Table S1- PRISMA 2009 Checklist | Section/topic | # | Checklist item | Reported on page # | | | | |------------------------------------|---|--|--------------------|--|--|--| | TITLE | | | | | | | | Title | 1 | Identify the report as a systematic review, meta-analysis, or both. | 1 | | | | | ABSTRACT | | | | | | | | Structured summary | Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number. | | | | | | | INTRODUCTION | | | | | | | | Rationale | 3 | Describe the rationale for the review in the context of what is already known. | 5 | | | | | Objectives | 4 | Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS). | 5 | | | | | METHODS | | | | | | | | Protocol and registration | Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number. | | | | | | | Eligibility criteria | 6 | Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale. | | | | | | Information sources | 7 | Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched. | | | | | | Search | 8 | Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated. | 6 | | | | | Study selection | 9 | State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis). | 6 | | | | | Data collection process | 10 | Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators. | 6 | | | | | Data items | 11 | List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made. | 6 | | | | | Risk of bias in individual studies | 12 | Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis. | 6-7 | | | | | Summary measures | 13 | State the principal summary measures (e.g., risk ratio, difference in means). | 7 | | | | | Synthesis of results | 14 | Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I^2) for each meta-analysis. | 7 | | | | ## **Table S1- PRISMA 2009 Checklist** Page 1 of 2 | | | Page 1 of 2 | | | | |-------------------------------|----|--|--|--|--| | Section/topic | # | Checklist item | Reported on page # | | | | Risk of bias across studies | 15 | Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies). | 7 & Table S2 | | | | Additional analyses | 16 | Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified. | 7 | | | | RESULTS | | | | | | | Study selection | 17 | Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram. | 7 & 16
(Fig.1) | | | | Study characteristics | 18 | For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations. | 7-8 & Table
S3 | | | | Risk of bias within studies | 19 | Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12). | 8, 18-19
(Table 2), 20
(Table 3) | | | | Results of individual studies | 20 | For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group effect estimates and confidence intervals, ideally with a forest plot. | | | | | Synthesis of results | 21 | Present results of each meta-analysis done, including confidence intervals and measures of consistency. | 8-11 | | | | Risk of bias across studies | 22 | Present results of any assessment of risk of bias across studies (see Item 15). | 21 & Tables
2,3 & 8 | | | | Additional analysis | 23 | Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]). | Not applicable | | | | DISCUSSION | | | | | | | Summary of evidence | 24 | Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers). | 13 | | | | Limitations | 25 | Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias). | 11-12 | | | | Conclusions | 26 | Provide a general interpretation of the results in the context of other evidence, and implications for future research. | 13 | | | | FUNDING | | | | | | | Funding | 27 | Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review. | 2-3 | | | From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(6): e1000097. doi:10.1371/journal.pmed1000097 Table S2- Parameters used for the qualitative assessment of risk of bias of included mathematical modelling and time-series analysis studies. | Parameters assessed | Explanation | | | | | | |--|---|--|--|--|--|--| | Research question(s) posed | Level of precision and clarity of questions to be addressed | | | | | | | Primary findings of the study presented. | Quantitative description of outcomes of interest | | | | | | | Originality of findings obtained. | Are the results and approach taken in this study novel compared to previous
studies? | | | | | | | | How do findings agree/ disagree with previous studies? | | | | | | | Model techniques used for the purpose of the study. | Description of type of mathematical model used | | | | | | | Model structure used | Explanatory diagram and/or equations presented for clarification of the
readers? | | | | | | | Appropriateness of model complexity | Does the model incorporate the most important determinants of
transmission and relevant data sources? | | | | | | | Suitability of mathematical modelling to explore the research question | If not appropriate, what other methods should have been used for this
effect? | | | | | | | Identification of data sources used as input in the models. | Identification of different data sources used for the purpose of the model | | | | | | | Description and explanation of major model assumptions. | Enumeration of assumptions made and impact of these in the findings of
study (i.e. study limitations) | | | | | | | Factors explored through the model. | Major parameters considered in the model (i.e. disease determinants,
population characteristics, travel parameters) | | | | | | | Methodology used for model validation (if any). | Were any model validation methods used by the authors and if so, which
methods were applied. | | | | | | | Techniques used for model fitting. | Model fitting methods applied by authors, if any. | | | | | | | Description and suitability of sensitivity analysis used (if any; if none were | Was any sensitivity analysis performed? If not, what were the | | | | | | | used, are there any explanations provided by authors). | explanations provided by authors | | | | | | **Table S3-** Characteristics of mathematical modelling and the time-series analysis studies (n = 20). | Studies | Influenza
strain | Setting | Intervention | Time of implementation | Duration of intervention | Population/
Number of
individuals under
intervention | Countries/
(region/ city)
involved | Years study conducted | Study design | Comparator used | Core outcomes | |---|--|-----------------------------------|---|---|---|---|--|-----------------------|--|---|---| | Bajardi, P., et al.
