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ABSTRACT 

This study assesses the contribution of some selected stress absorbing membrane interlayers 

(SAMIs) on overlaid pavement performance in delaying the offset of reflective cracking 

using laboratory and full scale testing. Materials characterization were carried to have 

knowledge of the properties of the SAMIs and overlay and some of the properties were 

required as input for the finite element modelling. The characterization tests include the 

particle size distribution, penetration and softening point tests, dynamic mechanical analysis, 

indirect tensile stiffness modulus test (ITSM), indirect tensile fatigue test (ITFT) and repeated 

load axial test (RLAT). The interface bond was investigated using the Leutner shear test and 

pull off test. The assessment of the contribution of selected SAMIs on overlaid pavement 

performance in delaying offset of reflective cracking was carried out using a wheel tracking 

test supported by finite element modelling, a large scale pavement test facility test and a 

thermal cycling test. 

The Leutner shear test and pull-off test were used to examine the strength and stiffness of the 

overlay-SAMI interface. The interface strength/stiffness was determined because it is one of 

the factors that influence the crack resistance of SAMIs.  The wheel tracking test was carried 

out to evaluate the effects of the thickness and stiffness of SAMI, thickness of overlay, SAMI 

composition, interface stiffness, load level and temperature on the performance of SAMIs 

under traffic loading. To study the performance of SAMIs under conditions close to the field, 

a large pavement test facility test was carried out. The finite element analysis of the wheel 

tracking test was carried out to evaluate the deflection, stress and strain distribution in a 

cracked pavement with and without SAMIs.  The performance of SAMIs under thermal 

loading (temperature variation) was investigated using the thermal cycling test. 
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The study shows that SAMI composition, SAMI thickness and stiffness, overlay thickness, 

interface stiffness, temperature and load levels influence the performance of SAMIs under 

traffic loading. It also demonstrates that the main factor that influences the performance of 

SAMIs under thermal loading is the interface stiffness. Design guidelines for the successful 

use of SAMIs against reflective cracking were prepared and the OLCRACK software was 

used to demonstrate the benefits of SAMIs in an overlay over a cracked pavement. 
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1 INTRODUCTION 

1.0 Background 

Pavement rehabilitation is rapidly becoming one of the most important issues facing many 

highway agencies in both developed and developing countries. This is because when road 

pavements (flexible, rigid and composite) reach critical condition, the need arises for them to 

be restored back to good condition. One form of deterioration in pavements is cracking, 

which can either be fatigue (wheel load) or thermal cracking. The method commonly used to 

rehabilitate deteriorated pavements is by overlaying with a new surfacing material. Cleveland 

et al. (2002) and Roberts et al. (1996) stated that for both flexible and composite pavements, 

a common technique used by many agencies for preventive maintenance and/or rehabilitation 

was simply to construct a thin HMA overlay, normally between 25.4 and 50.8 mm thick.  

Overlaying cracked pavements prevents water from infiltrating through the cracks into the 

pavement structure, thus preventing the deterioration of the pavement structure and 

increasing its structural capacity. It reduces roughness, restores skid resistance, and improves 

the overall ride quality to the travelling public. However, repairing cracked roads by 

overlaying has been found to be a short term solution, because the cracks re-appear on the 

new surface after a short period of time. This phenomenon is referred to as reflective cracking. 

Reflective cracking is one of the more serious problems associated with the use of thin 

overlays (Cleveland et al, 2002; Dempsey, 2002; Engle, 2001; Bhosale and Mandal, 2008; 

and Khodaii et al, 2008). 

Reflective cracking is often initiated at the bottom of the overlay material and grows until it 

appears at the surface. Also top-down cracking (cracks initiating at the surface and growing 

into the lower layers) occurs especially where there are large temperature variations in the 

pavement (thermal cracking). Once a reflective crack reaches the surface or when it reaches 
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the lower layer (when originating at the surface), it creates a path for the flow of surface 

water into the lower layers of the pavement. When left untreated, this situation will lead to 

deterioration of the pavement structure and a reduction in serviceability (Penman and Hook, 

2008). This usually results in discomfort to road users and increased maintenance cost; in 

some cases the road may have to be rebuilt from the foundation (subgrade). Vervaecke et al. 

