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Abstract

In this paper we consider the issue of testing a time series for a unit root in
the possible presence of a break in a linear deterministic trend at some unknown
point in the series. We propose a break fraction estimator which, in the presence
of a break in trend, is consistent for the true break fraction at rate Op(T−1) when
there is either a unit root or near-unit root in the stochastic component of the
series. In contrast to other estimators available in the literature, when there is no
break in trend, our proposed break fraction estimator converges to zero at rate
Op(T−1/2). Used in conjunction with a quasi difference (QD) detrended unit root
test that incorporates a trend break regressor in the deterministic component,
we show that these rates of convergence ensure that known break fraction null
critical values are applicable asymptotically. Unlike available procedures in the
literature this holds even if there is no break in trend (the true break fraction is
zero), in which case the trend break regressor is dropped from the deterministic
component and standard QD detrended unit root test critical values then apply.
We also propose a second testing procedure which makes use of a formal pre-test
for a trend break in the series, including a trend break regressor only where the
pre-test rejects the null of no break. Both procedures ensure that the correctly
sized (near-) efficient unit root test that allows (does not allow) for a break in
trend is applied in the limit when a trend break does (does not) occur.
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1 Introduction

Testing for the presence of an autoregressive unit root process around a deterministic
linear trend function has been an issue at the core of econometric research for the
last quarter century. Since for many macroeconomic time series the possibility of a
change in the underlying linear trend function at some point in the sample data needs
to be entertained — for example, as might occur following a period of major economic
upheaval or a political regime change — in the wake of the seminal paper by Perron
(1989) it has become a matter of regular practice to apply a unit root test that allows
for this kind of deterministic structural change in the trend function.

Perron (1989) treats the location of the potential trend break as known, a priori,
to the practitioner. However, this assumption has attracted significant criticism (see,
for example, Christiano, 1992) and, as a consequence, most recent approaches to this
problem focus on the case where the possible break occurs at an unknown point in
the sample which must be estimated in some way; see, inter alia, Zivot and Andrews
(1992), Banerjee et al. (1992), Perron (1997) and Perron and Rodŕıguez (2003). This
approach raises two obvious questions: first, how well can we estimate the break point
when a break actually occurs and, second, how does the break point estimator behave
when no break occurs? Both of these issues clearly have important forward implications
for the behaviour of unit root tests that are based on estimated break points.

Taking the presence of a fixed trend in the data generation process (DGP) as a
given, among augmented Dickey-Fuller (ADF) style unit root tests it is the Elliott et
al. (1996) test based on quasi difference (QD) detrending that is near asymptotically
efficient1 when no additional broken trend is present. When a broken trend is also
known to be present, Elliott et al.’s test is inconsistent and it is now a test based on
Perron and Rodŕıguez’s (2003) QD detrended ADF statistic which allows for a break
in trend that is efficient. In this case, where the break occurs at a known point in
the sample, the efficient test is analogous to Perron’s (1989) test but using QD de-
trending. If the break occurs at an unknown point in the sample, the statistic needs
to be evaluated based on an estimated break date, which must be consistent for the
true break date at a sufficiently fast rate such that the critical values for the known
break point case from Perron and Rodŕıguez (2003) are appropriate in the limit.2 An
alternative approach, considered for the case of OLS detrending by Zivot and Andrews
(1992), and extended to the case of local GLS detrending by Perron and Rodŕıguez
(2003), bases inference on the minimum of the ADF statistics calculated for all possible
breakdates within a given range.

Where a trend break does not occur the tests proposed in Perron and Rodŕıguez

1Although not formally efficient, in the limit these tests lie arbitrarily close to the asymptotic
Gaussian local power envelopes for these testing problems and, hence, with a small abuse of language
we shall refer to such tests as ‘efficient’ throughout the remainder of this paper.

2Perron and Rodŕıguez (2003,p.6) suggest one possible estimator based on the location of the
maximum of a sequence of QD t-statistics for the presence of a trend break at each possible point
within a trimmed set of points in the sample. Other authors have suggested the corresponding OLS
estimator but, interestingly, this is not consistent at a sufficiently fast rate.
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(2003) are not efficient, and indeed the efficiency losses can be quite substantial in such
cases, as we demonstrate in this paper. It is obvious that this will be the case for the
test which assumes a known possible breakdate, since a redundant trend break regressor
will always be included. For the unknown breakdate case this also occurs because, in
the absence of a trend break, the break point estimator they propose (in common with
other currently available estimators) has a non-degenerate limit distribution over the
range of possible break points from which it is calculated and, as such, will spuriously
indicate the presence of a trend break.3

In practice, where it will be unknown as to whether a trend break occurs or not,
this differing behaviour of the break point estimator also renders the true asymptotic
critical values of the tests dependent on whether a break occurs or not. For the existing
tests in the literature to be feasible in practice we are therefore faced with a choice:
either, as in Perron and Rodŕıguez (2003), use conservative critical values corresponding
to the case where it is assumed that no break is present, with a corresponding loss of
efficiency in cases where a break is present (and, indeed, where it is not, as noted
above), or use critical values which assume that a break is present but run the risk of
over-sizing in the unit root tests when a break is in fact not present (coupled with the
loss in efficiency which occurs when there is no break).

The aim of this paper is to rectify these drawbacks with the existing tests in the
literature. We do so by proposing two new approaches to testing for unit roots which
allow for the possibility of a break in trend. Our first approach uses a new break point
estimator which is a data-dependent modification of the estimator of the break point
obtained by using an OLS estimator on the first differences of the data (hereafter, the
first difference estimator). This estimator possesses two key properties. First, when
a break actually occurs, the modification drops out in the limit and the estimator
collapses to the first difference estimator, which is shown to converge to the true point
sufficiently rapidly such that the break point estimation error is negligible enough to
allow the Perron and Rodŕıguez (2003) null critical values that are appropriate for
a known break point to be applied in the limit. Secondly, it has the property that,
when no break occurs, the estimator does not spuriously indicate a break point. In
this case, in the limit, the modification forces our new estimator to put the estimated
break point outside any range of break points considered to be feasible, so that it is
the Elliott et al. (1996) statistic that would be applied, not the Perron and Rodŕıguez
(2003) variant (which now incorporates a redundant trend break regressor). Again,
this occurs sufficiently rapidly such that the Elliott et al. (1996) null critical values are
relevant.

Our second approach achieves the same outcome in the limit as the first approach
but employs a pre-test for a break in trend at an unknown point in the sample to

3Similar problems arise with the minimum ADF-type tests but to a worse degree in that the
location of the minimum of the ADF statistics is not even a consistent estimator of the true break
date when a break occurs, and for this reason it is necessary with these tests to make the infeasible
assumption that no break in trend occurs under the unit root null hypothesis, such that tests with
pivotal limiting null distributions can be obtained.

3



achieve this. We use the recently developed test of Harvey, Leybourne and Taylor
(2007). Where the trend break pre-test rejects, the Perron and Rodŕıguez (2003)
variant of the unit root statistic is employed, including a trend break dummy at the
point in the sample identified by the (unmodified) first difference estimator, and where
it does not the Elliott et al. (1996) variant is used. In order to ensure that the pre-test
has no impact on the size of the resultant unit root test, the size of the pre-test is shrunk
towards zero with the sample size, at a suitable rate. Our two proposed approaches
are asymptotically equivalent and both ensure that an asymptotically correctly sized
and (asymptotically) efficient unit root test which allows (does not allow) for a break
in trend is applied in the limit when a trend break does (does not) occur.

After outlining our reference trend break model in section 2, in section 3 we de-
velop a new break point (hereafter break fraction) estimator possessing the properties
discussed above. Here, for unit root and near-unit root errors, we establish the rates
of consistency of the new estimator for the true break fraction when a trend break
occurs and show its limit behaviour under both errors when no break is present. At
the same time, we show how the new estimator can be used in conjunction with the
QD detrended unit root statistics described above and we establish the large sample
behaviour of such a procedure. Corresponding results for our proposed pre-test-based
approach are outlined in section 4. In section 5, we compare the asymptotic properties
of our two proposed procedures with those of existing strategies based on the Zivot and
Andrews (1992) and Perron and Rodŕıguez (2003) unit root tests. Here, we also con-
duct some comparison finite sample size and power simulations which, for the greater
part, yield the same qualitative pattern as our asymptotic results. Concluding remarks
are offered in section 6. Proofs of our results are contained in an Appendix.

In what follows we use the following notation: b·c to denote the integer part of

its argument; ‘
p→’ and ‘

d→’ denote convergence in probability and weak convergence,
respectively, in each case as the sample size diverges to positive infinity; 1(.) to denote
the indicator function, and ‘x := y’ indicates that x is defined by y.

2 The Trend Break Model

We consider the time series process {yt} generated according to the following model,

yt = α0 + β0t + γ0DTt(τ0) + ut, t = 1, ..., T, (1)

ut = ρT ut−1 + εt, t = 2, ..., T, (2)

where DTt(τ0) := 1(t > bτ0T c)(t − bτ0T c) with bτ0T c the potential trend break point
with associated break fraction τ0. We assume τ0 is unknown but satisfies τ0 ∈ Λ, where
Λ = [τL, τU ] with 0 < τL < τU < 1; the fractions τL and τU representing trimming
parameters, below and above which no break is deemed allowable to occur. In (1),
a break in trend occurs at time bτ0T c when γ0 6= 0, while if γ0 = 0, no break in
trend occurs. It would also be possible to consider a second model which allows for
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a simultaneous break in the level of the process at time bτ0T c in the model in (1)-
(2). However, as argued by Perron and Rodŕıguez (2003, pp.2,4), we do not need to
analyze this case separately because a change in intercept is just a special case of a
slowly evolving deterministic component (see Condition B of Elliott et al., 1996, p.816)
and, consequently, does not alter any of the large sample results presented in this paper.

The initial condition of the process is assumed to be such that T−1/2u1
p→ 0, while

the error process {εt} in (2) is taken to satisfy the following conventional linear process
assumption.

Assumption 1. The stochastic process {εt} is such that

εt = c (L) ηt, c (L) :=
∞∑

j=0

cjL
j

with c(1)2 > 0 and
∑∞

i=0 i|ci| < ∞, and where {ηt} is an IID sequence with mean
zero, unit variance and finite fourth moment. The long run variance of εt is defined
as ω2

ε := limT→∞ T−1E(
∑T

t=1 εt)
2 = c(1)2.

Within (2), we set ρT := 1−c/T for 0 ≤ c < ∞ and we will be concerned with testing
the unit root null hypothesis, H0 : c = 0, against the local alternative, H1 : c > 0.

3 Break Fraction Estimation and Unit Root Tests

In this section we discuss how asymptotically efficient unit root tests can be constructed
in the presence of a (possible) break in trend. In section 3.1 we first consider the
case where it is known that a break in trend has occurred and show that a QD de-
trended test of the form considered in Perron and Rodŕıguez (2003) based around a
first difference estimator of the (unknown) break fraction is efficient. In section 3.2 we
then show that where, as will be the case in practice, it is unknown as to whether a
trend break has occurred or not, that the approach outlined in section 3.1 no longer
delivers an efficient test. Here we suggest an approach based on a modification of the
first difference estimator of the break fraction which is shown to deliver an efficient test
both where a trend break occurs and where one does not.