(2011). | H1N1
pdm09 | International
level | Restrictions
international
air travel | Date of the travel
restrictions, April
25, 2009 (day after
the international
alert) | pandemic
influenza
H1N1 period
(2009-2010) | World
population/ 3,362
subpopulations | 220 countries
(major
transportation
hubs across 220
countries) | 2009 | Mathematical
stochastic model | Yes. Baseline:
initial phase of
the pandemic
and
international air
travel
restrictions of
6% | Delay epidemic
spread (time) | | Bolton, K. J., et
al. (2012). | Pandemic
influenza
H1N1
pdm09 | National | Restrictions
internal travel
(i.e. Road and
rail) | After week 40 of
the start of the
pandemic | between 2
and 12 weeks | Mongolian
population=
2,375,800. Per
patch (14
patches)= 58,300-
1,112,300 | 1 country (all) | 2009-2010 | Mathematical
stochastic model | No. | Delay pandemic
peak (time)
Impact on
magnitude of
Influenza-Like
Illness peak
Impact on mean
Attack Rate | | Brownstein, J. S., et al. (2006). | Seasonal
influenza | National & international (Europe) | Restrictions
international
and internal
air travel (9/11
event) | Not specified | Influenza
seasons (1996
to 2005) | USA population/
Centers for
Disease Control
and Prevention's
mortality data
131 USA cities | 1 country (131
USA cities) | 1996 to
2005 | Time-series
analysis | Yes. Seasonal
flu seasons
between 1996
and 2005
without travel
restrictions
(excluding
2001-2002 flu
season). | Delay peak
mortality due to
influenza (time)
Duration
influenza
season (time) | | Chong et Zee
(2012) | H1N1
pdm09 | International
travel | Restrictions
international
air, sea and
land travel | One day after first
case in global
pandemic. | pandemic
influenza
H1N1 period
(2009-2010) | Travelling population arriving to Hong Kong from 44 countries via air, land and sea. | Hong Kong | 2012 | Mathematical
stochastic model | Yes. Baseline:
No
interventions | Delay peak pandemic. Impact on cumulative incidence/ AR Impact on number of infected cases entering the territory | | Ciofi degli Atti,
M. L., et al.
(2008). | H5N1 | National level | International
air travel | Starting from day
30 of the first
world case. | Entire duration of the epidemic OR until two months after introduction of first case in Italy | Italian
population/ 57
million (2001
census Italian
population) | 1 country (38
Italian
international
airports) | 2008 | Mathematical
global determinist
and stochastic
individual models
(based on Ravchev
& Longini's
model). | Yes. No interventions. | Delay peak
epidemic (time)
Cumulative
Attack Rate
Peak daily
Attack Rate | | Colizza, V., et al.
(2007). | H5N1-like
strain | International
level | Restrictions
international
air travel | Not specified | Not specified | World
population/ Not
specified | 220 countries
(3,100 airports
in 220 countries
accounting for
99%
international air
travel) | 2007 | Mathematical
meta-population
stochastic model
(based on Ravchev
& Longini's
model). | Yes. Baseline: no interventions with four hypothetical Ros (1.1, 1.5, 1.9 and 2.3) | Delay peak
epidemic (time)
Impact on
Attack Rate | |------------------------------------|---|-----------------------------------|--|---|---|--|---|------|---|--|---| | Cooper, B. S., et
al. (2006). | Epidemic
and
pandemic
influenza
(not
specified) | International
level | International
air travel | After 100 cases in
each city (or 1,000
cases for Hong
Kong, the city of
origin) | Not specified. | World population
(city level)/ Not
specified. | Several
countries (105
cities across the
world) | 2006 | Mathematical
metapopulation
stochastic model
(based on Ravchev
& Longini's
model). | Yes. No interventions. | Delay in
epidemic peak
(time) | | Eichner, M., et
al. (2009) | H1N1
pdm09 | National level | International
air and sea
travel
restrictions | Not specified | Not specified | Travellers to PICTs/ 3,453,868 annual travellers | Pacific islands
and territories
(17 PICTs) | 2009 | Mathematical stochastic model | No. | Impact on probability of introduction epidemic | | Epstein, J. M., et
al. (2007). | Pandemic
influenza
strain
(H5N1-like
strain) | National and international levels | International
air travel
restrictions | sequential restrictions are applied to travel to and from a city that has crossed the threshold of 1,000 cumulative infectious cases. | After 12
months or
until the end
of the
pandemic. | US & world
populations/
620,000,000
individuals | Several
countries/ 155
cities (including
the 100 busiest
airports and 100
largest cities) | 2007 | Mathematical
stochastic model
of global influenza
(based on Rvachev
and Longini's
model) | Yes. No interventions. | Mean delay
spread
epidemic (time)
Impact on the
mean number
of cases
(worldwide) | | Ferguson, N. M.,
et al. (2006). | Pandemic
influenza
(novel
strain) | National | Restrictions
internal air
travel
restrictions
and border
restrictions (no
entry of
infected
