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Abstract

One of the most cited studies in recent years within the field of nonstationary panel

data analysis is that of Bai and Ng (2004), in which the authors propose PANIC, a new

framework for analyzing the nonstationarity of panels with idiosyncratic and common

components. This paper shows that their results are not sharp enough to ensure PANIC

as an asymptotically valid framework for constricting pooled panel unit root tests.
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1 Introduction

Consider the observed variable Xit, where t = 1, ..., T and i = 1, ..., N indexes the time series

and cross-sectional units, respectively. The starting point of PANIC is to decompose Xit into

two components, one that is common across i and one that is idiosyncratic. In this note, we
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consider the simple setup with an intercept only, in which case Xit may be written as

Xit = ci + λ′iFt + eit = ci +
r∑

j=1

λjiFjt + eit, (1)

where the common factor Fjt and loading λji represent the common component of Xit, while

eit represents the idiosyncratic component. These are assumed to be generated as

Fjt = φjFjt−1 + ujt and eit = ρieit−1 + εit, (2)

where we assume for simplicity that ujt and εit are uncorrelated across t. In this setup, the

idiosyncratic component eit has a unit root if ρi = 1 and it is stationary if ρi < 1. Similarly, if

some of the φj parameters are equal to one, then Xit has as many common stochastic trends

as the number of unit roots in Ft.

The objective of PANIC is to determine the number of common stochastic trends and

test if ρi = 1 when Ft and eit are estimated using the method of principal components. The

problem is that if eit is nonstationary, then this method cannot be applied to Xit because

it will render the resulting estimate of λi inconsistent. Bai and Ng (2004) therefore suggest

applying the principal components method to xit, the first difference of Xit, rather than to

Xit itself. To appreciate the point of this, note that xit can be written as

xit = λ′ift + zit, (3)

where ft and zit are the first differences of Ft and eit, respectively. In contrast to (1), all the

components of this equation are stationary, which means that consistent estimates λ̂i, f̂t and

ẑit = xit− λ̂′if̂t of λi, ft and zit can be obtained. Estimates F̂t and êit of Ft and eit can then

be obtained by simply recumulating f̂t and ẑit.

The idea behind PANIC is to test whether ρi = 1 by subjecting êit to any conventional

unit root test, such as the classical Dickey and Fuller (1979) test, which can be written as

DF c
ê (i) = Ûi√

V̂i

where Ûi and V̂i are the usual sample moments of êit. The justification for

testing in this particular way is that DF c
ê (i) is asymptotically equivalent to DF c

e (i), the unit

root test based on eit. Similarly, knowing F̂t is as good as knowing Ft, in the sense that

DF c
F̂
(i) is asymptotically equivalent to DF c

F (i). This is very convenient as it implies that it

is possible to disentangle the sources of potential nonstationarity in Xit by separately testing

for unit roots in eit and Ft.
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Another interesting advantage of PANIC is that DF c
ê (i) can be used to construct pooled

tests for a unit root in eit. The conventional way to construct such tests involves first de-

meaning the data, and then subjecting each of the demeaned series to a unit root test.1 If Xit

is independent across i, the normalized average of these tests converges to a normal variate

under the null hypothesis of a unit root. Unfortunately, such tests are generally inappropriate

as Xit will usually exhibit at least some form of dependence across i. By contrast, pooled

tests based on eit are more widely applicable, since they are valid under the more plausible

assumption that Xit admits to a common factor structure.

Yet another advantage, even in comparison to other studies that also permit for common

factors, is that in PANIC the factors need not be stationary. This makes tests based on eit

very general indeed, and is probably one of the main reasons why PANIC has become so

popular in both applied and theoretical work, see Breitung and Pesaran (2005).

This paper points out a weakness in PANIC that seems to have been largely overlooked

in the literature. In particular, it is shown that the theoretical results provided by Bai and

Ng (2004) are not enough to ensure that PANIC can be used for constructing asymptotically

valid panel tests based on averaging. This is because the order of the error incurred when

replacing DF c
e (i) with DF c

ê (i) is not sufficiently sharp to ensure that it vanishes as N increases.

This paper provides additional results showing that PANIC can in fact be used for pooling

purposes.