(2008) stated that cracks are rapidly reflected at the surface as a result of the combined effects 

of thermally induced stresses and traffic loading. The movement at the joints and cracks in 

the underlying pavement layer generates stresses. Temperature associated horizontal 

movement of the slab, concentrated in underlying joints and cracks in the existing pavement, 

leads to tensile stresses, and traffic load induced vertical movements produce shear and 

tensile stresses in the overlay. The stress concentration at the crack tip leads to initiation and 

propagation of a crack through the overlay to the surface. 

A number of measures have been adopted by engineers with the aim of retarding reflective 

cracking in overlays and results achieved have been mixed. These measures include: thick 

overlay, overlay mixture modification, overlay reinforcement, stress or strain absorbing 

interlayer and reinforcing interlayer. Al-Qadi et al. (2008) stated that various interlayer 

materials namely: geosynthetics, geocomposites, steel reinforcement netting, and modified 

HMA, have been used as interlayer systems for the purpose of reducing reflective cracking, 

although their effectiveness is still not well quantified due to lack of understanding of the 

reflective cracking mechanism and because imperfect evaluation approaches are used. No 

current pavement rehabilitation techniques have been shown to solve completely the problem 

of reflective cracking. This has been attributed to the number of variables that are involved in 

reflective cracking (Bhosale and Mandal, 2008).  
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This research work aims to evaluate the contribution of some stress absorbing membrane 

interlayers (SAMIs) on overlaid pavement performance in delaying reflective cracking and 

the influence of certain variables such as temperature, overlay thickness, load levels, SAMI 

thickness on performance. 

 

1.1 Pavement failure modes 

Pavements are rehabilitated by overlaying with new surfacing material because of distresses 

in the existing pavement. Distress may occur in the pavement during construction and while 

in service. It may be due to the materials used for pavement construction, poor workmanship, 

environmental factors or the loading to which they are subjected. The two principal modes of 

failure in pavements are fatigue cracking and permanent deformation. Engineers seek to hold 

these forms of failure to acceptable limits within a pavement design life. Another mode of 

failure, which has not been given much attention and is not considered in most pavement 

design approaches, is reflective cracking. This form of failure occurs when pavements with 

critical level of serviceability are rehabilitated by overlaying. Reflective cracking is now a 

major concern to pavement engineers and attempts are being made to solve the problem. 

1.1.1 Permanent deformation 

Permanent deformation or rutting is the depression along the wheel path. This is caused by 

gradual build up of irrecoverable strains under repeated loading which develop into a 

measurable rut. These strains are due to the visco-elastic response of bituminous materials to 

dynamic loading. Figure 1.1 shows the visco-elastic response to millions of wheel loadings. 

Also, rutting may occur because of base, subbase or subgrade failure. It is usually measured 

with a profiler or straight edge. 
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Figure 1.1: Visco-elastic response to millions of wheel loading (Read, 1996) 

1.1.2 Fatigue cracking 

Fatigue cracking can be defined as the phenomenon of fracture under repeated or fluctuating 

stress having a maximum value generally less than the tensile strength of the material 

(Rahman, 2004). Fatigue resistance of an asphalt mixture is the ability of the mixture to 

withstand repeated bending without fracture. Fatigue is one of the common forms of distress 

in asphalt pavements and manifests itself in the form of cracking under repeated traffic 

loading or a series of temperature fluctuations/variation in the pavement. The latter is referred 

to as thermal fatigue cracking. Fatigue cracking consists of two phases namely: crack 

initiation and crack propagation. Fatigue cracking initiates at the bottom of asphalt base and 

appears on the pavement surface as interconnected tracks of different forms and it may also 

start at the surface and grow downwards as is the case for thermal (fatigue) cracking. Some 

forms of fatigue cracking include longitudinal cracking, transverse cracking, and block 

cracking  

Longitudinal cracking is a type of fatigue failure with cracks parallel to the centre line of the 

pavement. Transverse cracking has cracks perpendicular to the centreline of the pavements at 
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regular intervals. They are caused mostly by severe drops in temperature or by thermal 

fatigue resulting from repeated low and high temperature cycles. Block cracks are 

interconnected cracks that divide the pavement surface into approximately rectangular pieces. 

 

1.2 Reflective cracking 

This section looks at the definition of reflective cracking. Mallick and El-Korchi (2009) 

described reflective cracking as cracks in asphalt overlays caused by discontinuities in the 

pavement structure underneath. Cleveland et al (2002) defined it as the propagation of cracks 

from the movement of the underlying pavement or base course into and through the new 

overlay as a results of load-induced and/or temperature induced stresses. 