3.1 The Case where a Break is Known to have Occurred

In order to carry out valid unit root inference in the case where a trend break is
known to have occurred at some unknown point in the sample (that is where γ0 6= 0),
we require an estimator of the unknown break fraction whose rate of consistency is
sufficiently rapid for a unit root test based on that estimator to have an asymptotic
null distribution that is the same as if the break fraction τ0 were known. This requires
that the estimator obtains a rate of consistency which is faster than Op(T

−1/2).
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As shown by Perron and Zhu (2005), the OLS estimator of τ0,

τ̆ := arg min
τ∈Λ

T−1

T∑
t=1

ût(τ)2

where ût(τ), t = 1, ..., T are the OLS residuals from a regression of yt on (1, t, DTt (τ))′,
does not have this property because it is is only Op

(
T−1/2

)
consistent under H0 : c = 0.

However, as will be established in Lemma 1 below, by taking first differences of (1) an
estimator with the required rate of consistency can be obtained. Specifically, we define
our proposed first difference estimator of τ0 as:

τ̃ := arg min
τ∈Λ

σ̃2 (τ) ,

where

σ̃2 (τ) := T−1

T∑
t=2

ṽt (τ)2 ,

and ṽt (τ) are the OLS residuals from the regression

∆yt = β0 + γ0DUt (τ) + vt, (3)

where DUt (τ) := 1(t > bτT c).
The regression model (3) represents a model for a mean shift in ∆yt, and the

asymptotic properties of τ̃ where vt is a stationary and invertible linear process have
been proved in Bai (1994). In particular, he showed that the break fraction estimator
τ̃ is Op (T−1) consistent. His result applies in our case when c = 0 and so is relevant
for our unit root test null distribution theory. The following lemma verifies that this
rate also continues to hold when ut contains a near-unit root (i.e. c > 0), which is
important subsequently for establishing local alternative power functions of unit root
tests based on this estimator.

Lemma 1 Let yt be generated according to (1) and (2) with ρT = 1−c/T , 0 ≤ c < ∞,
and let Assumption 1 hold. Then for the case where γ0 6= 0, τ̃ =τ0 + Op(T

−1).

Remark 1: It can be shown that the result stated in Lemma 1 also holds in the stable
autoregressive case where ρT = ρ with |ρ| < 1.

Remark 2: The rate of convergence stated in Lemma 1 can also be shown to hold for
the corresponding QD estimator of τ0 suggested in Perron and Rodŕıguez (2003, p.6),
which we denote by τ̂ in what follows; cf. footnote 2.

Next consider the QD detrended ADF-type unit root test applied to (1) and (2).
For known τ0, the regression model (1) can be written as

yt = Xt (τ0)
′ θ0 + ut, t = 1, ..., T, (4)
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where Xt (τ) = (1, t, DTt (τ))′ and θ0 = (α0, β0, γ0)
′. Applying a QD transformation

to (4) yields
yc̄,t = Xc̄,t (τ0)

′ θ0 + uc̄,t, (5)

where

yc̄,t :=

{
y1 t = 1

yt − ρ̄T yt−1 t = 2, . . . , T
,

Xc̄,t (τ0) :=

{
X1 (τ0) t = 1

Xt (τ0)− ρ̄T Xt−1 (τ0) t = 2, . . . , T

and ρ̄T := 1 − c̄/T , where c̄ is the QD parameter, which is generally chosen to be
the value of c at which the asymptotic Gaussian local power envelope for a given
significance level has power equal to 50%. We define θ̂c̄ to be the OLS estimator in (5)
and the residuals from (4) are then ût := yt −Xt (τ0)

′ θ̂c̄. The QD detrended ADF test
rejects for large negative values of the regression t-statistic for φ = 0 in the ADF-type
regression

∆ût = φût−1 +

p∑
j=1

δj∆ût−j + ep,t, t = p + 2, ..., T. (6)

We denote this statistic ADF-GLS tb (τ0, c̄).
For unknown τ0, we simply repeat the preceding procedure but with τ0 replaced by

τ̃ throughout. That is, we obtain the residuals ũt := yt − Xt (τ̃)′ θ̃c̄, where θ̃c̄ is the
OLS estimator from a regression of yc̄,t on Xc̄,t (τ̃), and then estimate the ADF-type
regression

∆ũt = φũt−1 +

p∑
j=1

δj∆ũt−j + ep,t, t = p + 2, ..., T. (7)

The t-statistic for φ = 0 is then denoted ADF-GLS tb (τ̃ , c̄). As is standard, we require
that the lag truncation parameter, p, in (6) and (7) satisfies the following condition:

Assumption 2. As T → ∞, the lag truncation parameter p in (6) and (7) satisfies
the condition that 1/p + p2/T → 0.

Remark 3: Perron and Rodŕıguez (2003) recommend the use of the modified Akaike
Information Criterion (MAIC) of Ng and Perron (2001) for selecting p in in (6) and
(7) with an upper bound pmax that satisfies Assumption 2; see section 6 of Perron and
Rodŕıguez (2003) for further details. �

In Theorem 1 we now establish the asymptotic equivalence of ADF-GLS tb (τ̃ , c̄) and
ADF-GLS tb (τ0, c̄).

Theorem 1 Let yt be generated according to (1) and (2), with γ0 6= 0, ρT = 1− c/T ,
0 ≤ c < ∞, and let Assumptions 1 and 2 hold. Then, provided τ̃ is any Op (T−1)

consistent estimator of τ0, it holds that ADF-GLS tb (τ̃ , c̄)− ADF-GLS tb (τ0, c̄)
p→ 0.
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This result with c = 0 shows that we can carry out the test ADF-GLS tb (τ̃ , c̄) by
using asymptotic critical values appropriate for ADF-GLS tb (τ0, c̄). The asymptotic
distribution of ADF-GLS tb (τ0, c̄) is given in Theorem 1 of Perron and Rodŕıguez (2003)
and the associated critical values are provided in their Table 1(b). For c > 0, the result
confirms that ADF-GLS tb (τ̃ , c̄) and ADF-GLS tb (τ0, c̄) have identical asymptotic local
alternative power functions.

Table 1 about here

The asymptotic Gaussian local power envelope for the testing problem considered in
this section, where it is known that γ0 6= 0, is given in Perron and Rodŕıguez (2003,pp.7-
8), who note that this function depends on the true break fraction τ0. The value of c
such that the Gaussian power envelope is at 0.50 is therefore expected to depend on
both the significance level used and on τ0. To investigate this further, Table 1 reports,
for the grid of break fractions τ0 ∈ {0.15, 0.20, ..., 0.85} and for the nominal 0.10, 0.05
and 0.01 significance levels, the corresponding values of c = cτ0 for which the Gaussian
power envelope is at 0.50. This was obtained by simulating the limit distribution of
the point optimal invariant test of c = 0 against c = cτ0 , using the distributional result
in equation (15) of Perron and Rodŕıguez (2003). Here we also give the corresponding
asymptotic and finite sample critical values of ADF-GLS tb (τ0, cτ0). The asymptotic
critical values were obtained by simulating the limit distribution given in Theorem 1
of Perron and Rodŕıguez (2003). We approximate the Wiener processes in the limiting
functionals using NIID(0, 1) random variates, and with the integrals approximated by
normalized sums of 1000 steps. The finite sample critical values are also reported in
Table 1. These were obtained by Monte Carlo simulation using the DGP (1) and (2)
with γ0 = 0, and setting α0 = β0 = 0, εt ∼ NIID(0, 1) and u1 = ε1. All simulations
were based on 50,000 replications, using the rndKMn function of Gauss 7.0.

Because the value of cτ0 varies with τ0, as Table 1 demonstrates, in practice we
would clearly like to calculate ADF-GLS tb (τ̃ , cτ̃ ), where cτ̃ denotes the value of c for
which the asymptotic Gaussian local power envelope for a break fraction of τ̃ is at
0.50. Now cτ̃ is clearly a random variable, but since τ̃ is a consistent estimator of τ0 it
follows that limT→∞ Pr (cτ̃ = cτ0) = 1 and, hence, that limT→∞ Pr

(
ADF-GLS tb (τ̃ , cτ̃ )

= ADF-GLS tb (τ̃ , cτ0)
)

= 1. The associated critical value for ADF-GLS tb (τ̃ , cτ̃ ), de-
noted vτ̃ say, is also a random variable. But again the consistency of τ̃ implies that
limT→∞ Pr (vτ̃ = v0) = 1, where v0 denotes the critical value for the true break fraction
τ0. It follows that the test statistic and critical value pairs

(
ADF-GLS tb (τ̃ , cτ̃ ) , vτ̃

)
and

(
ADF-GLS tb (τ0, cτ0) , vτ0

)
define asymptotically equivalent tests. As will subse-

quently be shown in section 5.1, ADF-GLS tb (τ̃ , cτ̃ ) and, hence, ADF-GLS tb (τ0, cτ0) lie
virtually on the asymptotic Gaussian local power envelope.

3.2 The Case where it is Unknown if a Break has Occurred

When no break in trend is present, i.e. when γ0 = 0, such that τ0 is not identified, it
follows from Theorem 3.1 and Remark 2(a) of Nunes et al. (1995, p.741) that τ̃ has
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a well defined asymptotic distribution with support equal to Λ = [τL, τU ]; that is, τ̃
does not converge in probability to a constant as in the case where γ0 6= 0; the same
result holds for Perron and Rodŕıguez’s (2003, p.6) QD estimator, τ̂ . As a consequence
the asymptotic null distribution of ADF-GLS tb (τ̃ , c̄) will differ according to whether a
break in trend occurs or not.

In practice, where it will not be known if a trend break has in fact occurred or
not, we are therefore faced with a choice when running unit root tests based on the
estimated break fraction, τ̃ (or, indeed, τ̂). We could, as in Perron and Rodŕıguez
(2003), use conservative critical values corresponding to the case where it is assumed
that no break is present, with a corresponding loss of efficiency in cases where a break
is present. Alternatively, we could use (liberal) critical values which assume that a
break is present, but run the risk of over-sizing, even asymptotically, in the unit root
tests when a break is not present. Moreover, neither approach will deliver an efficient
testing procedure in the no break case since here a redundant trend break regressor
will always be included because of the behaviour of τ̃ (and τ̂) noted above in this case;
here the standard QD de-trended ADF-type test, including only an intercept and linear
trend, of Elliott et al. (1996) is efficient.

The aforementioned problems with existing tests stem from the fact that the esti-
mator of the break fraction does not converge to zero when no break in trend occurs.
Clearly then, it would make considerable sense to use an estimator which, in the limit at
least, places the estimated break fraction outside any range of break points considered
to be feasible, that is outside of Λ, when no break occurs. At the same time, we would
obviously want such an estimator to have consistency properties that are not inferior
to those of τ̃ in Theorem 1 when a break does actually occur. One way to achieve an
estimator with these properties is to weight our first difference-based estimator τ̃ by
an auxiliary function of the data; that is, consider the modified estimator:

τ̄ := (1− λ̄)τ̃ . (8)

The weight function λ̄ in (8) needs to have the property that it converges to unity
in such a way that τ̄ converges to zero at rate Op(T

−1/2) when no break occurs, but
converges to zero in such a way that τ̄ converges to to τ0 at rate Op(T

−1) when a break
occurs, in each case irrespective of whether the unit root holds or not.