2 Main results

This section reports our main results using as an example the DF c
ê (i) statistic, which was

also considered by Bai and Ng (2004). However, the results apply to all panel tests that

are based on pooling across individual test statistics or their p-values. The data generating

process is taken directly from Bai and Ng (2004), and consists of (1) and (2) plus their

assumptions A through E. For simplicity, in this paper we also assume that uit and εit are

serially uncorrelated, and that εit is normally distributed.2

1See Breitung and Pesaran (2005) for a recent survey of the existing panel unit root literature.
2The first assumption is by no means restrictive, in the sense that violations can be easily accommodated

by using any serial correlation corrected test, such as the augmented Dickey and Fuller (1979) test. Although

we speculate that the second assumption can be relaxed as well, some of the proofs given in this paper would

not go through, and normality is therefore maintained.
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The appendix shows that if ρi = 1 holds for unit i, then

DF c
ê (i) = DF c

e (i) +Ri = DF c
e (i) + Op

(
1

CNT

)
⇒ Bi as N, T →∞, (4)

where Ri is a remainder term, CNT = min{√T ,
√

N} and Bi is the usual Dickey and Fuller

(1979) test distribution. The by far most common way of pooling statistics of this sort is to

take the cross-sectional average, DF
c
ê(N) say. Bai and Ng (2004) argues that since DF c

ê (i) is

asymptotically equivalent to DF c
e (i) and Bi is independent across i, it must be true that

√
N(DF

c
ê(N)−E(B)) ⇒ N(0, var(B))

and this should hold irrespectively of the relative expansion rate of N and T , as long as they

both go to infinity. However, this is not correct, as seen by noting that as N, T →∞

√
N(DF

c
ê(N)−E(B)) =

√
N(DF

c
e(N)− E(B)) +

1√
N

N∑

i=1

Ri.

⇒ N(0, var(B)) + Op

(√
N

CNT

)
. (5)

Thus, even if we assume that N
T → 0 as N, T →∞, the order of the remainder is still Op(1).

In other words, although still valid on an individual unit level as seen in (4), based on the

results provided by Bai and Ng (2004), PANIC does not seem to be a valid approach for

pooling tests. The following theorem shows that this suspicion is uncalled for, and that the

Op(1) remainder actually is op(1).

Theorem 1. Under the assumptions given above and the null hypothesis that ρi = 1 for all

i, as N, T →∞ with N
T → 0

(a) DF
c
ê(N) →p E(B)

(b)
√

N(DF
c
ê(N)− E(B)) ⇒ N(0, var(B))

A detailed account of the remainder in (5) is provided in the appendix. However, it is

instructive to note that

1√
N

N∑

i=1

Ri = − 1√
NT

N∑

i=1

eiT AiT√
Vi

+
1√

NT 2

N∑

i=1

σ2
εiUi

V
3/2
i

T∑

t=2

eit−1Ait−1 + Op

( √
N

RNT

)
,

where RNT = min{√T , N}, Ait is the cumulative sum of ait = λ̂′if̂t−λ′ift, and Ui and Vi are

Ûi and V̂i based on eit, respectively. It is further possible to show that if N, T → ∞ with
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N
T → 0, then this expression has the following limit

1√
N

N∑

i=1

Ri →p φ

(
lim

N, T→∞

√
NE(R)

)
,

where
√

NE(R) tends to zero as N, T → ∞. Our simulation results suggest that φ plays a

big role in determining the small-sample performance of the pooled test. To see why, note

that φ can be written as

φ = lim
N→∞

1
N

N∑

i=1

1
σεi

√
λ′i

(
Σ−1ΓΣ−1

)
λi ,

where Γ and Σ are such that 1
N

∑N
i=1 σ2

εiλiλ
′
i → Γ and 1

N

∑N
i=1 λiλ

′
i → Σ as N → ∞,

respectively. Thus, since φ is essentially an average of N unit specific variance ratios, it is

generally positive, which means that
√

N(DF
c
ê(N) − E(B)) is expected to be negative in

small samples, as
√

NE(R) will tend to be negative. Being left-tailed, this is suggestive of

an oversized test. We also see that σ2
εi and λi can be scaled by a constant without leaving

any effect on φ. As an extreme example, note that if σ2
εi is equal across i, then Γ simplifies

to σ2
ε Σ in which case we get

φ =
1
N

N∑

i=1

1
σε

√
λ′i

(
Σ−1ΓΣ−1

)
λi =

1
N

N∑

i=1

√
λ′i(Σ−1)λi.

Thus, if εit is homoskedastic across i then there is no dependence upon σ2
ε . Heteroskedasticity

is therefore an important factor in determining the extent of any small-sample bias that comes

from replacing DF c
ê (i) with DF c

e (i).

