

Aggregate particle arrangement and its relationship to macro-material performance

Xibo. W, A.R. Dawson, R. Isola

Background

Aggregate particle arrangement is to be related to the mechanical properties of materials in the pavement layers. Well packed particles can have a strong resistance to deformation under the traffic loading, which will improve the underlying layers' durability and increase pavement life.

Aims

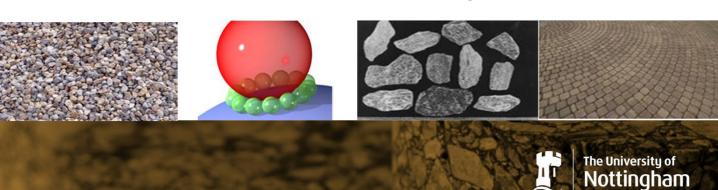
- Study the relationship between the aggregate packing and the mechanical response to the loading of the granular material that those particles form.
- Study the influence of different compaction on aggregate particle arrangement.
- Investigate the effect of shape, size of aggregate and particle strength on the packing.
- Compare the interactions of aggregate before and after mechanical test.
- Relate these particle packing to the pavement performance.

Methodology

Using limestone, gravel and granite materials to make different specimens

- ➤ Using Slab, Gyratory, Vibratory, Marshall and Proctor compaction method to generate different particle assemblages
- ➤ 3D X-ray Computed Tomography will be used to scan and determine the internal arrangement
- Using an image analysis program to investigate packing parameters such as distribution of the coordination number
- Compare the particle packing of compacted specimen with that after it has been subjected to a repeated load test

Current Progress


Build up a background of aggregate packing and study the aggregate particle shape characterization

Support

This project is made partly by a scholarship provided by The Sichuan University and Nottingham University.

Tel: +44 (0) 115 951 3902

Email: andrew.dawson@nottingham.ac.uk www.nottingham.ac.uk/ntec