Penman and Hook (2008) put it as the process by which an existing crack, joint or 

discontinuity propagates towards the surface through an overlying layer of asphalt concrete, 

with the rate of propagation varying significantly based on various environmental and 

trafficking factors. Debondt (1999) defined it as the propagation of cracks or joints from an 

old pavement into and through the overlay. Caltabiano (1990) described it as the propagation 

of a previously defined crack through subsequent layers of a pavement. Bennett (2003) put it 

as cracking in HMA overlays that reflects the crack or joint pattern in the underlying 

pavement. Shalaby and Frenchette (2000) defined it as the premature occurrence of cracks on 

overlays at positions and orientations that corresponds to locations of cracks in lower 

pavement layers. 

In summary, reflective cracking can simply be defined as the propagation of existing cracks 

in an old pavement through the underside of the overlay to the surface. All these definitions 

imply that two processes are involved in the appearance of reflective cracks on the surface of 

the overlays, which are the crack initiation and crack propagation processes and they also 
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highlighted the two major causes of reflective cracking. Figure 1.2 shows a schematic of 

reflective cracking in HMA overlay on Portland cement concrete (PCC) slab or asphalt 

concrete (AC). 

 

                              Figure 1.2: Schematic of reflective cracking in pavement  

 

1.3 Causes and mechanism of reflective cracking  

A number of factors have been identified as the causes of reflective cracking. Palacios et al 

(2008) reported that cracks propagate to new overlays due to vertical movement of the 

underlying pavement layer which may be due to traffic loading, frost heave and consolidation 

of the subgrade soils and/or the horizontal movement of the pavement upper layers due to 

temperature changes. Von Quintus et al (2007) reported three causes of reflective cracking, 

the major being horizontal movements from the expansion and contraction of the base 

pavement that is caused by temperature changes; the differential vertical deflections between 

the approach and departure slabs or across transverse cracks, which create shear stresses; and 

the curling of PCC slabs during colder temperature when the HMA overlay is stiff and brittle. 

Abe et al (2000) stated that cracking was caused on the surface of the overlay at an early 

stage by the movement of the pavement and traffic load. Smith (1983) also mentioned the 

differential vertical movement at a crack or slab joint in the old pavement which induces a 

  

            Overlay 

                   PCC/AC      (Existing surface) 

                       Subbase 

 

Crack/joint 

Reflective cracking 

                    Subgrade 

Wheel load 
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vertical shear stress in the overlay, horizontal movement associated with temperature or 

moisture changes in the old pavement which induces tensile stress in the overlay or live load 

flexural stress in the overlay, which tends to concentrate directly over discontinuities. Based 

on the causes identified by researchers, there seems to be an agreement on the causes of 

reflective cracking. While it is common knowledge that factors such as subgrade conditions, 

pavement materials quality, workmanship etc affect the performance of a pavement; the 

principal factors responsible for reflective cracking are the action of traffic loading on an 

overlay on a cracked pavement and thermal stresses developed on the crack tip as a result of 

daily/seasonal temperature variation. These two factors have been investigated in this study.  

It is important that the mechanisms of reflective cracking are well understood to be able to 

provide a solution to the problem. This is illustrated in Figures 1.3 and 1.4.  Figure 1.3 (a and 

c) depicts a situation where the moving wheel on the edge of the pavement above the crack 

produces maximum shear stresses, A and C, respectively as shown in Figure 1.4, while in 

Figure 1.3(b), the wheel directly on the overlay above the cracked pavement generates 

flexural stresses producing maximum bending stress, B as indicated in Figure 1.4. Figure 

1.3(d) expresses the tensile stresses developed in the overlay as a result of daily/seasonal 

temperature variation.  

This illustration clearly indicates that there are three modes of reflective cracking. Molenaar 

(1993) established the three modes: mode I, mode II and mode III cracking. Mode I cracking 

occur due to tensile stresses caused by a drop in temperature or flexure under traffic loading. 