As we will subsequently show, a weight function which has this property is

λ̄ := exp(−gT−1/2WT (τ̃)) (9)

where g is some finite positive constant and, in the spirit of the work of Vogelsang
(1998), WT (τ̃) denotes the (unscaled) Wald statistic for testing γ0 = 0 in the partially-
summed counterpart to regression equation (1), with DTt(τ0) replaced by DTt(τ̃).
Supposing τ0 to be known, WT (τ0) is constructed as follows. Calculate the residual
sum of squares, RSSU(τ0), from the following partial sum regression, estimated using
OLS,

t∑
i=1

yi = α0t + β0

t∑
i=1

i + γ0

t∑
i=1

iDTt(τ0) + st, t = 1, ..., T,
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where st :=
∑t

i=1 ui, t = 1, ..., T , and calculate the residual sum of squares, RSSR,
from its restricted counterpart,

t∑
i=1

yi = α0t + β0

t∑
i=1

i + st, t = 1, ..., T,

and then calculate the (unscaled) Wald statistic

WT (τ0) :=
RSSR

RSSU(τ0)
− 1. (10)

The statistic WT (τ̃) is then simply WT (·) evaluated at τ̃ . Notice that, by definition,
0 ≤ λ̄ ≤ 1, owing to the non-negativity of WT (τ̃).

In Lemma 2 we now establish the large sample behaviour of WT (τ0) and WT (τ̃)
for both γ = 0 and γ 6= 0.

Lemma 2 Let yt be generated according to (1) and (2),with ρT = 1− c/T , c ≥ 0, and
let Assumption 1 hold. Let B1 (r) :=

∫ r

0
B0 (s) ds, where B0(r) :=

∫ r

0
e−(r−s)cdW (s) is

a standard Ornstein-Uhlenbeck (OU) process, with W (s) a standard Brownian mo-
tion on [0, 1], and let Z1 (r) :=

(
r, 1

2
r2
)′
, Z2,τ (r) := 0 ∨ 1

2
(r − τ)2 and Zτ (r) :=(

Z1 (r)′ , Z2,τ (r)
)′
. Finally, let S1 and S1,τ be the residual processes from a projection

of B1 on Z1 and B1 on Zτ , respectively. Then,

(i) If γ0 = 0

WT (τ0)
d→
∫ 1

0
S1 (r)2 dr∫ 1

0
S1,τ0 (r)2 dr

− 1

(ii) If γ0 6= 0

T−1WT (τ0)
d→ γ2

0

(∫ 1

0

S1,τ0 (r)2 dr

)−1

(iii) if γ0 = 0, it holds that WT (τ̃) = Op (1)
(iv) if γ0 6= 0, it holds that T−1WT (τ̃) = T−1WT (τ0) + op (1) .

Lemma 2 shows that, regardless of which of H0 : c = 0 or H1 : c > 0 holds,
both WT (τ0) and WT (τ̃) have the crucial property that they have well-defined (but
not necessarily pivotal) large sample distributions when γ0 = 0 but diverge at rate
Op(T ) when γ0 6= 0. The same can also be shown to hold in the stable autoregressive
case. The results in Lemma 2 enable us to now establish in Lemma 3 the large sample
properties of our new break fraction estimator, τ̄ of (8)-(9).

Lemma 3 Let the conditions of Lemma 2 hold. (i) If γ0 = 0, then τ̄ = Op(T
−1/2).

(ii) If γ0 6= 0, then T (τ̄ − τ0) = Op(1).
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The results of Lemma 3 (which also hold in the stable autoregressive case) imply
that our new break fraction estimator, τ̄ , converges in probability to zero at rate
Op(T

−1/2) when there is no break in trend, but is consistent for the true break fraction,
τ0, at rate Op(T

−1) when a break occurs. Consequently, and as required, τ̄ attains
exactly the same rate of consistency as τ̃ (cf. Lemma 1) when a break occurs, but
avoids the problem of spuriously indicating a break when none is present.

Now consider the properties of QD detrended ADF-type unit root tests applied to
(1) and (2) using our new break fraction estimator, τ̄ . Based on the properties of τ̄ in
Lemma 3, if τ̄ ≥ τL (notice that, by definition, τ̄ cannot exceed τU) then we take that as
evidence of the presence of a trend break and correspondingly use ADF-GLS tb (τ̄ , cτ̄ ) as
our unit root test statistic, where ADF-GLS tb (τ̄ , cτ̄ ) is identical to ADF-GLS tb (τ̃ , cτ̃ )
of section 3.1, except that τ̄ replaces τ̃ , and where cτ̄ denotes the value of c for which
the asymptotic Gaussian local power envelope for a break fraction of τ̄ is at 0.50. In
contrast, if τ̄ < τL then we take that as evidence of the absence of a structural break
and we then use a standard QD de-trended ADF-type test including only an intercept
and linear trend (using c̄ = 13.5 for the QD transformation, as in Elliott et al., 1996),
denoted ADF-GLS t, which is known to be an efficient test in this case. Our suggested
unit root test statistic can therefore be written as:

t(τ̄) :=

{
ADF-GLS t if τ̄ < τL

ADF-GLS tb (τ̄ , cτ̄ ) if τ̄ ≥ τL.
(11)

In Theorem 2 we now establish the large sample behaviour of t(τ̄), demonstrating
that, unlike existing procedures, it delivers an efficient test both where a trend break
occurs and where one does not.

Theorem 2 Let yt be generated according to (1) and (2), with ρT = 1− c/T , 0 ≤ c <
∞, and let Assumptions 1 and 2 hold.
(i) If γ0 = 0, then t(τ̄)− ADF-GLS t p→ 0.

(ii) If γ0 6= 0 then t(τ̄)− ADF-GLS tb (τ0, cτ0)
p→ 0.

The proof of Theorem 2 follows immediately from the results in Lemma 3. If
γ0 = 0 then Lemma 3(i) implies that limT→∞ Pr (τ̄ < τL) = 1 and, hence, that
limT→∞ Pr

(
t(τ̄) = ADF-GLS t

)
= 1 and we therefore consult the standard asymptotic

critical values that apply to ADF-GLS t; see, Table 1 of Elliott et al. (1996,p.825).
Similarly, for γ0 6= 0, Lemma 3(ii) implies that limT→∞ Pr (τ̄ ≥ τL) = 1 and, hence, that
limT→∞ Pr

(
t(τ̄) = ADF-GLS tb (τ̄ , cτ̄ )

)
= 1. Moreover, because of the rate of conver-

gence of τ̄ shown in Lemma 3(ii), Theorem 1 applies to show that ADF-GLS tb (τ̄ , cτ̄ )−
ADF-GLS tb (τ0, cτ0)

p→ 0. Unlike procedures based on either the first difference or QD
break fraction estimators, τ̃ and τ̂ , respectively, the practitioner is therefore not forced
to make the choice between the conservative and liberal critical values discussed at the
start of this section.

It follows from the results in Theorem 2 that where no trend break occurs, t(τ̄) has
the same asymptotic local power function as the efficient ADF-GLS t test. Moreover,
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where a trend break occurs, t(τ̄) has the same asymptotic local power function as
ADF-GLS tb (τ̃ , cτ̃ ) and, hence, ADF-GLS tb (τ0, cτ0). Consequently in both the trend
break and no break cases, t(τ̄) delivers a test which lies very close to the asymptotic
Gaussian local power envelope.

4 An Approach based on Trend Break Pre-Testing

The approach adopted in using t(τ̄) in section 3.2 is tantamount to using a pre-test
for the presence of a trend break. The modified estimator τ̄ is effectively being used
to form a decision rule as to whether a break has occurred or not, with a break being
deemed to have occurred if τ̄ ≥ τL. In such a case the ADF-GLS tb (τ̄ , cτ̄ ) statistic
of Perron and Rodŕıguez (2003) is used, while if τ̄ < τL the standard QD de-trended
ADF-GLS t statistic of Elliott et al. (1996) is used.

Other decision rules could clearly be used in an approach like this, in particular
we might consider the use of a formal statistical pre-test for the presence of a trend
break. Like the weight function λ̄ of (9), any such pre-test will need to possess certain
large sample properties. Precisely, it needs to be based on a statistic which has a
well-defined limiting distribution when γ0 = 0, and it needs to be consistent when
γ0 6= 0, with both of these properties holding regardless of whether the unit root holds
or not. A number of trend break tests with these properties exist in the literature; see,
inter alia, Vogelsang and Perron (1998), Sayginsoy and Vogelsang (2004) and Harvey
et al. (2007). The finite sample properties of a trend break pre-test will also be very
important in practice because where a trend break does occur we want to be applying
the ADF-GLS tb (τ̃ , cτ̃ ) test rather than ADF-GLS t. Consequently, our trend break
test needs to have good finite sample power. Of the available trend break tests, it is
the test of Harvey et al. (2007) which displays the best overall power properties and
so we shall focus on the use of that as a trend break pre-test in what follows.

The trend break test proposed by Harvey et al. (2007) rejects the null hypothesis
that γ0 = 0 for large values of the statistic

tλ := λ

(
sup
τ∈Λ

|t0(τ)|
)

+ mξ(1− λ)

(
sup
τ∈Λ

|t1(τ)|
)

(12)

where t0(·) and t1(·) are the OLS regression t-statistics for γ0 = 0 in (1) and (3),
respectively, in each case studentised using a long run variance estimator, and λ is the
weight function

λ := exp[−{kS0(τ̆)S1(τ̃)}2]. (13)

In (13), k is a finite positive constant, and S0(τ̆) and S1(τ̃) are the stationarity test
statistics of Kwiatkowski et al. (1992), calculated from the residuals {ût(τ̆}T

t=1 and
{ṽt(τ̃)}T

t=2, respectively. Finally, as in Vogelsang (1998), mξ is a constant such that,
for a significance level ξ, the asymptotic null critical value of of tλ does not depend
on whether the unit root holds or not. Selected critical values, together with the
corresponding values of mξ, for the tλ test are provided in Table 1 of Harvey et al.
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(2007). Harvey et al. (2007) show that when γ0 6= 0, tλ is consistent at rate Op(T
1/2)

under the unit root (the same rate also holds under a near unit root) and at rate
Op(T

3/2) in the stable autoregressive case.
Using the trend break pre-test of Harvey et al. (2007), we can therefore propose an

alternative to t(τ̄) of (11), namely the statistic

tP (τ̃) :=

{
ADF-GLS t if tλ does not reject
ADF-GLS tb (τ̃ , cτ̃ ) if tλ rejects

(14)

If we choose a fixed (independent of sample size) significance level for the tλ pre-
test it should be clear that tP (τ̃) will not be asymptotically equivalent to t(τ̄). This
occurs because even in large samples there will be a positive probability (given by
the asymptotic significance level of tλ) that the procedure will incorrectly select the
ADF-GLS tb (τ̃ , cτ̃ ) statistic when γ0 = 0. This will therefore cause a degree of over-
sizing (even asymptotically) in the test based on tP (τ̃), for the reason outlined at the
start of section 3.2 in the context of running the ADF-GLS tb (τ̃ , cτ̃ ) using liberal critical
values. In order to avoid this problem and to obtain a procedure which is asymptotically
equivalent to t(τ̄) we will need to shrink the size of the tλ pre-test at a suitable rate in
the sample size such that the test retains consistency when γ0 6= 0. Since tλ diverges at
rate Op(T

1/2) when γ0 6= 0, this can clearly be achieved by defining the critical region
of the pre-test to be of the form “reject the null hypothesis γ0 = 0 if tλ > cvT ” where
cvT = aT 1/2−d, for some 0 < d < 0.5, and where a is a finite positive constant.4 For
a given finite sample size, running the tλ test at any conventional significance level is
consistent with this decision rule.