3 Simulations

A small-scale simulation was conducted to assess the impact of our asymptotic results in

small samples. For that purpose, since our focus lies in examining the null distribution of

the test, the data are generated according to (1) and (2) with ρi = 1 for all i. For simplicity,

we further assume that φj = 0 for all j, that r = 2, that λi ∼ N(0, 1) and that ci = 1 for

all i. The errors ujt and εit are both assumed to be mean zero and normally distributed

with variance one and σ2
εi ∼ U(0, b), respectively. The parameter b determines the degree

of the heteroskedasticity of the idiosyncratic component, and is key in the simulations. All
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computations have been performed in GAUSS using 10,000 replications. The results reported

in Table 1 may be summarized as follows.3

Firstly, looking at the rightmost column, we see that the simulated remainder is a sig-

nificant contributor to the variation of DF ê(N) with a variance share close to 50% in most

cases. We also see that this share slowly disappears as N and T grows, which corroborates

the asymptotic results.

Secondly, it interesting to see how the centering of the simulated remainder is affected by

N and T on the one hand, and by b on the other hand. With b fixed, we see that while the

effect of increasing T seem to be small, a larger N pushes the distribution of the remainder,

and hence also that of DF ê(N), to the right, thus making positive outcomes more likely.

Hence, since the critical region is in the left tail of the normal distribution, this will make

the test more conservative. By contrast, if we fix N and T , and instead let b increase, we see

that the remainder tends to the left, causing DF ê(N) to become oversized. When there is no

heteroskedasticity, there is no bias effect.

Finally, note that while the performance of the pooled tests seems to be greatly affected by

the parametrization of the data generating process, as expected, the performance of DFê(i)

is essentially unaffected.

4 Concluding remarks

In this paper we point out a flaw in the theoretical results provided by Bai and Ng (2004) for

their PANIC unit root methodology. The problem lies in the order of the error incurred when

replacing the idiosyncratic component eit by its estimated counterpart êit, which is not sharp

enough to ensure that PANIC can be used for pooling across i. The current paper provides

more exact results establishing that PANIC can in fact be used for pooling purposes.
3To better isolate the effect of pooling, we have assumed that the true number of factors is known. Also, as

in the previous sections, we do not provide any results for the case with serial correlation. Interested readers

are referred to the paper of Kapetanios (2007) for some results when the data are serially correlated.
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Appendix: Mathematical proofs

In this appendix, we prove Theorem 1. In so doing, we will make use of the fact that the

common factor can only be identified up to a scale matrix H, say. Thus, what we will consider

here is the rotation HFt of Ft. As usual, ||A|| will denote the Euclidean norm
√

tr(A′A) of

the matrix A.

Lemma A.1. As N, T →∞

(a) V̂i = Vi − σ2
εi

(
2
T 2

T∑

t=2

eit−1Ait−1

)
+ Op

(
1

RNT

)
,

(b) Ûi = Ui − 1
T

eiT AiT + Op

(
1

RNT

)
.

Proof of Lemma A.1.

We begin with (a). By definition

V̂i = σ̂2
εi

1
T 2

T∑

t=2

ê2
it−1.

Consider σ̂2
εi. Under the null hypothesis that ρi = 1 for all i

σ̂2
εi =

1
T

T∑

t=1

ε̂2it =
1
T

T∑

t=2

(∆êit − (ρ̂i − 1)êit−1)2

=
1
T

T∑

t=2

(∆êit)2 − 2(ρ̂i − 1)

(
1
T

T∑

t=2

êit−1∆êit

)
+ T (ρ̂i − 1)2

(
1
T 2

T∑

t=2

ê2
it−1

)
. (A1)

Consider the first term on the right-hand side of this equation. From the text, we have that

the defactored and first differentiated residuals can be written as

∆êit = xit − λ̂′if̂t = ∆eit − (λ̂′if̂t − λ′ift) = ∆eit − ait. (A2)

If we let di = λ̂i − (H−1)′λi and vt = f̂t −Hft, then ait can be rewritten as

ait = λ′iH
−1(f̂t −Hft) + (λ̂i − (H−1)′λi)′f̂t = λ′iH

−1vt + d′if̂t. (A3)
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This implies

1
T

T∑

t=2

(∆êit)2 =
1
T

T∑

t=2

(∆eit − ait)2

=
1
T

T∑

t=2

(∆eit)2 +
1
T

T∑

t=2

a2
it −

2
T

T∑

t=2

∆eitait

=
1
T

T∑

t=2

(∆eit)2 + I − II, say. (A4)

By using the same arguments as in Lemma B.1 of Bai and Ng (2004), part I is Op(1/C2
NT ).