Mode II cracking is caused by the effects of shear stress induced by a loaded wheel crossing 

from one side of a transverse crack or joint to the other. Mode III referred to as the tearing 

mode is less common. This occurs in pavements when the wheel load travels along (parallel 

to) a crack. Figure 1.5 shows the three modes of cracking. 
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        (a)                              (b)           (c)                              (d)   

Figure 1.3: Movements in pavement joints and cracks (Prieto et al, 2007) 

 

Figure 1.4: Stresses induced at crack tip by wheel load (Lytton, 1989) 

 

 

Figure 1.5: Modes of cracking (a) mode I (b) mode II and (c) mode III (Hughes, 1986) 
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1.4 Stress absorbing membrane interlayers (SAMIs)  

These are interlayers designed to dissipate energy by deforming horizontally or vertically, 

therefore allowing the movement (vertical/horizontal) of the underlying pavement layers 

without causing large tensile stresses in the asphalt overlay. Barksdale (1991) defined a 

stress-relieving interlayer as a soft layer that is usually thin and is placed at or near the 

bottom of the overlay. He stated further that the purpose of the soft layer is to reduce the 

tensile stress in the overlay in the vicinity of the crack in the underlying old layer and hence 

“absorb” stress.  

The application of stress-relieving systems at the interface between the overlay and the old 

pavement surface reduces the shear stiffness of the interface. Debondt (1999) proved using 

theoretical analysis that the reduction of shear stiffness allows slip of the interface, thereby 

isolating the overlay from the stress concentration of the crack tip.  

Lytton (cited in Elseifi, 2003) summarised stress relief failure mode as follows: 

 The crack starts to propagate (due to thermal and traffic loading) from its original 

position upwards until it reaches the stress-relieving layer. Due to its low stiffness, the 

interlayer will exhibit large deformations, which will be accompanied with a 

dissipation of energy. The crack propagation will stop for a while due to the lack of 

energy, and then propagate from the top of the interlayer upward to the surface 

bottom-up cracking). 

 In the second failure mode, the crack starts to propagate from its original position 

upward until it reaches the stress-relieving layer. The crack then begins from the top 

of the overlay to the interlayer (top-down cracking). 
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1.5 Research Objectives 

Most of the pavement projects around the world today are rehabilitations of existing road 

pavements (rigid and flexible). The common method adopted (overlaying) has been plagued 

with the problem of reflective cracking. Engineers have battled the problem for years 

introducing various measures, but the fight is far from being won. This study assesses the 

contribution of some stress absorbing membrane interlayers (SAMIs) on overlaid pavement 

performance in delaying the offset of reflective cracking.  

The principal aim of this research was to examine the mechanical behaviour of stress 

absorbing membrane interlayers (SAMIs) placed over an existing cracked flexible pavement 

with a view to developing better understanding of their use to retard/reduce reflective 

cracking. 

The specific objectives were to: 

i. characterise the materials used in selected SAMI systems and an overlay material; 

ii. develop laboratory tests to simulate reflective cracking due to traffic and thermal 

loadings; 

iii. evaluate the effects of composition of the SAMI system (binder, glass fibre, 

aggregates) and thickness on resistance to reflective cracking; 

iv. examine the interface bond between the SAMI systems and overlay; 

v. investigate the performance of the SAMI systems in the Pavement Test Facility under 

more realistic traffic loading conditions;  

vi. model the wheel tracking test to assess the crack resistance of SAMI systems; 

vii. and produce a simplified design guide for effective use of SAMI systems against 

reflective cracking on an existing cracked flexible pavement. 
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1.6 Scope of research 

This research involved three major activities. The first was the laboratory evaluation of the 

effects of traffic loading and thermal induced stresses on an overlay (with and without SAMIs) 

on cracked pavements. This involved characterization of the materials (overlay and SAMIs) 

for the research; determination of the bonding properties of the interface between the SAMI 

and the overlay; evaluation of the effect of traffic and thermal loads on reflecting cracking. 

The second activity was a large scale test in the pavement test facility. This was carried out to 

reflect the condition that is obtainable in the field as nearly as possible. It involved 

construction of a flexible pavement section in the laboratory and dividing the pavement into 

sections with different sections having different SAMIs (and control sections) over a 

simulated cracked pavement and overlaying with new surfacing material. The performance of 

different sections was monitored and the data analysed. 

The third activity was the theoretical investigation of the role of SAMIs in reducing/retarding 

reflective cracking. This was carried out with Abaqus finite element software to model the 

wheel tracking test. This gives a better understanding of the mechanical behaviour of the 

SAMIs and allows combinations that cannot be tested in the laboratory to be analysed. The 

proposed investigation for the research is shown in the flow chart in Figure 1.6. 

 

1.7 Thesis structure 

This thesis is divided into ten chapters. Chapter one gives the background of the study. The 

objectives and the scope of the study are highlighted in this chapter. The literature review on 

the laboratory and field/accelerated investigation of the use of interlayers against reflective 

cracking is reported in chapter two. Different interlayer materials and the methods of 
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assessment and specimen sizes were considered. Also, the interface bond between pavement 

layers with and without interlayer materials was reviewed. 

