Υλ1 and Υλ2, distributed
asymptotically χ(1), to detect fractionally-integrated dynamics. As before, we set d1 = d2 = 1,
and θ1, θ2 in [−0.3, 0.3] , considering 5000 replications with sample length T = {100, 250}, and
εt ∼ iidN (0, 1). The joint test Υ(2) is expected to reject the null if fractional integration is
present in, at least, some of the frequencies involved, while the individual tests should only
reject when fractional integration occurs at the frequency they are related to. The restricted
joint test Ῡ(2) should be more efficient than Υ(2) when the restriction θλ1 = θλ2 is true, but it
is expected to exhibit less comparative power to reject the false null otherwise.
In view of the previous experiment, we expect the power function to depend on the value

of γ = (λ1, λ2)
0 . We set λ1 = 0.15 ≈ π/20, corresponding to the estimated frequency of the
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business cycle by the NBER, and consider what seems to be the most unfavorable frequency for
the tests, given by λ2 = π/2, which also corresponds to one of the harmonics of the quarterly
and monthly seasonality. For frequencies λ ∈ (0, π) away from π/2, further simulations (not
reported here) showed a much better statistical performance both in size and power. The
rejection frequencies for a nominal significance level of 5% are shown in Table 2.

[Insert Table 2 around here]

Several interesting features emerge from this experiment. First, we comment the results
for the individual tests Υ0.15 and Υπ/2. When d1 = 1, and d2 = 1 + θ2, both tests have
approximately correct size when θ2 is close to zero. However, when |θ2| departures from the
origin, Υ0.15 may show size departures with respect to the nominal size, which are particularly
important when θ2 > 0. This is also true for the Υπ/2 test when d2 = 1 and d1 = 1 + θ1, now
noting massive size distortions for large θ1 > 0. These small-sample distortions are originated
in residual autocorrelation in bεt, and can be considerably reduced (and even eliminated) by
augmenting the auxiliary regression with p̄ lags of the dependent variable. Table 1 shows, for
p̄ = 2, that augmentation is effective to remove this small-sample distortion, particularly in the
region θ > 0 in which the effect was more pervasive. As usual, empirical size is corrected at
the expenses of power reductions, which in our context can be large for the alternatives θ > 0.
Finally, it is interesting to remark that, the empirical size approaches the asymptotic nominal
level, the power of the Υπ/2 test is slightly smaller than observed when the data generating
process only includes one seasonal factor. A similar feature can be observed in the case of Υ0.15.
In relation to the joint test statistics Ῡ(2) and Υ(2), we observe that the restricted test is

more powerful than the latter when the restriction θ1 = θ2 is true, but it is also considerably
less efficient in the general context θ1 6= θ2, particularly for small values of |θ|. Both tests tend
to reject more easily the (false) null when fractional integration is present at the frequency 0.15,
i.e., in the frequency for which the magnitude |λs−π/2 | is larger. For instance, if d1 = 1− 0.1
and d2 = 1, the power of Ῡ(2) and Υ(2) is, approximately, 39.8% and 48.7%, respectively. In
contrast, for d1 = 1 and d2 = 1 − 0.1, the power is only 8.2% and 16.1%. When both θ1 and
θ2 move away from the origin, the power of the joint tests, particularly that of Υ(2), largely
increases. We note that the power of Υ(2) seems to be symmetric for the set of frequencies
considered, whereas Ῡ(2) tends to reject more easily when θ1 > 0 and θ2 < 0 than in the
converse case. For instance, the power for θ1 = 0.3 and θ2 = −0.3 is almost 100%, whereas it is
around 25% for θ1 = −0.3 and θ2 = 0.3. In both cases, the power of the unrestricted test Υ(2)

is almost 100%. Finally, and as in the case of the one-factor model simulation, considering a
larger sample, T = 250, leads to a considerable enhancement in the statistical properties of all
the tests. We do not present these results to save space, but these are available upon request.
The last experiment considers again the two-factor filter ∆̄λ (L; δ) = (1 − 2 cosλ1L +

L2)d1+θ1(1 − 2 cosλ2L + L2)d2+θ2 now allowing for stationary and invertible ARMA(1,1) dy-
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namics in the error term, i.e., we consider the model

∆̄λ (L; δ)xt = ut

(1− aL)ut = (1− bL) εt,

under the restriction |a| < 1, |b| < 1. As in Demetrescu et al. (2007), we set a = 0.5 and
b = −0.5 and consider the lag-selection rule p =

£
4(T/100)1/4

¤
in the augmented auxiliary

regressions. The rejections frequencies for the individual and joint tests are shown in Table 3.