5 Numerical Results

In this section we consider the performance of the t(τ̄) and tP (τ̃) tests proposed in
this paper and assess the results relative to the performance of the two recommended
tests from Perron and Rodŕıguez (2003). The first of these is a Zivot and Andrews
(1992)-type test which minimises the ADF-GLS tb (τ, c̄) unit root statistic across all
possible break dates

tZA := inf
τ∈Λ

ADF-GLS tb (τ, c̄) .

The second comparator test is their conservative testing strategy, defined by

tC(τ̂) := ADF-GLS tb(τ̂ , c̄)

where, as noted in footnote 2, τ̂ is the break date estimator obtained by maximising
the absolute value of the t-ratio on the trend break dummy in the GLS regression (5)
across τ ∈ Λ. For both tests, Perron and Rodŕıguez (2003) recommend the use of
c̄ = −22.5.

4A similar approach has been used in a recent working paper by Kim and Perron (2006) in con-
nection with OLS, rather than QD, de-trended unit root tests which allow for breaks in trend.
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In section 5.1 we first examine the asymptotic power properties of the tests. Then
in section 5.2 we turn to a comparison of the finite sample properties of the tests.

5.1 Asymptotic Results

In this section we simulate the asymptotic local to I(1) power of the newly proposed
tests, t(τ̄) and tP (τ̃), for both the no break and break cases. When no break exists,
both t(τ̄) and tP (τ̃) are asymptotically equivalent to ADF-GLS t, thus here we simulate
the local asymptotic power curve for ADF-GLS t, using the limiting functionals given
in Elliott et al. (1996), for c̄ = −13.5. Otherwise, when a break is present, the t(τ̄) and
tP (τ̃) tests are asymptotically equivalent to ADF-GLS tb (τ0, cτ0), the limit distribution
of which is given in Theorem 1 of Perron and Rodŕıguez (2003). When a break exists,
we also report the asymptotic Gaussian local power envelope; in the case of no break,
the corresponding envelope is given in Elliott et al. (1996), where it is shown to be
virtually indistinguishable from the power curve for ADF-GLS t, thus we do not report
it here.

The asymptotic distribution of tZA when no break is present was simulated using
the limit expressions given in Perron and Rodŕıguez (2003). When a break exists,
the tZA test does not have a pivotal limit distribution under the null or alternative,
therefore we cannot simulate its asymptotic size or local power in any meaningful way.
For tC(τ̂), the asymptotic critical value is calculated under the assumption that no
break exists, and was obtained by simulating the limit distribution for this test given
in Perron and Rodŕıguez (2003). When a break does exist, the tC(τ̂) statistic is asymp-
totically equivalent to the statistic ADF-GLS tb(τ0, c̄), allowing simulation of the test’s
asymptotic size and power, although note that it is the no break case (conservative)
critical value that is still applied.

In Figures 1 and 2, we report results for γ0 = 0 and γ0 6= 0, respectively, for
c ∈ {0, 1, 2, ..., 50}. When a break exists, we consider three break fractions, τ0 ∈
{0.3, 0.5, 0.7}. As for the results in Table 1, we approximate the Wiener processes
in the limiting functionals using NIID(0, 1) random variates, and with the integrals
approximated by normalized sums of 1000 steps and 50,000 replications, using the
rndKMn function of Gauss 7.0. All tests were calculated for the range of break fractions
Λ = [0.15, 0.85], and results are reported for the nominal 0.05 significance level.

Figures 1− 2 about here

The results for the no break case in Figure 1 clearly demonstrate the loss in effi-
ciency incurred in using either of the conservative tZA and tC(τ̂) tests from Perron and
Rodŕıguez (2003). These tests have virtually identical asymptotic local power func-
tions which in both cases lie considerably inside the power functions of t(τ̄) and tP (τ̃);
for example, for c = 15 the conservative tests both have power of approximately 25%,
while the t(τ̄) and tP (τ̃) tests both have power of around 60%.

Turning to the results in Figure 2, for the case where a break in trend occurs,
the conservative tC(τ̂) test again has an asymptotic local power function which lies
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strictly inside the power function of t(τ̄) and tP (τ̃) which for the most part is virtually
indistinguishable from the asymptotic Gaussian envelope. A comparison of the power
function of tC(τ̂) with those of t(τ̄) and tP (τ̃) highlights that, where a trend break
occurs, the efficiency losses associated with using conservative critical values can be
quite considerable; for example, when τ0 = 0.7, and c = 25, tC(τ̂) has power of
approximately 55% while t(τ̄) and tP (τ̃) have power of around 85%. Interestingly,
and consistent with the values of cτ0 reported in Table 1, there is rather little variation
in the shape of the asymptotic Gaussian local power envelope, and, hence, of the power
functions t(τ̄) and tP (τ̃), across the three reported values of the break fraction τ0.

5 The
power function of tC(τ̂) shows slightly greater dependence on τ0, but even here this
variation is not in any sense large.

5.2 Finite Sample Results

In this section we investigate the finite sample size and power properties of t(τ̄) and
tP (τ̃), along with the comparator tests tZA and tC(τ̂). Simulations are conducted for
the DGP given by (1) and (2), with α0 = β0 = 0 (without loss of generality), and
εt ∼ NIID(0, 1) with u1 = ε1. The sample sizes T = 150 and 300 are considered, with
the autoregressive parameters ρT = 1 − c/T , c ∈ {0, 1, 2, ..., 50}. Results are reported
for both cases where a break is not present in the DGP, and where a break exists; in
the latter case, we set γ0 = 1 (one standard deviation). Figure 3 reports results for
the no break case, while Figure 4 reports results for a trend break at τ0 = 0.3, 0.5 and
0.7, respectively. All simulations were computed for 20,000 replications, again using
the rndKMn function of Gauss 7.0.

Figures 3− 4 about here

As regards t(τ̄), on the basis of unreported size and power simulations, we found
that setting g = 1.5 in (9) for λ̄ resulted in a test with decent overall size and power
properties, and this value is adopted here.6 In the implementation of tP (τ̃), the pre-test
tλ was conducted with a significance level that shrank with the sample size. Specifically,
we ran tλ at the 0.05 level for T = 150 and at the 0.025 level for T = 300, thereby
halving the significance level as the sample size doubles.7 Following Harvey et al.
(2007) we set k = 500 in (13). We abstract from the issue of lag selection in the
computation of all the tests, setting p = 0 in the ADF regressions.

5Correspondingly, although not reported here, we also found the local power functions of t(τ̄)
and tP (τ̃) to be very insensitive to the value of the QD de-trending parameter used, being virtually
indistinguishable from the asymptotic Gaussian power envelope for all but values of the QD de-trending
parameter close to zero.

6Notice from Lemma 3 and Theorem 2, respectively, that g has no impact on the large sample
properties of either τ̄ or t(τ̄).

7The critical values for the tλ test using 15% trimming are 2.492 and 2.757 for the 0.05 and 0.025
significance levels, respectively. The corresponding bα values also required to implement the tλ test
are, respectively, 0.849 and 0.867.
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For both t(τ̄) and tP (τ̃) we used a QD parameter of c̄ = −13.5 for ADF-GLS t,
while for ADF-GLS tb (τ̄ , c̄), c̄ was obtained by linear interpolation between the two
nearest values of cτ0 to either τ̄ for t(τ̄) or τ̃ for tP (τ̃), in the grid of values in Table
1. The corresponding critical values for ADF-GLS tb (τ̄ , c̄) were also obtained by linear
interpolation between the associated finite sample critical values in Table 1, and finite
sample critical values were employed for ADF-GLS t (for the nominal 0.05 significance
level, these are −2.96 for T = 150, and −2.92 for T = 300). Finite sample critical
values were also used for the tZA and tC(τ̂) tests; these were obtained by simulation
using the DGP (1) and (2) with γ0 = 0, using 50,000 Monte Carlo replications, and
setting α0 = β0 = 0, εt ∼ NIID(0, 1) and u1 = ε1 as before.

Consider first the results for the no break case in Figure 3. It can be seen that the
t(τ̄) and tP (τ̃) tests display a certain degree of over-sizing in finite samples which is
mitigated as the sample size increases. Both tests have size of around 8%, for T = 150
and about 7% for T = 300. Since, as was previously noted, both effectively employ
a pre-test for the presence of a break in trend and here there is no break in trend,
this finite sample effect is to be expected, as discussed at the end of section 4. The
overall shape of the power functions of all of the tests are however very similar to
their asymptotic counterparts in Figure 1, particularly so for T = 300, with the t(τ̄)
and tP (τ̃) tests again showing almost identical power functions which clearly dominate
those of the tZA and tC(τ̂) tests.

Turning to the results for the trend break case in Figure 4, we see that here both
the t(τ̄) and tP (τ̃) tests now have size very close to the nominal level, while, consistent
with their large sample properties (see Figure 2), the tZA and tC(τ̂) tests are somewhat
under-sized. This effect is most pronounced for the tC(τ̂) test and, as a consequence,
the tZA test displays somewhat superior finite sample power than tC(τ̂) throughout.
The finite sample power curves for the t(τ̄) and tP (τ̃) tests are again virtually indistin-
guishable from each other throughout Figure 4, and are generally very similar to their
asymptotic counterparts in Figure 2 for values of c below around 20 but flatten off
somewhat, relative to the results in Figure 2, for larger values of c. For the most part
the t(τ̄) and tP (τ̃) tests retain a considerable power advantage over the tZA and tC(τ̂)
tests, and increasingly so as the sample size increases, although for larger values of c
the power functions do tend to cross; for example, the power function of tZA crosses
those of t(τ̄) and tP (τ̃) at around c = 30 (where the power of both tests is about 84%)
when T = 150 and τ0 = 0.5, while for T = 300 this crossing point has moved out to
c = 33 (where the power of both tests is about 90%).

6 Conclusions

In this paper we have proposed new tests of the unit root null hypothesis, based on
quasi difference de-trending, for the case where there is a possible one time change in
the trend function occurring at an unknown point in the series. The first of these was
based on using a new estimator of the break fraction which was shown, where a break
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occurs, to be consistent for the true break fraction at rate Op (T−1) both under the null
hypothesis and local alternatives, but to not spuriously indicate the presence of a trend
break where none exists. The second approach was based on first employing a pre-test
for a break in trend, and allowing for a break in trend in the unit root regression only
where this pre-test rejected. Our two proposed tests were shown to be asymptotically
equivalent and, in contrast to extant tests in the literature, were shown to lie arbitrarily
close in large samples to the asymptotic Gaussian local limiting power envelope both
where a break occurs and where a break does not occur. Asymptotic and finite sample
evidence was reported which suggested that our two new tests generally outperformed
other available tests in the literature.
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A Appendix

In what follows, we define ‖x‖ =
√

x′x for any vector x and ‖A‖ = maxx ‖Ax‖ / ‖x‖
for a square matrix A.

A.1 Proof of Lemma 1

When c = 0, this follows immediately from Proposition 3 of Bai (1994) since vt =
∆ut satisfies Bai’s Assumptions A and B. When c > 0 we need to generalise Bai’s
Proposition 1 so that the Hajek-Renyi equality applies to the first difference of a near-
unit root process. Then the proof of Bai’s Proposition 3 applies straightforwardly
to conclude that τ̃ is Op (T−1) consistent when ut is near-unit root. To do this, we
substitute ut =

∑t−1
j=0 ρj

T εt−j into vt = εt − cT−1ut−1 to obtain

vt = εt − cT−1

t−1∑
j=1

ρt−j−1
T εj.