The properties of the materials for the study are detailed in Chapter three. The properties 

examined include the aggregate particle size distribution, stiffness modulus, fatigue and 

permanent deformation. The Leutner shear test and the pull-off test carried out to examine the 

interface bond of the overlay-SAMIs interface are reported in chapter four.  

Chapter five consists of the wheel tracking test procedure, specimen preparation and results. 

The chapter looks at the effect of factors such as SAMI thickness, overlay thickness, SAMI 

composition, temperature and load levels etc on the crack resistance potential of SAMIs. The 

modelling of the wheel tracking test using commercial finite element software Abaqus is 

reported in chapter six. The pavement test facility (PTF) carried out to simulate field 

conditions is discussed in chapter seven. The construction of the PTF pavement, 

instrumentation and results are reported. 

Chapter eight discusses the thermal cycling test developed and carried out in the study to 

evaluate the crack resistance potential of the SAMIs against temperature variation. The 

design guide developed from the findings of the study for the effective use of SAMIs against 

reflective cracking under traffic and thermal loadings is reported in chapter nine.  

Lastly, the conclusions from this study and recommendations for further study are given in 

chapter ten. 
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Figure 1.6: Proposed Research Plan 
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2 LITERATURE REVIEW  

2.0 Introduction 

Researchers have carried out investigations into a number of methods of reducing/retarding 

reflective cracking, with their works achieving mixed results. The research works included 

both laboratory (small and large scale) and field investigations. Some of them are reviewed in 

this section. The literature review was necessary in this study to understand the factors that 

influence the performance of interlayers in general and SAMIs in particular. It is important to 

understand the benefits or otherwise of the test methods adopted. Also, this section examines 

design approaches or methods documented for cracked pavements incorporating interlayers. 

 

2.1 The use of interlayers to reduce reflective cracking 

Different interlayer materials have been used in pavement to delay reflective cracking. These 

are classified generally as stress relieving interlayers or stress absorbing membrane 

interlayers and reinforcing interlayers. This study looks at the former and has been defined in 

section 1.4.  Stress relieving interlayers are usually made of bituminous mixtures, modified 

bitumen, glass fibres sandwiched with bitumen, and bitumen impregnated geotextiles (Woven 

and non-woven). Reinforcing interlayers are required to have higher stiffness than the 

surrounding layers (the overlay and existing pavement). This allows an overlay over a 

cracked pavement to support greater bending for a given strength of the asphalt concrete. A 

reinforcing system enables the transfer of tensile forces at the bottom of the overlay after the 

asphaltic mix has cracked at this location (Debondt, 1999). As observed by Asphalt Academy 

(2008), the primary effect of grid reinforcement is to hold the two sides of a developing crack 

together. This results in reduction of the stresses and strains at the tip of the crack. Types of 

reinforcing interlayer include polyester grid, glass fibre grid, steel mesh etc. Debondt (2000) 
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observed that the strength values range between 15 and 250kN/m and that the selection of the 

reinforcing products based on strength criterion is not possible, as the effect of reinforcement 

in tackling cracking depends on its stiffness and the resistance it can generate against pullout 

from the surrounding asphalt concrete. 

2.1.1 Laboratory investigations 

Different test configurations have been used to study the effectiveness of interlayer materials 

against reflective cracking. Some of these are discussed in this section.  

Caltabiano (1990) carried out a series of beam tests to assess the performance of interlayers 

to delay the propagation of cracks through asphaltic concrete overlays. The beam testing used 

a servo-hydraulic device to apply simulated loading to the specimen (see Figure 2.1). The 

testing programme was split into three series A, B, and C with thicknesses of 100mm for A, 

75mm for B and C and maximum applied traffic load pressure of 810kPa for A and B and 

555kPa for C. The interlayers included polymer modified binder, geotextile interlayer, 

geogrid interlayer and a control (standard asphaltic concrete). In order to further ascertain the 

performance of the interlayers and overlay thicknesses, he also conducted tests on slabs with 

and without the interlayers.  The slab test simulated traffic loading by passing a moving 

wheel of variable load and speed over a slab of asphaltic concrete compacted on a timber 

base. The test arrangement was similar to the beam test. He reported that although there was 

debonding between overlay and timber bases (old pavement), the polymer modified binder, 

geotextiles, and geogrid interlayers gave 2.5, 5.0 and 10 times increase in life, respectively. 