[Insert Table 3 around here]

The general conclusions that arise for the weakly-dependent case are similar to those observed
for the i.i.d, although we observe several quantitative changes. Augmentation proves able to
control the empirical size correctly for all the tests, and only a small undersizing effect can be
observed in our simulations. However, and as shown in previous literature, ensuring a correct
empirical size against general ARMA dynamics through augmentation in particularly small
samples, as the one considered here, comes usually to the expense of potentially large reductions
in power in relation to the i.i.d. case. This pervasive effect has been widely documented in the
unit-root literature, where augmentation of the Dickey-Fuller regression is probably the most
widely used procedure in applied settings. In fact, the power of the individual and the joint
tests shows figures similar in magnitude to those observed in Demetrescu et al. (2007) for the
fractionally integrated unit root case. By sharp contrast to the unit-root case, fortunately, power
improves considerably faster in the seasonal context as more observations are available. For
instance, for the ARMA model assumed, the power of Υ(2) is not larger than 39% in the range
of θ considered when only 100 observations are available, corresponding to θ∗ = (−0, 3, 0.3)0.
For a larger sample of T = 500,, everything else equal, power increases up to 98%. Similarly,
Ῡ(2) has a peak of approximately 30% for T = 100 when θ1 = θ2 = −0.3, which dramatically
increases up to 99% for a sample of 500 observations. Finally, Υ0.15 and Υπ/2 have power of
43% and 28% under θ∗ when T = 100 , respectively, whereas for T = 500 power reaches 95%
and 86%, respectively.

5 Conclusion

In this paper, we have considered a regression-based LM test in the time-domain that allows us
to test for fractionally-integrated patterns against integer integration in general cyclical models
defined on a number of seasonal (and non-seasonal) frequencies. The tests involving single or
multiple parameters can be computed from simple least-squares regressions, and are asymptot-
ically equivalent to the frequency-domain LM test in Robinson (1994) and the likelihood-based
tests in Nielsen (2004), for which the relevant critical values obtain from a χ2 distribution with
many degrees as the restrictions being tested, and with independence of the order of integra-
tion. Augmented versions of these tests are asymptotically robust against weakly-dependent

13



errors following unknown patterns under quite general conditions, and exhibit good statistical
performance in samples of moderate size. This makes the general regression-based LM testing
strategy a valuable tool for preliminary data analysis in applied settings in which the validity
of parsimonious, yet potentially restrictive hypothesis related to the order of integration of the
raw data, may be formally addressed in an intuitive and straightforward way.
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Appendix

A. Lagrange Multiplier

The Gaussian log-likelihood function for β = (d∗, σ2)0 , conditional on λ and the set of infor-

mation xT = {xt, t = −∞, ..., T}, with initial observations xt = 0, t ≤ 0, is given by

L(β|xT ) = −
T

2
log(2πσ2)− 1

2σ2

TX
t=1

[∆γ (L;d)xt]
2 (A.1)

and partial derivative

∂L(β|xT )
∂θ

¯̄̄̄
H0:θ=0

= − 1
σ2

TX
t=1

εt

µ
∂εt
∂θ

¶¯̄̄̄
H0:θ=0

= − 1
σ2

TX
t=1

εt log [∆λ (L;1)] εt

= − 1
σ2

TX
t=1

εt

Ã
log [1− L] + log [1 + L] +

kX
v=1

log
£
ξλv (L; 1)

¤!
εt

=
1

σ2

TX
t=1

εt

k+2X
l=1

( ∞X
j=1

ωj (γl)L
jεt

)
(A.2)

with ωj (γl) , l = 1, ..., k + 2 given in Definition 3.1. Under Assumption A, this expression
reduces to

∂L(β|xT )
∂θ

¯̄̄̄
H0:θ=0

=
1

σ2

TX
t=1

εt

k+2X
l=1

(
t−1X
j=1

ωj (γl) εt−j

)
(A.3)

and after recalling that ε∗γl,t−1 =
t−1X
j=1

ωj (γl) εt−j and ε∗t−1 =
k+2X
l=1

ε∗γl,t−1, we have that

∂L(β|xT )
∂θ

¯̄̄̄
H0:θ=0

=
1

σ2

Ã
TX
t=1

εtε
∗
t−1

!
. (A.4)

which serves as the basis for the test statistics considered in the main text.
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B. Technical proofs

Before proving Theorem 3.1 and 3.2., we first introduce in a definition the limit expressions

which characterize the asymptotic variances and covariances of the partial sum processes, and

discuss two useful lemmas.