Then some rearrangements give

k∑
t=1

vt =
k∑

t=1

atεt

for k ≤ T , where at = 1− cT−1
(∑k−t−1

j=0 ρj
T

)
for t = 1, . . . , k−1 and ak = 1. Note that

0 ≤ at ≤ 1 because
∣∣∣cT−1

(∑k−t−1
j=0 ρj

T

)∣∣∣ ≤ cT−1 (k − t) ≤ 1. Now following Bai’s proof

of his Proposition 1 we apply a Beveridge and Nelson (1981) (BN) decomposition to
εt:

εt = c (1) ηt −∆ε∗t ,

where εt =
∑∞

j=0 c∗jηt−j and c∗j =
∑∞

i=j+1 ci, so that

k∑
t=1

atεt = c (1)
k∑

t=1

atηt − akε
∗
k − a1ε

∗
0 − cT−1

k−1∑
t=1

ρk−t−1
T ε∗t ,

where we have used at+1 − at = cT−1ρk−t−1
T . Thus for n ≤ T we consider

Pr

(
max

m≤k≤n
ck

∣∣∣∣∣
k∑

t=1

vt

∣∣∣∣∣ > α

)
≤ Pr

(
max

m≤k≤n
ck

∣∣∣∣∣c (1)
k∑

t=1

atηt

∣∣∣∣∣ > α/4

)

+ Pr

(
max

m≤k≤n
ck |akε

∗
k| > α/4

)
+ Pr (cm |ε∗0| > α/4)

+ Pr

(
max

m≤k≤n
ck

∣∣∣∣∣cT−1

k−1∑
t=1

ρk−t−1
T ε∗t

∣∣∣∣∣ > α/4

)
.(A.1)
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By equation (2) of Hajek and Renyi (1955), the first probability in (A.1) satisfies

Pr

(
max

m≤k≤n
ck

∣∣∣∣∣c (1)
k∑

t=1

atηt

∣∣∣∣∣ > α/4

)
≤ 16c (1)2

α2

(
c2
m

m∑
t=1

a2
t +

n∑
k=m+1

c2
ka

2
k

)

≤ 16c (1)2

α2

(
mc2

m +
n∑

k=m+1

c2
k

)
, (A.2)

the second line following because 0 ≤ ak ≤ 1. The second probability in (A.1) satisfies

Pr

(
max

m≤k≤n
ck |akε

∗
k| > α/4

)
≤

n∑
k=m

Pr (ck |akε
∗
k| > α/4) ≤ 16σ2

∗
α2

(
c2
m +

n∑
k=m+1

c2
k

)
(A.3)

by Chebyshev’s inequality, where σ2
∗ =

∑∞
j=0 c∗2j which exists under Assumption 1.

Again by Chebyshev’s inequality, the third probability in (A.1) satisfies

Pr (cm |ε∗0| > α/4) ≤ 16σ2
∗

α2
c2
m. (A.4)

The fourth probability in (A.1) satisfies

Pr

(
max

m≤k≤n
ck

∣∣∣∣∣cT−1

k−1∑
t=1

ρk−t−1
T ε∗t

∣∣∣∣∣ > α/4

)
≤

n∑
k=m

Pr

(
ck

∣∣∣∣∣cT−1

k−1∑
t=1

ρk−t−1
T ε∗t

∣∣∣∣∣ > α/4

)

≤ 16

α2

n∑
k=m

c2
kvar

(
cT−1

k−1∑
t=1

ρk−t−1
T ε∗t

)

≤ 16c2ω2
∗

α2T

n∑
k=m

c2
k, (A.5)

by Chebyshev’s inequality, where ω2
∗ =

∑∞
j=−∞

∣∣γ∗j ∣∣ and γ∗j = E
(
ε∗t ε

∗
t−j

)
(and ω2

∗ exists
under Assumption 1), since

var

(
cT−1

k−1∑
t=1

ρk−t−1
T ε∗t

)
= c2T−2

k−1∑
t=1

k−1∑
s=1

ρ2k−t−s−2
T γ∗t−s

≤ c2T−2

k−1∑
t=1

k−1∑
s=1

∣∣γ∗t−s

∣∣ ≤ c2T−2kω2
∗ ≤ c2T−1ω2

∗.

Thus combining (A.2)–(A.5) in (A.1) leads to

Pr

(
max

m≤k≤n
ck

∣∣∣∣∣
k∑

t=1

vt

∣∣∣∣∣ > α

)
≤ 16

α2

(
c (1)2 + 2σ2

∗ + c2ω2
∗
)(

mc2
m +

n∑
k=m+1

c2
k

)
,

which provides the required generalisation of Bai’s Proposition 1.
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A.2 Proof of Theorem 1

It will be convenient to represent the models in stacked matrix form as

y = Xθ0 + u (A.6)

and
yc̄ = Xc̄θ0 + uc̄, (A.7)

where θ0 = (α0, β0, γ0)
′, X = (X1 (τ0) , . . . , XT (τ0))

′, and so on. The OLS estimator
of θ0 based on (A.7) taking τ0 as known is denoted θ̂c̄ and the resulting residuals from
(A.6) are û = y −Xθ̂c̄. The ADF test statistic for û can be represented

ADF-GLS tb (τ0, c̄) =
û′−1P̂∆û

σ̂
(
û′−1P̂ û−1

)1/2
, (A.8)

with ∆û = (∆ût)
T
t=p+2, û−1 = (ût−1)

T
t=p+2, Ûp = (∆ût−1, . . . , ∆ût−p)

T
t=p+2, P̂ = IT−p−1−

Ûp

(
Û ′

pÛp

)−1

Û ′
p and

σ̂2 = T−1

∆û′P̂∆û−

(
û′−1P̂∆û

)2

û′−1P̂ û−1

 .

When τ̃ replaces τ0, we define the matrices X̃ = (X1 (τ̃) , . . . , XT (τ̃))′ and X̃c̄ =
(Xc̄,1 (τ̃) , . . . , Xc̄,T (τ̃))′. The OLS estimator from a regression of yc̄ on X̃c̄ is denoted
θ̃c̄ and the resulting levels residuals are ũ = y − X̃θ̃c̄. The statistic ADF-GLS tb (τ̃) is
defined as in (A.8) but with û and σ̂ replaced by ũ and σ̃. We will show that

ADF-GLS tb (τ̃ , c̄)− ADF-GLS tb (τ0, c̄)
p→ 0. (A.9)

We first provide some preliminary results. The first concerns the difference between
the de-trending coefficients θ̃c̄ and θ̂c̄.

Lemma 4 Define DT = diag
(
1, T 1/2, T 1/2

)
. Then

DT

(
θ̂c̄ − θ0

)
d→

(
ε1(∫ 1

0
Hc̄,τ0 (s) Hc̄,τ0 (s)′ ds

)−1 ∫ 1

0
Hc̄,τ0 (s) (dBc (s) + c̄Bc (s) ds)

)
,

(A.10)
where Bc is an OU process with long run variance ω2

ε and

Hc̄,τ0 (s) =

(
1 + c̄s

1 (s > τ0) (1 + c̄ (s− τ0))

)
,

and θ̃c̄ is asymptotically equivalent to θ̂c̄ in the sense that

DT

(
θ̃c̄ − θ̂c̄

)
= Op

(
T−1/2

)
. (A.11)
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The next lemma concerns the differences between individual sample statistics in-
volving ũt and ût.

Lemma 5 (i) T−1/2
(
ũbTsc − ûbTsc

)
= Op

(
T−1/2

)
uniformly for s ∈ [0, 1]

(ii) T−1
∑T

t=p+1 ∆ũt−i∆ũt−j − T−1
∑T

t=p+1 ∆ût−i∆ût−j = Op (T−1) uniformly in i, j =
1, . . . p
(iii) T−1

∑T
t=p+1 ũt−1∆ũt−i − T−1

∑T
t=p+1 ût−1∆ût−i = Op

(
T−1/2

)
uniformly in i =

1, . . . p.

The following orders of magnitude follow from Lemma 3.2 of Chang and Park
(2002)8 ∥∥∥∥(T−1Û ′

pÛp

)−1
∥∥∥∥ = Op (1) (A.12)∥∥∥T−1û′−1Ûp

∥∥∥ = Op

(
p1/2

)
(A.13)

The next Lemma shows how the corresponding matrices behave when computed using
ũt.

Lemma 6 Corresponding to (A.12), (A.13), we can show

(i)

∥∥∥∥(T−1Ũ ′
pŨp

)−1
∥∥∥∥ = Op (1) ,

(ii)
∥∥∥T−1ũ′−1Ũp

∥∥∥ = Op

(
p1/2

)
.

Also
(iii)

∥∥∥T−1Û ′
p∆û

∥∥∥ ,
∥∥∥T−1Ũ ′

p∆ũ
∥∥∥ = Op

(
p1/2

)
,

(iv)
∥∥∥T−1Ũ ′

p∆ũ− T−1Û ′
p∆û

∥∥∥ = Op

(
p1/2T−1

)
,

(v)

∥∥∥∥(T−1Ũ ′
pŨp

)−1

−
(
T−1Û ′

pÛp

)−1
∥∥∥∥ = Op (pT−1) ,

(vi)
∥∥∥T−1ũ′−1Ũp − T−1û′−1Ûp

∥∥∥ = Op

(
p1/2T−1/2

)
From Lemma 5(iii) we have

ũ′−1∆ũ

T
−

û′−1∆û

T

p→ 0,

8As noted in their Remark 3.1, their results continue to hold when applied to models with de-
trending.
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and from (A.12) and the results of Lemma 6 we find∣∣∣∣∣∣ ũ
′
−1Ũp

T

(
Ũ ′

pŨp

T

)−1
Ũ ′

p∆ũ

T
−

û′−1Ûp

T

(
Û ′

pÛp

T

)−1
Û ′

p∆û

T

∣∣∣∣∣∣
≤

∥∥∥∥∥ ũ′−1Ũp

T

∥∥∥∥∥
∥∥∥∥∥∥
(

Ũ ′
pŨp

T

)−1
∥∥∥∥∥∥
∥∥∥∥∥Ũ ′

p∆ũ

T
−

Û ′
p∆û

T

∥∥∥∥∥
+

∥∥∥∥∥ ũ′−1Ũp

T

∥∥∥∥∥
∥∥∥∥∥∥
(

Ũ ′
pŨp

T

)−1

−

(
Û ′

pÛp

T

)−1
∥∥∥∥∥∥
∥∥∥∥∥Û ′

p∆û

T

∥∥∥∥∥
+

∥∥∥∥∥ ũ′−1Ũp

T
−

û′−1Ûp

T

∥∥∥∥∥
∥∥∥∥∥∥
(

Û ′
pÛp

T

)−1
∥∥∥∥∥∥
∥∥∥∥∥Û ′

p∆û

T

∥∥∥∥∥
= Op

(
pT−1/2

)
,

from which we can conclude

ũ′−1P̃∆ũ

T
−

û′−1P̂∆û

T

p→ 0. (A.14)

