This paper details a precise analytic effect that inclusion of a linear trend has on the power of Neyman-Pearson point optimal unit root tests and thence the power envelope. Both stationary and explosive alternatives are considered. The envelope can be characterized by probabilities for two, related, sums of chi-square random variables. A stochastic expansion, in powers of the local-to-unity parameter, of the difference between these loses its leading term when a linear trend is included. This implies that the power envelope converges to size at a faster rate, which can then be exploited to prove that the power envelope must necessarily be lower. This effect is shown to be, analytically, greater asymptotically than in small samples and numerically far greater for explosive than for stationary alternatives. Only a linear trend has a specific rate effect on the power envelope, however other deterministic variables will have some effect. The methods of the paper lead to a simple direct measure of this effect which is then informative about power, in practice.
Download the paper in PDF format
Patrick Marsh
View all Granger Centre discussion papers | View all School of Economics featured discussion papers
School of EconomicsUniversity of Nottingham University Park Nottingham, NG7 2RD
lorenzo.trapani@nottingham.ac.uk