Definition B.1. For any λ ∈ [0, π] , let

ψ (λ) = lim
T→∞

TX
j=1

ω2j (λ) .

Straightforward calculus shows ψ (λ) = π2/6, if λ = {0, π} , and ψ (λ) = 2
¡
π2/3− πλ+ λ2

¢
,

otherwise. Similarly, given λn, λm ∈ [0, π], λn 6= λm, let

ψ (λn, λm) = lim
T→∞

TX
j=1

ωj (λn)ωj (λm)

Note that |ψ (λn, λm) | <∞ and, in particular,

ψ (λn, λm) =

⎧⎪⎨⎪⎩
−ψ (λm) /2 if λn = 0, λm = π¡
ψ (λm)− λ2m

¢
/2 if λn = 0, λm ∈ (0, π)¡

λ2m − ψ (λm)
¢
/4 if λn = π, λm ∈ (0, π)

,

where if λn,λm ∈ (0, π) , then

ψ (λn, λm) = 2π/3− π (λn + λm + |λn − λm|)
+
¡
(λn + λm)

2 + (|λn − λm|)2
¢
/2.

Definition B.2. Given the vector of ordered frequencies γ ≡ (0, λ1, ..., λk+2, π)0 , let ωj (γ) =

(ωj (0) , ωj (λ1) , ..., ωj (π))
0 , denote Γγ = limT→∞

PT
t=1ωj (γ)ωj (γ)

0 , i.e.,

Γγ =

⎛⎜⎜⎜⎜⎝
ψ (0) ψ (0, λ1) ... ψ (0, π)

ψ (0, λ1) ψ (λ1) ... ψ (λ1, π)
....

...
. . . .

...

ψ (π, 0) ψ (π, λ1) ... ψ (π)

⎞⎟⎟⎟⎟⎠ ,

whit Γγ <∞ being a symmetric definite-positive matrix for γ ∈ [0, π] which admits the Cholesky
decomposition, say Γγ = Λ0

γΛγ .
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Lemma B.1. Given bεt = ∆λ (L;d)xt and γ = (γ1, .., γk+2)
0, consider bε∗γ,t−1 = ³bε∗γ1,t−1, ...,bε∗γk+2,t−1´0 as

given in Definition 3.3. Then, as T →∞, and under Assumption A :

i) bεt = εt.

ii) E
¡bε∗γ,T¢ = 0, and E

¡bε∗γ,Tbε∗0γ,T¢ = σ2Γγ .

iii) Denote Im the identity matrix in Rm. Then,

1

σ2
√
T

Ã
Λ−1γ

TX
t=2

bεt ¡bε∗γ,t−1¢
!
⇒ N (0, Im) .

Lemma B.2. Denote ΩT = T−1
TX
t=2

¡bε∗γ,t−1bε∗0γ,t−1¢ and let bσ2e the variance from the least-

squares residuals. Then:

i) ΩT
p→ σ2Γγ.

ii) bσ2e p→ σ2.

Proof of Lemma B.1.
Part i) is obvious under Assumption A, while the proof of ii) is immediate by taking expecta-
tions and noting E (εtεj) = σ2 for all t = j, and zero otherwise. Part iii) states a multivariate

invariance principle for the partial sum process Sγ,T ≡
PT

t=2bεtbε∗γ,t−1.We use the short-notation
ωj = ωj (γ) and note that

TX
t=2

bεtbε∗γ,t−1 =
TX
t=2

εt

Ã
t−1X
j=1

ωjεt−j

!
=

T−1X
j=1

ωj

(
TX

t=j+1

εtεt−j

)

=
T−1X
j=1

ωj {Zj} =
T−1X
j=1

Z∗γ,j, say.

Them-dimensional sequence
©
Z∗γ,j,Gj

ª
, with Gj = σ (Zl : l ≤ j) , is a MDS, because E

¡
Z∗γ,j

¢
=

0 and E
¡
Z∗γ,j|Gj−1

¢
= 0 for all j. Then, as T is allowed to diverge, the desired conver-

gence follows directly from the Central Limit Theorem (CLT) for MDS (Hall and Heyde

1980). This in turns requires verifying some conditions, namely, (C1) T−1
¡
Sγ,TS

0
γ,T

¢ p→ σ4Γγ;