Part II can be written as

II = 2λ′iH
−1 1

T

T∑

t=2

∆eitvt + 2d′i
1
T

T∑

t=2

∆eitf̂t

= 2d′i
1
T

T∑

t=2

∆eitf̂t + Op

(
1

C2
NT

)

= 2d′i
1
T

T∑

t=2

∆eit(f̂t −Hft) + 2d′iH
1
T

T∑

t=2

∆eitft + Op

(
1

C2
NT

)
,

where the second equality follows by Lemma B.1 of Bai (2003). By applying ||AB|| ≤ ||A||||B||
and the triangle inequality to the remaining part, we get

|II| ≤ 2||di||
(

1
T

T∑

t=2

||∆eit(f̂t −Hft)||
)

+ 2||di||||H||
(

1
T

T∑

t=2

||∆eitft||
)

+ Op

(
1

C2
NT

)
,

which, by applying the Cauchy-Schwarz inequality to the first term on the right-hand side,

reduces to

|II| ≤ 2||di||
(

1
T

T∑

t=2

(∆eit)2
)1/2 (

1
T

T∑

t=2

||f̂t −Hft||2
)1/2

+ 2||di||||H||
(

1
T

T∑

t=2

||∆eitft||
)

+ Op

(
1

C2
NT

)

= Op

(
1

RNT

)
Op(1)Op

(
1

CNT

)
+ Op

(
1

RNT

)
Op

(
1√
T

)
+ Op

(
1

C2
NT

)
,

where ||H|| = Op(1) by construction and ||di|| = Op(1/RNT ) by Lemma 1 (c) of Bai and Ng

(2004). Also, from Lemma A.1 of Bai (2003), we have

1
T

T∑

t=2

||f̂t −Hft||2 = Op

(
1

C2
NT

)
. (A5)
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This implies that II is Op(1/C2
NT ), which in turn implies

1
T

T∑

t=2

(∆êit)2 =
1
T

T∑

t=2

(∆eit)2 + Op

(
1

C2
NT

)
. (A6)

Consider next the third term on the right-hand side of (A1), which, since êi1 = 0 by

definition, may be written as

1
T 2

T∑

t=2

ê2
it =

1
T 2

T∑

t=2

(eit − ei1 −Ait)2

=
1
T 2

T∑

t=2

e2
it +

1
T

e2
i1 +

1
T 2

T∑

t=2

A2
it −

2
T 2

T∑

t=2

eitAit

− 2ei1

(
1
T 2

T∑

t=2

eit − 1
T 2

T∑

t=2

Ait

)

=
1
T 2

T∑

t=2

e2
it + I + II − III − IV, say. (A7)

Part I is obviously Op(1/T ). The next step is to show that II is Op(1/C2
NT ). We begin by

using (A3), which implies that Ait = λ′iH
−1Vt + d′iF̂t where Vt is the cumulative sum of vt.

Thus, by subsequently applying the triangle inequality and then (a + b)2 ≤ 2(a2 + b2), we get

|II| =
1
T 2

∣∣∣
∣∣∣

T∑

t=2

(λ′iH
−1Vt + d′iF̂t)2

∣∣∣
∣∣∣

≤ 2||λ′iH−1||2
(

1
T 2

T∑

t=2

||Vt||2
)

+ 2||di||2
(

1
T 2

T∑

t=2

||F̂t||2
)

= Op

(
1

C2
NT

)
+ Op

(
1

R2
NT

)
Op(1),

where we have used equation (A.3) of Bai and Ng (2004), which says that

1√
T

Vt = Op

(
1

CNT

)
(A8)

and therefore

1
T 2

T∑

t=2

||Vt||2 =
1
T

T∑

t=2

(∣∣∣∣
∣∣∣∣

1√
T

Vt

∣∣∣∣
∣∣∣∣
)2

= Op

(
1

C2
NT

)
. (A9)

Also, Lemma B.2 (i) of Bai and Ng (2004) implies that 1
T 2

∑T
t=2 ||F̂t||2 = Op(1).
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Part III can be rewritten as

III = 2λ′iH
−1 1

T 2

T∑

t=2

eitVt + 2d′i
1
T 2

T∑

t=2

eitF̂t

= 2λ′iH
−1 1

T 2

T∑

t=2

eitVt + 2d′i

(
1
T 2

T∑

t=2

eit(F̂t −HFt)

)
+ 2d′iH

(
1
T 2

T∑

t=2

eitFt

)

= Op

(
1

CNT

)
+ Op

(
1

RNT

)
Op

(
1

CNT

)
+ Op

(
1

RNT

)
Op(1),

where the order of the first term on the right-hand side follows from first using the Cauchy-

Schwarz inequality and then (A9), as seen by writing

1
T 2

T∑

t=2

eitVt ≤
(

1
T 2

T∑

t=2

e2
it

)1/2 (
1
T 2

T∑

t=2

||Vt||2
)1/2

= Op(1)Op

(
1

CNT

)
.

