The unrestricted estimator of the information matrix is shown to be inconsistent for an autoregressive process with a root lying in a neighbourhood of unity with radial length proportional or smaller than 1/n, i.e. a root that takes the form rho=1+c/n^alpha, alpha>=1. In this case the information evaluated at rho-hat_n converges to a non-degenerate random variable and contributes to the asymptotic distribution of a Wald test for the null hypothesis of a random walk versus a stable AR(1) alternative. With this newly derived asymptotic distribution the above Wald test is found to improve its performance. A non local criterion of asymptotic relative efficiency based on Bahadur slopes has been employed for the first time to the problem of unit root testing. The Wald test derived in the paper is found to be as efficient as the Dickey Fuller t ratio test and to outperform the non studentised Dickey Fuller test and a Lagrange Multiplier test.
Download the paper in PDF format
Tassos Magdalinos
View all Granger Centre discussion papers | View all School of Economics featured discussion papers
School of EconomicsUniversity of Nottingham University Park Nottingham, NG7 2RD
lorenzo.trapani@nottingham.ac.uk