(C2) T−1
TX
t=1

E
³
VjI(|Z∗γ,j |>�

√
T)|Gj−1

´
= op (1) for ² > 0; and (C3) T−1

TX
j=1

E (Vj|Gj−1)
p→ σ4Γγ,

where Vj ≡ Z∗γ,jZ∗0γ,j.
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To show that C1 holds, first note that {Zj,Gj} is also a MDS such that E (ZjZs) = σ4 (T − j)

for all j = s, and 0 otherwise. Hence, T−1E
¡
Sγ,TS

0
γ,T

¢
= σ4

TX
j=1

£
ωjω

0
j

¤
(1− j/T ) → σ4Γγ

as T diverges because j
¡
ωjω

0
j

¢
= O (1/j) , so the weighting scheme ωj provides squared-

summability which in turn ensures (Hannan, 1970) limT→∞ T−1
TX
j=1

Sγ,TS
0
γ,T

p→ σ4Γγ. To verify

C2, write Z∗γ,j =
¡
Z∗1,j, ..., Z

∗
m

¢0
, and note that the conditional Lindeberg condition must hold

on all the entries of the matrix Vj, corresponding to the partial sums of variance terms
©
Z∗2l,j
ª
,

l = 1, ...,m, and the cross-products
©
Z∗n,jZ

∗
m,j

ª
, n 6= m. In order to save space, we show the

proof for the diagonal elements
©
Z∗2l,j
ª
and omit the cross-product case, as it follows along the

same lines.

For any 1 ≤ l ≤ k + 2, Cauchy-Schwartz’s inequality shows

E
³
Z∗2l,j I(|Z∗l,j |>�

√
T)|Gj−1

´
≤
∙
E
¡
Z∗4l,j |Gj−1

¢
E

µ³
I(|Z∗l,j |>�

√
T)

´2
|Gj−1

¶¸1/2
.

Since E (ε4t ) = κ <∞, the first expectation on the right-hand side is

E
¡
Z∗4l,j |Gj−1

¢
= ω4j (γl)E

¡
Z4j |Gj−1

¢
= ω4j (γl)

Ã
κ

T−jX
t=1

ε4t + 6σ
2

T−jX
t=1

ε2t

!
+ op (T )

= ω4j (γl) (RT−j) , say.

For the second expectation term, the properties of conditional expectations and Chebyshev’s

inequality yield

E

µ³
I(|Z∗l,j |>�

√
T)

´2
|Gj−1

¶
= Pr

³
|ωj (γl)Zj| > �

√
T |Gj−1

´
= Pr

Ã
|Zj| >

�
√
T

|ωj (γl) |
|Gj−1

!
≤

ω2j (γl)σ
2

�2T

T−jX
t=1

ε2t .
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Hence,

T−1
TX
j=1

E
³
Z∗2j I(|Z∗j |>�

√
T)|Gj−1

´
≤ σ

�
√
T

TX
j=1

ω3j (γl)

(
RT−j

T

T−jX
t=1

ε2t/T

)1/2
+ op (1)

≤ σ

�
√
T

TX
j=1

ω3j (γl)

(
RT

T

TX
t=1

ε2t/T

)1/2
+ op (1)

≤ σ2
√
κ2 + 6σ2

�
√
T

TX
j=1

ω3j (γl) + op (1)

= op (1)

because limT→∞

TX
j=1

ωp
j (γl) = O (1) for all p ≥ 2, and limT→∞RT/T = κ2 + 6σ4.

Finally, to show condition C3, note that

T−1
TX
j=1

E (Vj|Gj−1) = σ2T−1
TX
j=1

£
ωjω

0
j

¤ÃT−jX
t=1

ε2t

!
→ σ4Γγ + o (1)

where the last part follows by noting
T−jX
t=1

E (ε2t ) = σ2 (T − j) , and again, squared-sumability

leads to T−1
TX
j=1

E (Vj|Gj−1)
p→ σ4Γγ. Therefore, conditions C1, C2, and C3 jointly imply the

required result. This completes the proof.¥

Proof of Lemma B.2.

i) First note that E (ΩT ) = σ2T−1
TX
t=1

tX
j=1

ωjω
0
j. Then direct algebra shows

E (ΩT ) = σ2
TX
j=1

ωjω
0
j − σ2T−1

TX
j=2

j
£
ωjω

0
j

¤
+ σ2T−1

TX
j=2

ωjω
0
j

= σ2
TX
j=1

ωjω
0
j − o (1) +O

¡
T−1

¢
→ σ2Γγ.