The order of the second term follows by the same argument, after rewriting F̂t − HFt =

−HF1 + Vt. The third term is obvious. If follows that III is Op(1/CNT ).

Finally, consider part IV . The first term within the parenthesis is Op(1/
√

T ) and can be

considered as Op(1/RNT ). For the second term, we have

1
T 2

T∑

t=2

Ait = λ′iH
−1

(
1
T 2

T∑

t=2

Vt

)
+ d′iH

(
1
T 2

T∑

t=2

Ft

)
+ d′i

(
1
T 2

T∑

t=2

(F̂t −HFt)

)

= Op

(
1√

TCNT

)
+ Op

(
1

RNT

)
Op

(
1√
T

)
+ Op

(
1

RNT

)
Op

(
1√

TCNT

)
,

where we make use of (A8) to obtain the individual orders. Thus, by collecting all the terms,

we can show that (A7) reduces to

1
T 2

T∑

t=2

ê2
it =

1
T 2

T∑

t=2

e2
it −

2
T 2

T∑

t=2

eitAit + Op

(
1

RNT

)
. (A10)

By using (A6), (A10), part (b) and the fact that T (ρ̂i − 1) = Op(1), (A1) reduces to

σ̂2
εi =

1
T

T∑

t=2

(∆eit)2 + Op

(
1

C2
NT

)
→p σ2

εi. (A11)

This result, together with (A10), implies part (a).

Next, consider (b). Again, by definition

Ûi =
1
T

T∑

t=2

êit−1∆êit.
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Note that ê2
it = (êit−1 + ∆êit)2 = ê2

it−1 + (∆êit)2 + 2êit−1∆êit, from which it follows that

1
T

T∑

t=2

êit−1∆êit =
1

2T

T∑

t=2

(ê2
it − ê2

it−1 − (∆êit)2)

=
1

2T
ê2
iT −

1
2T

ê2
i1 −

1
2T

T∑

t=2

(∆êit)2 (A12)

and by applying the same trick to e2
it, we have

1
T

T∑

t=2

eit−1∆eit =
1

2T
e2
iT −

1
2T

e2
i1 −

1
2T

T∑

t=2

(∆eit)2. (A13)

Now, the terms in the middle of the right-hand side of (A12) and (A13) are clearly Op(1/T )

as êi1 = 0 while ei1 = Op(1) by assumption. Also, by using (A6) the difference between the

third terms is Op(1/C2
NT ). As for the first term, note that

1
T

ê2
iT =

1
T

(eiT − ei1 −AiT )2

=
1
T

e2
iT +

1
T

e2
i1 +

1
T

A2
iT −

2
T

eiT AiT − 2
T

ei1(eiT −AiT )

=
1
T

e2
iT + I + II − III − IV, say. (A14)

By using (a + b)2 ≤ 2(a2 + b2), the triangle inequality, ||AB|| ≤ ||A||||B|| and then (A5), part

II can be written as

|II| =
1
T

(λ′iH
−1VT + d′iF̂T )2 ≤ 2||λ′iH−1||2

(
1
T

T∑

t=2

||vt||2
)

+ 2||di||2
(

1
T

T∑

t=2

||f̂t||2
)

= Op

(
1

C2
NT

)
+ Op

(
1

R2
NT

)
Op(1).

Hence, II is Op(1/C2
NT ).

Part III is simply

III =
2
T

eiT (λ′iH
−1VT + diF̂T )

= 2
(

1√
T

eiT

)
λ′iH

−1

(
1√
T

VT

)
+ 2

(
1√
T

eiT

)
d′i

(
1√
T

F̂T

)

= Op(1)Op

(
1

CNT

)
+ Op(1)Op

(
1

RNT

)
Op(1),

where the first term on the right-hand side is a direct consequence of (A8) while the second

follows from Lemma B.2 (i) of Bai and Ng (2004). Thus, III is Op(1/CNT ). Part IV is
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dominated by 2
T ei1eiT , which is Op(1/

√
T ) or Op(1/RNT ). Therefore, by adding the terms,

(A14) simplifies to

1
T

ê2
iT =

1
T

e2
iT −

2
T

eiT AiT + Op

(
1

RNT

)
,

which it turn implies (b) and thus the proof of Lemma A.1 is complete. ¥

Proof of Theorem 1.