From Lemma 5 we have

ũ′−1ũ−1

T 2
−

û′−1û−1

T 2

p→ 0,

and from (A.12) and the results of Lemma 6 we find

T−1

∣∣∣∣∣∣ ũ
′
−1Ũp

T

(
Ũ ′

pŨp

T

)−1
Ũ ′

pũ−1

T
−

û′−1Ûp

T

(
Û ′

pÛp

T

)−1
Û ′

pû−1

T

∣∣∣∣∣∣
≤ T−1

∥∥∥∥∥ ũ′−1Ũp

T

∥∥∥∥∥
∥∥∥∥∥∥
(

Ũ ′
pŨp

T

)−1
∥∥∥∥∥∥
∥∥∥∥∥Ũ ′

pũ−1

T
−

Û ′
pû−1

T

∥∥∥∥∥
+T−1

∥∥∥∥∥ ũ′−1Ũp

T

∥∥∥∥∥
∥∥∥∥∥∥
(

Ũ ′
pŨp

T

)−1

−

(
Û ′

pÛp

T

)−1
∥∥∥∥∥∥
∥∥∥∥∥Û ′

pû−1

T

∥∥∥∥∥
+T−1

∥∥∥∥∥ ũ′−1Ũp

T
−

û′−1Ûp

T

∥∥∥∥∥
∥∥∥∥∥∥
(

Û ′
pÛp

T

)−1
∥∥∥∥∥∥
∥∥∥∥∥Û ′

pû−1

T

∥∥∥∥∥
= Op

(
pT−3/2

)
,

such that
ũ′−1P̃ ũ−1

T 2
−

û′−1P̂ û−1

T 2

p→ 0. (A.15)
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From Lemma 5(ii) we have

∆ũ′∆ũ

T
− ∆û′∆û

T

p→ 0,

and from (A.12) and the results of Lemma 6 we find∣∣∣∣∣∣∆ũ′Ũp

T

(
Ũ ′

pŨp

T

)−1
Ũ ′

p∆ũ

T
− ∆û′Ûp

T

(
Û ′

pÛp

T

)−1
Û ′

p∆û

T

∣∣∣∣∣∣
≤

∥∥∥∥∥∆ũ′Ũp

T

∥∥∥∥∥
∥∥∥∥∥∥
(

Ũ ′
pŨp

T

)−1
∥∥∥∥∥∥
∥∥∥∥∥Ũ ′

p∆ũ

T
−

Û ′
p∆û

T

∥∥∥∥∥
+

∥∥∥∥∥∆ũ′Ũp

T

∥∥∥∥∥
∥∥∥∥∥∥
(

Ũ ′
pŨp

T

)−1

−

(
Û ′

pÛp

T

)−1
∥∥∥∥∥∥
∥∥∥∥∥Û ′

p∆û

T

∥∥∥∥∥
+

∥∥∥∥∥∆ũ′Ũp

T
− ∆û′Ûp

T

∥∥∥∥∥
∥∥∥∥∥∥
(

Û ′
pÛp

T

)−1
∥∥∥∥∥∥
∥∥∥∥∥Û ′

p∆û

T

∥∥∥∥∥
= Op

(
p2T−1

)
,

hence
∆ũ′P̃∆ũ

T
− ∆û′P̂∆û

T

p→ 0. (A.16)

From (A.14), (A.15) and (A.16), we conclude that (A.9) holds.

Proof of Lemma 4.
To prove (A.10) we first note the quasi-difference of DTt (τ0) can be written

DTc̄,t (τ0) = ∆DTt (τ0) + c̄T−1DTt−1 (τ0)

= 1 (t > bτ0T c) ((1 + c̄ (t− 1− bτ0T c) /T ))

Using

Xc̄,1 (τ0) =

 1
1
0

 , Xc̄ ,t (τ0) =

 c̄/T
1 + c̄ (t− 1) /T

1 (t > bτ0T c) ((1 + c̄ (t− 1− bτ0T c) /T ))


we find

D−1
T X ′

c̄Xc̄D
−1
T =

T∑
t=1

D−1
T Xc̄,t (τ0) Xc̄,t (τ0)

′ D−1
T

→
(

1 0

0
∫ 1

0
Hc̄,τ0 (s) Hc̄,τ0 (s)′ ds

)
. (A.17)
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Similarly

D−1
T X ′

c̄uc̄
d→
(

ε1∫ 1

0
Hc̄,τ0 (s) ((dBc (s) + c̄Bc (s) ds))

)
so that

DT

(
θ̂c̄ − θ0

)
d→

(
ε1(∫ 1

0
Hc̄,τ0 (s) Hc̄,τ0 (s)′ ds

)−1 ∫ 1

0
Hc̄,τ0 (s) ((dBc (s) + c̄Bc (s) ds))

)
.

Next to show (A.11) we subtract

X ′
c̄Xc̄θ̂c̄ = X ′

c̄Xc̄θ0 + X ′
c̄uc̄

from
X̃ ′

c̄X̃c̄θ̃c̄ = X̃ ′
c̄Xc̄θ0 + X̃ ′

c̄uc̄

and rearrange to give

DT

(
θ̃c̄ − θ̂c̄

)
=

(
D−1

T X̃ ′
c̄X̃c̄D

−1
T

)−1

[−
(
D−1

T X̃ ′
c̄X̃c̄D

−1
T −D−1

T X ′
c̄Xc̄D

−1
T

)
DT

(
θ̂c̄ − θ0

)
−
(
D−1

T X̃ ′
c̄X̃c̄ −D−1

T X̃ ′
c̄Xc̄

)
θ0 + D−1

T X̃ ′
c̄uc̄ −D−1

T X ′
c̄uc̄].

We will prove (A.11) by showing

D−1
T X̃ ′

c̄uc̄ −D−1
T X ′

c̄uc̄ = Op

(
T−1/2

)
, (A.18)(

D−1
T X̃ ′

c̄X̃c̄ −D−1
T X̃ ′

c̄Xc̄

)
θ0 = Op

(
T−1/2

)
, (A.19)

D−1
T X̃ ′

c̄X̃c̄D
−1
T −D−1

T X ′
c̄Xc̄D

−1
T = Op

(
T−1/2

)
, (A.20)

Note that this last line and the invertibility of (A.17) shows that
(
D−1

T X̃ ′
c̄X̃c̄D

−1
T

)−1

exists in the limit.
To show (A.18), we write

D−1
T X̃ ′

c̄uc̄ −D−1
T X ′

c̄uc̄ =

 0
0

T−1/2
∑T

t=1 (DTc̄,t (τ̃)−DTc̄,t (τ0)) uc̄,t

 .

Without loss of generality we will proceed as if τ̃ < τ0. Then

DTc̄,t (τ̃)−DTc̄,t (τ0) =


0, t ≤ bτ̃T c
1 + c̄ (t− 1− bτ̃T c) /T, bτ̃T c < t ≤ bτ0T c
c̄ (bτ0T c − bτ̃T c) /T, bτ0T c < t ≤ T.
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Note that the second component of this expression disappears if bτ̃T c = bτ0T c. Now

T−1/2

T∑
t=1

(DTc̄,t (τ̃)−DTc̄,t (τ0)) uc̄,t

= T−1/2
∑

bτ̃T c<t≤bτ0T c

(1 + c̄ (t− 1− bτ̃T c) /T ) uc̄,t + c̄
bτ0T c − bτ̃T c

T
T−1/2

∑
bτ0T c<t≤T

uc̄,t,

in which the second term is Op (T−1) since

bτ0T c − bτ̃T c
T

= (τ̃ − τ0) +
(bτ0T c − τ0T )

T
+

(τ̃T − bτ̃T c)
T

= Op

(
T−1

)
, (A.21)

while the first term has order Op

(
T−1/2 (bτ0T c − bτ̃T c)1/2

)
= Op

(
T−1/2

)
also by

(A.21).
To show (A.19), we write(

D−1
T X̃ ′

c̄X̃c̄ −D−1
T X̃ ′

c̄Xc̄

)
θ0

= D−1
T X̃ ′

c̄

(
X̃c̄ −Xc̄

)
θ0

=
T∑

t=1

D−1
T Xc̄,t (τ̃) (DTc̄,t (τ̃)−DTc̄,t (τ0)) γ0

=

 c̄T−1
∑T

t=2 (DTc̄,t (τ̃)−DTc̄,t (τ0)) γ0

T−1/2
∑T

t=2 (1 + c̄ (t− 1) /T ) (DTc̄,t (τ̃)−DTc̄,t (τ0)) γ0

T−1/2
∑

bτ̃T c<t≤T ((1 + c̄ (t− 1− bτ̃T c) /T )) (DTc̄,t (τ̃)−DTc̄,t (τ0)) γ0

 .

The first term disappears because

T−1

T∑
t=2

(DTc̄,t (τ̃)−DTc̄,t (τ0))

= T−1
∑

bτ̃T c<t≤bτ0T c

1 + c̄ (t− 1− bτ̃T c) /T + T−1
∑

bτ0T c<t≤T

c̄ (bτ0T c − bτ̃T c) /T

≤ bτ0T c − bτ̃T c
T

(
1 + c̄

bτ0T c − bτ̃T c
T

)
+ c̄

T − bτ0T c
T

bτ0T c − bτ̃T c
T

= Op

(
T−1

)
,

so the second term then immediately follows using

T−1/2

T∑
t=2

(1 + c̄ (t− 1) /T ) (DTc̄,t (τ̃)−DTc̄,t (τ0))

≤ (1 + c̄) T−1/2

T∑
t=2

(DTc̄,t (τ̃)−DTc̄,t (τ0))

= Op

(
T−1/2

)
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and similarly for the third term.
To show (A.20), we simply write

D−1
T X̃ ′

c̄X̃c̄D
−1
T −D−1

T X ′
c̄Xc̄D

−1
T =

(
D−1

T X̃ ′
c̄X̃c̄D

−1
T −D−1

T X̃ ′
c̄Xc̄D

−1
T

)
+
(
D−1

T X̃ ′
c̄Xc̄D

−1
T −D−1

T X ′
c̄Xc̄D

−1
T

)
,

and it is then easy to see these terms disappear using the steps used to show (A.19).

Proof of Lemma 5

(i) With the notation θ̂c̄ =
(
α̂c̄, β̂c̄, γ̂c̄

)′
and θ̃c̄ =

(
α̃c̄, β̃c̄, γ̃c̄

)′
, we can write

ût = ut − (α̂c̄ − α0)−
(
β̂c̄ − β0

)
t− (γ̂c̄ − γ0) DTt (τ0)

and
ũt = ut − (α̃c̄ − α0)−

(
β̃c̄ − β0

)
t− (γ̃c̄ − γ0) DTt (τ̃) ,

so for s ∈ [0, 1]

T−1/2
(
ũbTsc − ûbTsc

)
= T−1/2 (α̂c̄ − α̃c̄) + T 1/2

(
β̂c̄ − β̃c̄

)
T−1 bTsc

+ T 1/2 (γ̂c̄ − γ̃c̄) T−1DTbTsc (τ0)

−T 1/2 (γ̃c̄ − γ0) T−1
(
DTbTsc (τ̃)−DTbTsc (τ0)

)
.