travellers from
abroad) | Two weeks within the occurrence of 1st case (US only)/ From day 30 of the global pandemic onwards or after 50 cases have been reported in the country (GB & USA). | Duration of
epidemic | GB & USA/ USA
(excludes Hawaii
& Alaska)= 300
million. GB= 58.1
million. | 2 countries (all) | 2006 | Mathematical
stochastic model | Yes. No interventions. | Delay epidemic
spread (time)
Delay epidemic
peak (time)
Delay
introduction
epidemic (time)
Impact on
overall Attack
Rate | | Flahault, A., et
al. (2006). | Pandemic
influenza
(similar to
1968–1969
Hong Kong
strain) | International
level | International
air travel
restrictions | At the start of the pandemic, from a given date, or city-by-city when the number of infectious cases exceeds a predefined epidemic threshold (1/100,000). | Not specified | World
population/ Not
specified | Several
countries (52
cities across the
world) | 2006 | Deterministic
model (based on
Rvachev and
Longini's model) | Yes. No interventions. | Delay epidemic
spread (time) | | Germann, T. C.,
et al. (2006). | Pandemic
H5N1
influenza | National and community levels. | Restrictions
internal air
travel | When cumulative
number of 10,000
symptomatic
individuals
nationwide is
notified. | 180 days
(estimated
duration
influenza
season) | USA population/
281 million
individuals
(estimated
population) | 1 country (all
regions- 14
major
international
airports in the
US) | 2006 | Mathematical
stochastic model | No | Delay epidemic
peak (time)
Impact on
Cumulative
Incidence | | Hsieh, Y. H., et | Seasonal | Patch level | Restrictions | Not specified | Not specified | China population/ | 1 country (n | 2007 | Mathematical | No | Impact on | | al. (2007). | influenza | | internal travel | | | Not specified | patches) | | stochastic model
(multi-patch
model) | | transmissibility
(R ₀₎
Impact on
spread of
epidemic | |--|--|---------------------------------|---|--|--|---|--|------|--|--|---| | Hollingsworth, T.
D., et al. (2006). | Pandemic
influenza | National & international levels | impact of
international
air travel
restrictions | 20 days after start of epidemic. | Not specified | World
population/ Not
specified | 100 countries,
plus source
country (not
specified) | 2006 | Mathematical stochastic model | No. | Delay export
cases (time) | | Kerneis, S., et al.
(2008). | Pandemic
influenza
strain (not
specified) | International
level | International
travel
restrictions | Different times of implementation considered but not specified | Not specified | World population
(city level)/ Not
specified | Several
countries (52
cities) | 2008 | Mathematical
meta-population
deterministic
model (based on
Ravchev &
Longini, 1984) | No | Impact on the
global burden
of influenza | | Lam, E. H., et al.
(2011). | H1N1 | National level
(Hong Kong) | International
age specific air
travel
restrictions | Beginning of pandemic (not specified). | During 50 days
after start of
pandemic | Hong Kong
population/ Not
specified | 1 country (1
territory- Hong
Kong) | 2008 | Mathematical
deterministic and
stochastic models | Yes. No interventions. | Delay arrival
pandemic
(time)
Impact on the
probability of
an outbreak | | Lee, J. M., et al.
(2012). | H5N1 | City and national levels | Reduction of
migration
within the
country | Not specified | Not specified | South Korean
population/ Not
specified | 1 country (16
South Korean
cities- 7 metro
cities, 9
provinces) | 2011 | Mathematical
stochastic model | Yes. No intervention used as baseline. | Impact delay epidemic peak (time) Impact on magnitude of epidemic peak | | Marcelino, J. and
M. Kaiser (2012). | H1N1 | International
level | Restrictions
specific
international
network flights
& airport
closures | Not specified | 1 year | World
population/ Not
specified | Several
countries (Cities
spread
worldwide
where 500
major airports
are located) | 2007 | Mathematical
meta-population
stochastic model | Yes. Airport
closures | Impact on
number of
infected
travellers into a
given country. | | Scalia Tomba, G.
and J. Wallinga
(2008). | Pandemic
influenza
strain (not
specified) | International
level | International
travel
restrictions | Not specified | Not specified | World
population/ Not
specified | Several
countries (not
specified) | 2008 | Mathematical
model (Poisson
regression) | No | Average delay spread epidemics (time) | | Wood, J. G., et
al. (2007). | Pandemic
influenza
(no
particular
strain
specified) | City level
(community). | Restrictions
internal air
travel (2-city
routes only) | At 2 and 4 weeks
of epidemic | Not specified | Australian cities
populations/
Sydney (4.2
million),
Melbourne (3.6
million), Darwin
(110,000)
(Australia Bureau
of Statistics) | 1 country (3
cities) | 2007 | Mathematical
stochastic model | Yes. Baseline
scenario: H5N1
strain with low
transmissibility
R ₀ =1.1-1.4. | Median delay
spread
epidemic (time) |