Consider (a). By Lemma A.1 (a) and a first order Taylor expansion of the inverse square

root, we get

1√
V̂i

=
1√
Vi

+
1

V
3/2
i

R2i + Op

(
1

RNT

)
,

where

R2i = σ2
εi

1
T 2

T∑

t=2

eit−1Ait−1.

Let R1i = 1
T eiT AiT . Application of Lemma A.1 (b) now gives

DF c
ê (i) = DF c

e (i)− 1√
Vi
R1i +

Ui

V
3/2
i

R2i + Op

(
1

RNT

)
= DF c

e (i) +Ri,

where

Ri =
1√
Vi
R1i − Ui

V
3/2
i

R2i + Op

(
1

RNT

)
. (A15)

Thus, since the first two terms on the right-hand side of (A15) are Op(1/CNT ) by Lemma

A.1, we have that

DF
c
ê(N) =

1
N

N∑

i=1

DF c
ê (i) =

1
N

N∑

i=1

(DF c
e (i) +Ri) = DF

c
e(N) +

1
N

N∑

i=1

Ri

= DF
c
e(N) + Op

(
1

CNT

)
. (A16)

Consider DF
c
e(N). Because DF c

e (i) ⇒ Bi as T → ∞ and Bi is independent across i, we

obtain the following sequential limit as T →∞ and then N →∞

DF
c
e(N) =

1
N

N∑

i=1

DF c
e (i) →p E(B), (A17)

12



where the index i in Bi is suppressed here because of the independence. Now, according to

Corollary 1 of Phillips and Moon (1999), since the scaling of DF c
e (i) is just unity, if we can

show that |DF c
e (i)| is uniformly integrable in T , then (A17) is not only a sequential but also

a joint limit as N, T →∞. But since DF c
e (i) converges to Bi, we have from Theorem 5.4 of

Billingsley (1968) that uniform integrability of |DF c
e (i)| is equivalent to requiring that

E(|DF c
e (i)|) → E(|B|),

which holds trivially since DF c
e (i) is a scalar so (A17) is indeed a joint limit as N, T → ∞,

see Appendix C of Phillips and Moon (1999). This result, together with (A17), imply that

DF
c
ê(N) = DF

c
e(N) + Op

(
1

CNT

)
→p E(B),

which establishes (a).

Next, consider (b). We have

√
N(DF

c
ê(N)−E(B)) =

√
N

(
1
N

N∑

i=1

DF c
ê (i)− E(B)

)

=
√

N

(
1
N

N∑

i=1

(DF c
e (i) +Ri)−E(B)

)

=
√

N(DF
c
e(N)−E(B)) +

1√
N

N∑

i=1

Ri, (A18)

where the last term on the right-hand side can be written as

1√
N

N∑

i=1

Ri = − 1√
N

N∑

i=1

1√
Vi
R1i +

1√
N

N∑

i=1

Ui

V
3/2
i

R2i + Op

( √
N

RNT

)

= −I + II + Op

( √
N

RNT

)
, say. (A19)

Note that the reminder vanishes under the condition that N
T → 0 as N, T →∞.

Consider I. From the proof of Theorem 3 in Bai (2003), we get

√
N√
T

Ait = λ′i

(
1
N

N∑

j=1

λjλ
′
j

)−1
1√
N

N∑

j=1

λj
1√
T

t∑

s=2

εjs

+
√

N√
T

1√
T

t∑

s=2

f ′s

(
1
T

T∑

s=2

fsf
′
s

)−1
1√
T

T∑

s=2

fsεis + Op

(
1

C2
NT

)

= λ′i

(
1
N

N∑

j=1

λjλ
′
j

)−1
1√
N

N∑

j=1

λj
1√
T

t∑

s=2

εjs + Op

(√
N√
T

)
+ Op

(
1

C2
NT

)
.
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Similar to (A.30) in Phillips et al. (2001), it is possible to show that as N →∞

1√
N

N∑

j=1

λjσεjWεj(s) ⇒ Γ1/2Wε(s),

where Wεj(s) and Wε(s) are independent standard Brownian motions. In view of this result,

it is not difficult to see that as N, T →∞ with N
T → 0

√
N√
T

Ait ⇒
√

λ′i (Σ−1ΓΣ−1) λi Wε(s).

Let φ2
i = λ′i

(
Σ−1ΓΣ−1

)
λi/σ2

εi. Since 1√
T

eit ⇒ σεiWεi(s) as T →∞, we get

√
NR1i =

√
N

(
1
T

eiT AiT

)
=

(
1√
T

eiT

)(√
N√
T

AiT

)
⇒ σ2

εiφiWε(1)Wεi(1).