Each of the first three of these terms are Op

(
T−1/2

)
by (A.11) in Lemma 4. In the

fourth term, we have (using τ̃ < τ0 without loss of generality)

DTt (τ̃)−DTt (τ0) =


0, t ≤ bτ̃T c
t− bτ̃T c , bτ̃T c < t ≤ bτ0T c
bτ0T c − bτ̃T c , bτ0T c < t ≤ T

so

T−1
(
DTbTsc (τ̃)−DTbTsc (τ0)

)
=


0, bTsc ≤ bτ̃T c
(bTsc − bτ̃T c) /T, bτ̃T c < bTsc ≤ bτ0T c
(bτ0T c − bτ̃T c) /T, bτ0T c < bTsc ≤ T.

The component for bτ0T c < bTsc ≤ T is Op (T−1) by (A.21) while the component for
bτ̃T c < bTsc ≤ bτ0T c satisfies

0 ≤ bTsc − bτ̃T c
T

≤ bτ0T c − bτ̃T c
T

= Op

(
T−1

)
.

Clearly these results all hold uniformly in s.
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(ii) We first write

T−1

T∑
t=p+1

∆ũt−i∆ũt−j − T−1

T∑
t=p+1

∆ût−i∆ût−j

= T−1

T−i∑
t=p−i+1

(∆ũt −∆ût) ∆ũt−j+i + T−1

T−j∑
t=p−j+1

∆ût−i+j (∆ũt −∆ût) .

Substituting

∆ũt −∆ût =
(
β̂c̄ − β̃c̄

)
+ (γ̂c̄ − γ̃c̄) DUt (τ0)− (γ̃c̄ − γ0) (DUt (τ̃)−DUt (τ0)) , (A.22)

into the first of these terms gives

T−1

T−i∑
t=p−i+1

(∆ũt −∆ût) ∆ũt−j+i

=
(
β̂c̄ − β̃c̄

)
T−1

T−i∑
t=p−i+1

∆ũt−j+i + (γ̂c̄ − γ̃c̄) T−1

T−i∑
t=p−i+1

DUt (τ0) ∆ũt−j+i

− (γ̃c̄ − γ0) T−1

T−i∑
t=p−i+1

(DUt (τ̃)−DUt (τ0)) ∆ũt−j+i

=
(
β̂c̄ − β̃c̄

)
T−1 (ũT−j − ũp−j−1) + (γ̂c̄ − γ̃c̄) T−1

(
ũT−j − ũbτ0T c

)
− (γ̃c̄ − γ0) T−1

(
ũbτ0T c − ũbτ̃T c

)
which is obviously Op (T−1), uniformly in i and j ≤ p. The second term is similarly
Op (T−1).

(iii) We first write

T−1

T∑
t=p+1

ũt−1∆ũt−i − T−1

T∑
t=p+1

ût−1∆ût−i = T−1

T−1∑
t=p

(ũt − ût) ∆ũt−i+1

+ T−1

T−i∑
t=p−i+1

ût−1+i (∆ũt −∆ût) .(A.23)

The first term can be written as

T−1

T−1∑
t=p

(ũt − ût) ∆ũt−i+1 = T−1 (ũT−1 − ûT−1) ũT−i − T−1 (ũp − ûp) ũp−i

−T−1

T−1∑
t=p+1

ũt−i (∆ũt −∆ût)
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the first two terms of which are Op

(
T−1/2

)
by Lemma 5(i), while the third term is

essentially the same as the second term in (A.23). Therefore we just need to show that
the second term of (A.23) is of Op

(
T−1/2

)
. Substituting (A.22) into the second term

of (A.23) gives

T−1

T−i∑
t=p−i+1

ût−1+i (∆ũt −∆ût) = T 1/2
(
β̂c̄ − β̃c̄

)
T−3/2

T−i∑
t=p−i+1

ût−1+i

+ T 1/2 (γ̂c̄ − γ̃c̄) T−3/2

T−i∑
t=bτ0T c+1

ût−1+i

+ T 1/2 (γ̃c̄ − γ0) T−3/2

bτ0T c∑
t=bτ̃T c+1

ût−1+i,

The first two terms of which are clearly of Op

(
T−1/2

)
from (A.11). For the last term,

we will show that

T−3/2

bτ0T c∑
t=bτ̃T c+1

ût−1+i = Op

(
T−1

)
. (A.24)

For convenience we will just show (A.24) under the null with c = 0, though of
course it will hold with c > 0 as well. We know that τ̃ is Op (T−1) consistent so that
for any ε > 0 there exists a Bε > 0 such that Pr (|τ̃ − τ0| > T−1Bε) < ε for all large
enough T . Since we are only concerned with τ̃ < τ0 in this proof, we note that

Pr

∣∣∣∣∣∣T−3/2

bτ0T c∑
t=bτ̃T c+1

ût−1+i

∣∣∣∣∣∣ ≥ sup
τ∈[τ0−T−1Bε,τ0]

∣∣∣∣∣∣T−3/2

bτ0T c∑
t=bτT c+1

ût−1+i

∣∣∣∣∣∣
 ≤ ε, (A.25)

so we just need to derive the order of the right hand term in this inequality. Now

ût = ut −Xt (τ0)
′
(
θ̂c̄ − θ0

)
,

and ut =
∑t

j=1 εj under the null. Applying the BN decomposition to εt = c (L) ηt gives
εt = c (1) ηt −∆ε∗t and

T−3/2

bτ0T c∑
t=bτT c+1

ut−1 = c (1) T−3/2

bτ0T c∑
t=bτT c+1

t−1∑
j=1

ηj + T−3/2

bτ0T c∑
t=bτT c+1

(
ε∗t−1 − ε∗1

)
.

The second term is clearly Op (T−1) while the first can be written

T−3/2

bτ0T c∑
t=bτT c+1

t−1∑
j=1

ηj = T−3/2

bτ0T c−1∑
j=1

bτ0T c∑
t=(j+1)∨(bτT c+1)

ηj = T−3/2

bτ0T c−1∑
j=1

(bτ0T c − j ∨ bτT c) ηj.
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For any τ ∈ [τ0 − T−1Bε, τ0] this has mean zero and variance

T−3

bτ0T c−1∑
j=1

(bτ0T c − (j ∨ bτT c))2 ≤ bτ0T c
T

(
bτ0T c − bτT c

T

)2

≤ bτ0T c
T

(
bτ0T c − b(τ0 − T−1Bε) T c

T

)2

=
bτ0T c

T

(
Bε

T
− τ0T − bτ0T c

T
+

(τ0 − T−1Bε) T − b(τ0 − T−1Bε) T c
T

)2

= O
(
T−2

)
.

Thus T−3/2
∑bτ0T c

t=bτT c+1 ut−1 = Op (T−1) uniformly in τ ∈ [τ0 − T−1Bε, τ0]. Next, since

DT

(
θ̂c̄ − θ0

)
= Op (1) by (A.10), we just consider

T−3/2

bτ0T c∑
t=bτT c+1

D−1
T Xt (τ0) = T−3/2

bτ0T c∑
t=bτT c+1

 1
T−1/2t

T−1/2DTt (τ0)


=

 T−3/2 (bτ0T c − bτT c)
1
2
T−2

(
bτ0T c2 + bτ0T c − bτT c2 − bτT c

)
0

 .

The first element of the vector is O
(
T−3/2

)
for τ ∈ [τ0 − T−1Bε, τ0] while the second

term satisfies

1

2
T−2

(
bτ0T c2 + bτ0T c − bτT c2 − bτT c

)
=

1

2

(
bτ0T c − bτT c

T

)(
bτ0T c+ bτT c+ 1

T

)
= O

(
T−1

)
.

We have therefore shown that supτ∈[τ0−T−1Bε,τ0]

∣∣∣T−3/2
∑bτ0T c

t=bτT c+1 ût−1+i

∣∣∣ = Op (T−1)

and, by (A.25), that (A.24) holds too.

Proof of Lemma 6

(i) As noted in Berk (1974, p.492), we can write

∥∥∥∥∥Ũ ′
pŨp

T
−

Û ′
pÛp

T

∥∥∥∥∥ ≤

 p∑
i=1

p∑
j=1

(
T−1

T∑
t=p+1

∆ũt−i∆ũt−j − T−1

T∑
t=p+1

∆ũt−i∆ũt−j

)2
1/2

= Op

(
pT−1

)
(A.26)

from Lemma 5(ii). By standard manipulations (see, for example, Equation (2.15) of

29



Berk, 1974), we can write1−

∥∥∥∥∥Ũ ′
pŨp

T
−

Û ′
pÛp

T

∥∥∥∥∥
∥∥∥∥∥∥
(

Û ′
pÛp

T

)−1
∥∥∥∥∥∥
∥∥∥∥∥∥

(
Ũ ′

pŨp

T

)−1
∥∥∥∥∥∥−

∥∥∥∥∥∥
(

Û ′
pÛp

T

)−1
∥∥∥∥∥∥


≤

∥∥∥∥∥∥
(

Û ′
pÛp

T

)−1
∥∥∥∥∥∥
∥∥∥∥∥Ũ ′

pŨp

T
−

Û ′
pÛp

T

∥∥∥∥∥
∥∥∥∥∥∥
(

Û ′
pÛp

T

)−1
∥∥∥∥∥∥ .

The right hand side of this inequality is Op (pT−1) by (A.12) and (A.26). Similarly the
first term on the left hand side is positive with probability approaching one. Thus∥∥∥∥∥∥

(
Ũ ′

pŨp

T

)−1
∥∥∥∥∥∥−

∥∥∥∥∥∥
(

Û ′
pÛp

T

)−1
∥∥∥∥∥∥ p→ 0

which establishes the result in part (i).

(ii) The stated result follows from (A.13) and the proof of part (vi), below.

(iii) First observe that∥∥∥∥∥Û ′
p∆û

T

∥∥∥∥∥ =

 p∑
j=1

(
T−1

T∑
t=p+1

∆ût−j∆ût

)2
1/2

= Op

(
p1/2

)
since each of T−1

∑T
t=p+1 ∆ût−j∆ût = Op (1) for each j. Then the result that

∥∥∥T−1Ũ ′
p∆ũ

∥∥∥ =

Op

(
p1/2

)
follows from this and the proof of part (iv), below.

(iv) We write∥∥∥∥∥Ũ ′
p∆ũ

T
−

Û ′
p∆û

T

∥∥∥∥∥ =

 p∑
j=1

(
T−1

T∑
t=p+1

∆ũt−j∆ũt − T−1

T∑
t=p+1

∆ût−j∆ût

)2
1/2

= Op

(
p1/2T−1

)
from Lemma 5(ii).

(v) Simple reorganisation gives∥∥∥∥∥∥
(

Ũ ′
pŨp

T

)−1

−

(
Û ′

pÛp

T

)−1
∥∥∥∥∥∥ ≤

∥∥∥∥∥∥
(

Ũ ′
pŨp

T

)−1
∥∥∥∥∥∥
∥∥∥∥∥Ũ ′

pŨp

T
−

Û ′
pÛp

T

∥∥∥∥∥
∥∥∥∥∥∥
(

Û ′
pÛp

T

)−1
∥∥∥∥∥∥

= Op

(
pT−1

)
from (A.26), (A.12) and part (i), above.
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(vi) We write

∥∥∥∥∥ ũ′−1Ũp

T
−

û′−1Ûp

T

∥∥∥∥∥ =

 p∑
j=1

(
T−1

T∑
t=p+1

∆ũt−jũt−1 − T−1

T∑
t=p+1

∆ût−jût−1

)2
1/2

which is Op

(
p1/2T−1/2

)
from Lemma 5(iii).