Hence, from Hannan (1970)

lim
T→∞

T−1
TX
t=2

¡bε∗γ,t−1bε∗0γ,t−1¢ p→ σ2Γγ
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ii) bσ2e = TX
t=2

ê2t/T, with the residuals computed as any of the following:
n
εt − φ̂sbε∗γs,t−1o ,(

εt − φ̂
mX
s=1

bε∗γs,t−1
)
,

(
εt −

mX
s=1

φ̂lbε∗γs,t−1
)
under the suitable restriction. Since, under the re-

striction implied by the null hypothesis the coefficients in these regressions should be zero, we

have from the consistency property of the least-squares procedure

T−1
TX
t=2

ê2t = T−1
TX
t=2

ε2t + op (1)
p→ σ2

since {ε2t − σ2} is a stationary and ergodic MDS under Assumption A. This completes the
proof.¥

Proof of Theorem 3.1.
The proof of the convergence of Υ(n) is immediate in view of Lemma B.1iii) and Lemma B.2.

Define DT =
PT

t=2bεt ¡bε∗γ,t−1¢ /√T = Sγ,T/
√
T and recall that ΩT = T−1

TX
t=2

¡bε∗γ,t−1bε∗0γ,t−1¢ .
Hence, we can write

Υ(n) =

µ
1bσ2e
¶
D0TΩ−1T D0T .

From the invariance principle in Lemma B.1iii), DT ⇒ N (0, σ2Γγ) , and from the results in

Lemma B.2, bσ2e p→ σ2, and Ω−1T
p→ Γ−1γ /σ2. The required convergence then follows from the

Continuous Mapping Theorem (CMT) showing that Υ(n) ⇒ Z0Z, where Z is a n-dimensional

standard normal distribution, and hence Υ(n) ⇒ χ2(n).

The proof for the cases studied in Corollary 3.1 and Corollary 3.2. also obtains easily from

the Lemmas B.1 and B.2 and the CMT. Note that

Υγs =
1bσ2e
Ã

TX
t=2

bεtbε∗γs,t−1/√T
!2Ã TX

t=2

bε∗2γs,t−1/T
!−1

=
1bσ2e ¡Aγs,T

¢2 ¡
Bγs,T

¢−1
, say.

Note thatAγs,T = 1
0
m,sDT , where 1m,s is a vector inRm that takes value one in the s-th entry and

zero otherwise. From this, it is easy to show that Aγs,T has zero mean and asymptotic variance

σ210m,sΓγ1m,s = σ4ψ (γs) , and from Lemma B.1iii), Aγs,T ⇒ σ2
p
ψ (γs)N (0, 1) as T → ∞.

Similarly, Bγs,T = 1
0
m,sΩT1m,s, so from Lemma B.2, Bγs,T

p→ σ2ψ (γs) , and bσ2e,s p→ σ2. Hence,

the CMT completes the proof. For the joint restricted test statistic discussed in Corollary 3.2,
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the proof is totally analogous by noting Ῡ(n) = [σ210nΩT1n]
−1
[10nDT ]

2 /bσ2e, so the results in
Lemmas B.1 and B.2, together with the CMT, render the required convergence as T →∞.¥

Proof of Theorem 3.2.
Under Assumption A∗, the proofs are similar to Demetrescu et al. (2006) [DKH henceforth] by
noting that the context studied γs = 0 can be generalized for γs ∈ [0, π]. For instance, under
linear errors and the restrictions in DKH, Lemma B.1 in that paper easily generalizes, noting

that bε∗γs,t−1 =Pt−j
j=1 ω (j) εt−j =

Pt−j
j=0 ϕjut−1−j is square summable for any γs ∈ [0, π] .
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Tables

Table 1: Size and Power when the DGP is a Simple GARMA model
θ

Frequency -0.3 -0.2 -0.1 0 0.1 0.2 0.3

T=100
π
10

.999 .984 .540 .052 .584 .981 .999
2π
10

.999 .933 .401 .054 .445 .927 .998
3π
10

.988 .810 .302 .056 .329 .832 .982
4π
10

.946 .689 .232 .049 .267 .721 .946
5π
10

.929 .630 .210 .050 .248 .686 .932
6π
10

.955 .683 .236 .051 .269 .730 .947
7π
10

.985 .826 .311 .045 .331 .836 .985
8π
10

.998 .929 .425 .051 .452 .933 .998
9π
10

.999 .982 .536 .050 .585 .984 .999

T=250
π
10

.999 .999 .924 .043 .921 .999 .999
2π
10

.999 .999 .818 .057 .814 .999 .999
3π
10

.999 .997 .653 .050 .686 .995 .999
4π
10

.999 .979 .516 .052 .563 .980 .999
5π
10

.999 .971 .468 .051 .545 .968 .999
6π
10

.999 .980 .520 .051 .571 .978 .999
7π
10

.999 .998 .664 .045 .682 .994 .999
8π
10

.999 1.00 .811 .050 .816 .999 .999
9π
10

.999 .999 .918 .045 .913 .999 .999
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