Moreover, since Vi ⇒ σ4
εi

∫ 1
0 Wεi(s)2ds as T →∞, passing N, T →∞ with N

T → 0

√
N

(
1√
Vi
R1i

)
⇒ φi

Wε(1)Wεi(1)√∫ 1
0 Wεi(s)2ds

from which it follows that

I =
1√
N

N∑

i=1

1√
Vi
R1i ⇒ Wε(1)





1
N

N∑

i=1

φi
Wεi(1)√∫ 1

0 Wεi(s)2ds



 .

Thus, by assuming that 1
N

∑N
i=1 φi → φ as N → ∞, and then applying the same arguments

as in equation (A.10) of Phillips et al. (2001), we get

1
N

N∑

i=1

φi
Wεi(1)√∫ 1

0 Wεi(s)2ds
→p φE





Wε(1)√∫ 1
0 Wε(s)2ds





= φE
[
Wε(1)

]
E





1√∫ 1
0 Wε(s)2ds



 , (A20)

where the index i is again suppressed because of the independence, and where the equality

follows from the fact that Wε(1) is uncorrelated with
∫ 1
0 Wε(s)2ds. Note that E

[
Wε(1)

]
is

zero, which means that the whole expression is zero. It follows that

I =
1√
N

N∑

i=1

1√
Vi
R1i = op(1). (A21)

Next, consider II. By the same arguments used above, as N, T →∞ with N
T → 0

√
N

(
1
T 2

T∑

t=2

eit−1Ait−1

)
=

1
T

T∑

t=2

(
1√
T

eit−1

) (√
N√
T

Ait−1

)
⇒ σ2

εiφi

∫ 1

0
Wεi(u)Wε(u)du.
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Therefore, because Ui ⇒ σ2
εi

∫ 1
0 Wεi(s)dWεi(s) as T →∞, it is possible to show that

√
N

(
Ui

V
3/2
i

R2i

)
=
√

N
Ui

V
3/2
i

(
σ2

εi

1
T 2

T∑

t=2

eit−1Ait−1

)
⇒ φiXi

(∫ 1

0
Wεi(u)Wε(u)du

)
,

where

Xi =

∫ 1
0 Wεi(s)dWεi(s)(∫ 1
0 Wεi(s)2ds

)3/2
.

This implies that

II =
1√
N

N∑

i=1

Ui

V
3/2
i

R2i ⇒
∫ 1

0
Wε(r)

{
1
N

N∑

i=1

φiXiWεi(u)

}
du

→p

∫ 1

0
Wε(u)φE

[
XWε(u)

]
du. (A22)

To find E
[
XWε(r)

]
, we first derive the joint moment generating function of the triplet

(U, V, S) =
(∫ 1

0
Wε(s)dWε(s),

∫ 1

0
Wε(s)2ds, Wε(u)

)

and then apply an extended version of Lemma 2.3 in Gonzalo and Pitarakis (1998). Towards

this end, note that (UT , VT , ST ) ⇒ (U, V, S) as T →∞ where

(UT , VT , ST ) =

(
1
T

T∑

t=1

xt−1∆xt,
1
T 2

T∑

t=1

x2
t−1,

1√
T

xt

)
,

where xt is a cumulated sum of independent standard normals. Now, if we let x denote the

T dimensional vector of stacked observations on xt and q = s√
T

h, where h is a vector with

the value one in the position equal to the integer part of uT and zero otherwise, then the

moment generating function of (UT , VT , ST ) is given by

ϕT (u, v, s) = E
[
exp(uUT + vVT + sST )

]

=
∫

(2π)−T/2 exp

(
uUT + vVT + sST − 1

2

T∑

t=1

(∆xt)2
)

dx

=
∫

(2π)−T/2 exp
(
−1

2
x′Px + q′x

)
dx =

1√
det(P )

exp
(

1
2
q′P−1q

)
,
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where P = P0 + u
T G with

P0 =




2
(
1− v

T 2

) −1 0 · · · 0

−1 2
(
1− v

T 2

) . . . . . .
...

0
. . . . . . 0

...
. . . 2

(
1− v

T 2

) −1
0 · · · 0 −1 1




,

G =




2 −1 0 · · · 0

−1 2
. . . . . .

...

0
. . . . . . 0

...
. . . 2 −1

0 · · · 0 −1 0




.

Now, consider the identity

1

V
3/2
T

=
1

Γ(3/2)

(∫ ∞

0

√
v exp(−vVT )dv

)
.