A.3 Proof of Lemma 2

The partial sums of the DGP in matrix form is written

w = Zτ0θ0 + s. (A.27)

We also partition Zτ as Zτ := (Z1, Z2,τ ) so that

w = Z1θ1,0 + z2,τγ0 + s,

and the Wald test statistic for γ0 = 0 can be written

WT (τ) =

(
z′2,τ P̄1w

)2(
z′2,τ P̄1z2,τ

) (
w′P̄τw

) ,
where P̄1 := IT − Z1 (Z ′

1Z1)
−1 Z ′

1 and P̄τ := IT − Zτ (Z ′
τZτ )

−1 Z ′
τ .

We first derive the asymptotic theory for WT (τ0). If τ = τ0 we can use w′P̄τ0w =

s′P̄τ0s and P̄τ0 = P̄1 − P̄1z2,τ0

(
z′2,τ0

P̄1z2,τ0

)−1
z2,τ0P̄1 to write

WT (τ0) =

(
γz′2,τ0

P̄1z2,τ0 + z′2,τ0
P̄1s
)2(

z′2,τ0
P̄1z2,τ0

) (
s′P̄1s

)
−
(
z′2,τ0

P̄1s
)2 . (A.28)

In all cases we have the limit

T−5z′2,τ0
P̄1z2,τ0 →

∫ 1

0

Z2.1,τ0 (r)2 dr,

where Z2.1,τ0 (r) is the residual process from a projection of Z2,τ0 (r) on Z1 (r).

(i) Suppose γ0 = 0. In this case

T−9/2z′2,τ0
P̄1s

d→ ωε

∫ 1

0

Z2.1,τ0 (r) S1 (r) dr,

and

T−4s′P̄1s
d→ ω2

ε

∫ 1

0

S1 (r)2 dr.
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Substitution into (A.28) gives

WT (τ0) =

(
T−9/2z′2,τ0

P̄1s
)2(

T−5z′2,τ0
P̄1z2,τ0

) (
T−4s′P̄1s

)
−
(
T−9/2z′2,τ0

P̄1s
)2

d→

(∫ 1

0
Z2.1,τ0 (r) S1 (r) dr

)2

∫ 1

0
Z2.1,τ0 (r)2 dr

∫ 1

0
S1 (r)2 dr −

(∫ 1

0
Z2.1,τ0 (r) S1 (r) dr

)2

=

∫ 1

0
S1 (r)2 dr∫ 1

0
S1,τ0 (r)2 dr

− 1.

(ii) If γ0 6= 0 then

T−1WT (τ0) =

(
γ0T

−5z′2,τ0
P̄1z2,τ0 + T−5z′2,τ0

P̄1s
)2(

T−5z′2,τ0
P̄1z2,τ0

) (
T−4s′P̄1s

)
−
(
T−9/2z′2,τ0

P̄1s
)2 (A.29)

d→
γ2

0

∫ 1

0
Z2.1,τ0 (r)2 dr∫ 1

0
Z2.1,τ0 (r)2 dr

∫ 1

0
S1 (r)2 dr −

(∫ 1

0
Z2.1,τ0 (r) S1 (r) dr

)2

= γ2
0

(∫
S1,τ0 (r)2 dr

)−1

.

(iii) For γ0 = 0, the statistic with appropriate normalisation is

WT (τ̃) =

(
T−9/2z′2,τ̃ P̄1s

)2(
T−5z′2,τ̃ P̄1z2,τ̃

) (
T−4s′P̄1s

)
−
(
T−9/2z′2,τ̃ P̄1s

)2 .

Using the fact that τ̃ = Op (1) (see, Nunes et al., 1995, p.741), we will show that

T−9/2z′2,τ̃ P̄1s = Op (1) and T−5z′2,τ̃ P̄1z2,τ̃ = Op (1) while T−4s′P̄1s
d→ ω2

1

∫ 1

0
S1 (r)2 dr as

before.
Now,

T−9/2z′2,τ̃ P̄1s =
z′2,τ̃s

T 9/2
−

z′2,τ̃Z1D
−1
1,T

T 3

(
D−1

1,T Z ′
1Z1D

−1
1,T

T

)−1
D−1

1,T Z ′
1s

T 5/2
,

where D1,T = diag (T, T 2). Here,∣∣∣∣z′2,τ̃s

T 9/2

∣∣∣∣ =

∣∣∣∣∣T−9/2

T∑
t=1

(
t∑

j=1

0 ∨ (j − τ̃)

)
st

∣∣∣∣∣
≤ T−2

T∑
j=0

j · T−5/2

T∑
t=1

|st| = Op (1) .

32



Also,

D−1
1,T Z ′

1z2,τ̃

T 3
= T−3

T∑
t=1

(
t/T

1
2
t2/T 2

)( t∑
j=1

0 ∨ (j − τ̃)

)

≤ T−3

T∑
t=τ̃

t∑
j=τ̃

j ≤ T−3

T∑
t=1

t∑
j=1

j = O (1) ,

while T−1D−1
1,T Z ′

1Z1D
−1
1,T and T−5/2D−1

1,T Z ′
1s do not involve τ̃ and are clearly Op (1) as

well. Thus T−9/2z′2,τ̃ P̄1s = Op (1). Similarly

T−5z′2,τ̃ P̄1z2,τ̃ =
z′2,τ̃z2,τ̃

T 5
−

z′2,τ̃Z1D
−1
1,T

T 3

(
D−1

1,T Z ′
1Z1D

−1
1,T

T

)−1
D−1

1,T Z ′
1z2,τ̃

T 3
,

where

z′2,τ̃z2,τ̃

T 5
= T−5

T∑
t=1

(
t∑

j=1

0 ∨ (j − τ̃)

)2

= T−5

T−τ̃∑
t=0

(
t∑

j=0

j

)2

≤ T−5

T∑
t=0

(
t∑

j=0

j

)2

= Op (1) .

Thus T−5z′2,τ̃ P̄1z2,τ̃ = Op (1) and hence WT (τ̃) = Op (1) .

(iv) Now, τ̃ − τ0 = Op (T−1) and in view of (A.29) we will show that (for τ̃ ≥ τ0 is suf-
ficient): (a) T−5z′2,τ0

P̄1z2,τ0 −T−5z′2,τ̃ P̄1z2,τ̃ = op (1); (b) T−9/2z′2,τ0
P̄1s−T−9/2z′2,τ̃ P̄1s =

op (1), while obviously T−5z′2,τ̃ P̄1s = op (1). For (a), we will show

D−1
1,T Z ′

1z2,τ0

T 3
−

D−1
1,T Z ′

1z2,τ̃

T 3
= op (1) (A.30)

and
z′2,τ0

z2,τ0

T 5
−

z′2,τ̃z2,τ̃

T 5
=

z′2,τ0
(z2,τ0 − z2,τ̃ )

T 5
+

(z2,τ0 − z2,τ̃ )
′ z2,τ̃

T 5
= op (1) .

First∣∣∣∣∣D−1
1,T Z ′

1z2,τ0

T 3
−

D−1
1,T Z ′

1z2,τ̃

T 3

∣∣∣∣∣ =

∣∣∣∣∣T−3

T∑
t=1

(
t/T

1
2
t2/T 2

) t∑
j=1

(DTj (τ0)−DTj (τ̃))

∣∣∣∣∣
≤ T−2

T∑
t=1

|DTt (τ0)−DTt (τ̃)| · T−1

T∑
t=1

(
t/T

1
2
t2/T 2

)
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=

(
T−1

∑
τ0T<t≤τ̃T

(
t

T
− τ0

)
+ T−1

∑
τ̃T<t≤T

(τ̃ − τ0)

)
· T−1

T∑
t=1

(
t/T

1
2
t2/T 2

)

≤ (τ̃ − τ0) · T−1

T∑
t=1

(
t/T

1
2
t2/T 2

)
= Op

(
T−1

)
,

and second

z′2,τ0
(z2,τ0 − z2,τ̃ )

T 5
= T−5

T∑
t=1

(
t∑

i=1

DTi (τ0)

)(
t∑

j=1

(DTj (τ0)−DTj (τ̃))

)

≤ T−2

T∑
j=1

|DTj (τ0)−DTj (τ̃)| · T−3

T∑
t=1

(
t∑

i=1

DTi (τ0)

)

≤ (τ̃ − τ0) · T−3

T∑
t=1

(
t∑

i=1

i

)
= Op

(
T−1

)
,

and similarly for T−5 (z2,τ0 − z2,τ̃ )
′ z2,τ̃ . Therefore T−5z′2,τ0

P̄1z2,τ0 − T−5z′2,τ̃ P̄1z2,τ̃ =
op (1). For (b), since we have already established (A.30), it will be sufficient to show
that

z′2,τ0
s

T 9/2
−

z′2,τ̃s

T 9/2
= op (1) ,

which follows from∣∣∣∣z′2,τ0
s

T 9/2
−

z′2,τ̃s

T 9/2

∣∣∣∣ =

∣∣∣∣∣T−9/2

T∑
t=1

t∑
j=1

(DTj (τ0)−DTj (τ̃)) st

∣∣∣∣∣
≤ T−2

T∑
j=1

|DTj (τ0)−DTj (τ̃)| · T−5/2

T∑
t=1

|st|

≤ (τ̃ − τ0) · T−5/2

T∑
t=1

|st| = Op

(
T−1

)
.

Together, (a) and (b) imply that T−1WT (τ0)− T−1WT (τ̃) = op (1), as required.

A.4 Proof of Lemma 3

(i) When γ0 = 0, τ̃ = Op(1), from Nunes et al. (1995, p.741). Consequently, τ̄ =
(1 − λ̄)Op(1) = Op(T

−1/2), since 1 − λ̄ = 1 − exp(−gT−1/2WT (τ̃)) = T−1/2gWT (τ̃) −
g2

2
T−1WT (τ̃)2 + · · · = Op(T

−1/2), because WT (τ̃) = Op(1).

(ii) When γ0 6= 0, we find that T (τ̄ − τ0) = T (τ̃ − τ0) − T λ̄τ̃ = Op(1) + op(1)Op(1) =

Op(1), since T λ̄ = T exp(−gT−1/2WT (τ̃)) = T (1 − T−1/2gWT (τ̃) + g2

2
T−1WT (τ̃)2 −

· · · )−1 = op(1), as T−1WT (τ̃)2 = Op(T ).
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Figure 1. Asymptotic size and local power: γ0 = 0; t(τ̄), tP (τ̃): , tC(τ̂ ): – – , tZA: · · ·

F.1



(a) τ0 = 0.3

(b) τ0 = 0.5

(c) τ0 = 0.7

Figure 2. Asymptotic size and local power: γ0 6= 0;
Gaussian power envelope: – · –, t(τ̄), tP (τ̃ ): , tC(τ̂): – –

F.2



(a) T = 150 (b) T = 300

Figure 3. Finite sample size and power: γ0 = 0;
t(τ̄): , tP (τ̃): - - - , tC(τ̂): – – , tZA: · · ·

F.3



(a) τ0 = 0.3, T = 150 (b) τ0 = 0.3, T = 300

(c) τ0 = 0.5, T = 150 (d) τ0 = 0.5, T = 300

(c) τ0 = 0.7, T = 150 (d) τ0 = 0.7, T = 300

Figure 4. Finite sample size and power: γ0 = 1;
t(τ̄): , tP (τ̃): - - - , tC(τ̂): – – , tZA: · · ·

F.4


