# Modelling Lifetimes of Switches and Crossings



2-parameter Weibull

 $W_{clamp\_lock} (\beta_c, \eta_c)$ 

 $W_{point\_machine} (\beta_p, \eta_p)$ 

W <sub>fastenings</sub> ( $\beta_f$ ,  $\eta_f$ )

Dr Dovile Rama Prof John Andrews

### Introduction

**Switches and crossings** (S&C) are critical assets of railway infrastructure. Understanding the failure process and being able to predict the likelihood of faults of S&C components is essential for developing effective asset management strategies in support of proactive fault prevention and sustainable operation of S&C units. This research was focused on developing **probabilistic models** for forecasting lifetimes of individual S&C components.

#### Data

- ➤ Fault Management System (FMS) historical failure records for components of 652 S&C units over the period from 2002 to 2012 obtained.
- ➤ A list of point operating equipment (POE) matched with a set of switches components belonging to the same S&C unit identified.
- ➤ Intelligent Infrastructure (II) utilisation levels of S&C units estimated.

## **Analysis Results**

Weibull distribution shape parameter,  $\beta$ , values are consistently less than 1 in all models indicating a decreasing hazard rate.



Figure 1. Reliability bathtub curve with  $\beta$  value interpretations

| Time | Utilisation                                  |
|------|----------------------------------------------|
| 0.48 | 0.52                                         |
| 0.38 | 0.50                                         |
| 0.42 | 0.50                                         |
| 0.55 | N/A                                          |
| 0.43 | 0.55                                         |
| 0.42 | 0.56                                         |
| 0.47 | 0.63                                         |
|      | 0.48<br>0.38<br>0.42<br>0.55<br>0.43<br>0.42 |

Table 1. Weibull distribution shape parameter  $\beta$  values

The outputs of the Weibull analysis, e.g. reliability estimates as presented in Figures 2 and 3, can be used to implement cost-effective and efficient maintenance strategies.



Figure 2. Reliability of S&C components



Figure 3. Reliability of supplementary drives in different type S&C units





Exponential

Lognormal

Distributions fitted:

2-parameter Weibull

3-paramter Weibull

➤ **Utilisation based** lifetime model: **T**<sub>i</sub> is number of switch movements between failures.

## Summary

Clamp

Locks

parameter

T1,

T6 T7

T8

The main outcomes of the study are:

Censoring

No

No

- ➤ The two-parameter Weibull distribution was identified as the most appropriate.
- > The shape parameter of the distributions was consistently less than unity.
- ➤ Ineffective maintenance was considered to be a strong influence on these possible early life failures although analysis showed that this alone could not explain the phenomenon.
- ➤ The reliability of components varies among different types of S&C units and this should be considered when developing asset management tools.
- Obtained approximate constant failure rates can be used to predict component failures past their burn-in period.

Centre for Risk and Reliability Engineering World-changing research www.nottingham.ac.uk