This can be used to obtain

E

(
UT ST

V
3/2
T

)
=

1
Γ(3/2)

∫ ∞

0

√
v

(
∂2

∂u∂s
E

[
exp(uUT − vVT + sST )

])
dv

=
1

Γ(3/2)

∫ ∞

0

√
v

(
∂2

∂u∂s
ϕT (u,−v, s)

)
dv, (A23)

where the derivatives are taken at u = s = 0. To find the required derivative of ϕT (u,−v, s),

we follow Larsson (1997) and use the following Taylor expansion

ϕT (u,−v, s) =
1√

det(P )

(
1− u

2T
tr

(
P−1

0 G
)

+ O

(
1
T 2

))(
1 + O

(
1
T

))

from which we deduce that ∂2

∂u∂sϕT (u,−v, s), and hence also (A23), is zero. Thus, letting

T →∞

E

(
UT ST

V
3/2
T

)
→ E

(
US

V 3/2

)
= E

[
XWε(u)

]
= 0

and hence we have shown that

II =
1√
N

N∑

i=1

Ui

V
3/2
i

R2i = op(1). (A24)

By using (A21) and (A24), it is clear that (A19) reduces to

1√
N

N∑

i=1

Ri = − I + II + Op

( √
N

RNT

)
= op(1),
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which in turn can be inserted into (A17) to obtain

√
N(DF

c
ê(N)−E(B)) =

√
N(DF

c
e(N)−E(B)) + op(1). (A25)

Consider the first term on the right-hand side. It holds that

√
N(DF

c
e(N)−E(B)) =

1√
N

N∑

i=1

(DF c
e (i)−E(B)),

which suggests that in order to show
√

N(DF
c
e(N)−E(B)) ⇒ N(0, var(B)) as N, T →∞, it

is enough to verify that (DF c
e (i)−E(B)) satisfy conditions (i) to (iv) in Theorem 3 of Phillips

and Moon (1999). Conditions (i), (ii) are (iv) are obviously satisfied in view of the fact that

the scaling of DF c
e (i) is again unity. Thus, for this theorem to apply we only need to verify

(iii), which requires that |DF c
e (i) − E(B)|2 is uniformly integrable in T . Towards this end,

note that by the continuous mapping theorem, |DF c
e (i)−E(B)|2 ⇒ |Bi −E(B)|2 as T →∞,

which together with

E
(|DF c

e (i)− E(B)|2) = E
(
(DF c

e (i)− E(B))2
)
→ E

(
(Bi − E(B))2

)

= E
(|(Bi − E(B))|2)

shows that |DF c
e (i)−E(B)|2 is uniformly integrable in T . Thus, taking the limit as N, T →∞

with N
T → 0, (A25) becomes

√
N(DF

c
ê(N)− E(B)) =

√
N(DF

c
e(N)−E(B)) + op(1) ⇒ N(0, var(B)).

This completes the proof of (b). ¥
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Table 1: Simulation results.

Test size Remainder
b N T DF ê(N) DF e(N) DFê(i) Mean Variance

0 10 100 6.5 5.1 4.8 0.04 40.7
500 6.6 4.8 4.9 0.02 37.0

1000 6.6 4.6 4.9 0.01 36.8
50 100 3.8 4.7 4.8 0.13 14.1

500 4.4 4.4 4.9 0.02 11.5
1000 4.8 4.6 4.9 0.01 10.2

5 10 100 19.9 4.9 8.7 −0.59 63.2
500 19.4 4.7 8.7 −0.60 60.2

1000 21.1 4.8 8.8 −0.62 58.9
50 100 6.1 4.4 5.0 0.03 40.4

500 7.4 4.5 5.0 −0.04 36.7
1000 7.3 4.8 5.0 −0.06 36.5

10 10 100 29.1 5.0 11.6 −0.96 67.0
500 32.5 4.4 12.3 −1.12 66.1

1000 33.4 4.6 12.1 −1.13 64.3
50 100 21.9 4.4 7.3 −0.77 48.6

500 15.6 4.7 6.3 −0.51 38.5
1000 14.4 4.5 6.1 −0.47 36.7

20 10 100 22.8 5.0 9.6 −0.67 62.5
500 26.0 4.8 10.0 −0.85 62.1

1000 26.8 4.4 10.1 −0.90 64.7
50 100 35.8 4.4 9.1 −1.34 49.3

500 45.2 4.8 9.5 −1.61 49.7
1000 45.9 4.9 9.5 −1.67 51.2

Notes: The value b refers to the heteroskedasticity of εit with the value zero representing the
homoskedastic unit variance case. The leftmost three columns report the size at the 5% level,
while the next column report the mean of of the simulated remainder. The rightmost column
report the percentage of the total variance in DF ê(N) that is due to variance in the remainder.
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