Also, he found that an increase in asphalt concrete thickness of 25% produced a 

corresponding increase in life for the control beam of 400%. He observed that increasing the 

load from 555kPa to 810kPa produced three-fold increase in life for geogrid or geotextiles 

interlayer compared to control, while no increase was produced for specimen with polymer 

modified binder. 
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Figure 2.1: Beam testing arrangement (Caltabiano, 1990) 

 

Sanders et al (1999) carried out laboratory tests to evaluate the effect of grids and fabrics on 

crack and rut control. He made use of beams similar to those used by Caltabiano, but the 

beam was placed on a 13 mm rubber foundation. The laboratory work included beam testing 

(on elastic foundation), large scale cyclic shear box testing and wheel loading in a pavement 

test facility. The beams, of dimension 400 mm in length, 200 mm width and 120 mm height, 

were reinforced at 30 mm from the bottom of the beam. They reported that the beam test 

results showed changes of behaviour which depend on reinforcement type. The beams 

reinforced with glass grids and control samples had similar shapes, as did the plots of 

composite-reinforced and steel and polypropylene grid-reinforced beams. It was stated that 

the difference in performance of the grids was due largely to the level of stress generated in 

the asphalt-reinforcement bond. They pointed out that the pavement test results showed clear 

differences in the performance of reinforced and unreinforced sections, both in cracking and 

rutting. They concluded that the reinforced pavements withstood approximately twice the 

number of wheel loads before the development of active surface cracking. 

Krevtov and Gorelysheva (2000) examined the influence of thin interrupting layers on the 

development of reflected cracks. They used a different approach from Caltabiano and 
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Sanders. This involved pressing the specimens between two parallel plates of diameter equal 

to that of the specimen with continuous distributed load, P, applied at two air temperatures, 

+20
o
C  and 0

o
C. They based their analysis on the relative shear viscosities of the specimen, 

because the elastic moduli did not differ much from each other and did not deviate from the 

norm. They concluded that specimens without a thin layer demonstrated high rates of forming 

reflected cracks, while specimens with a thin layer gave mixed results at both +20
o
C  and 0

o
C. 

Their conclusion was based on the opinion that upper course material shear viscosity, related 

to elastic modulus of the pavement courses, is the parameter most completely determining the 

processes of both creep and stress relaxation and consequently the capability to slow down 

development of cracks in pavement upper courses. It has to be stated that their approach is 

not commonly used because it did not simulate the field situation (shear, flexural and tensile 

stresses in pavement). 

Nataraj and Vander Meer (2000) studied the use of a crack relief layer (CRL) in airport 

pavements for rehabilitation of existing pavements and for construction of new ones using 

triaxial tests. In their study, 6 cylindrical specimens of field mix CRL with height 200mm and 

a diameter of 100mm were subjected to cyclic vertical stress (dynamic) due to traffic loading 

at temperatures of 50
o
C and 60

o
C. They observed that CRL specimens showed a large initial 

permanent vertical strain. After the initial phase the further development of permanent 

deformation in the CRL specimen was limited. They concluded that the CRL would perform 

well under heavy aircraft load without traffic densification or rutting and would play a 

significant part as a structural layer in the total pavement. Although, the present study does 

not focus on permanent deformation, their test demonstrated that when a CRL or SAMI is 

used in pavement rehabilitation or construction, it does not give permanent deformation 

concerns. They concluded from their field trial that a CRL with at least 20% air voids can 

effectively be used for airport pavements as a means of prevention of reflection of cracks and 
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as structural layer. Blankenship et al (2004) reported the use of an interlayer of asphalt rich, 

highly polymer modified binder and fine aggregate hot mix to retard reflective cracking. 

They used flexural beam fatigue tests. Their results showed that specimens with reflective 

crack relief interlayers had a minimum of 100,000 cycles at 2000 micro strain before failure, 

while unmodified asphalt typically failed at 2000 cycles. A high quality polymer modified 

asphalt such as PG76-28 withstood three times as many cycles as the unmodified asphalt, but 

still failed at 6000 cycles at 2000 micro strain. 

Cleveland et al (2002) evaluated geosynthetics placed under or within a hot mix asphalt 

(HMA) overlay to reduce the severity or delay the appearance of reflection cracks using the 

Texas Transport Institute (TTI) overlay tester (see Figure 2.2). The overlay tester evaluates 

the relative ability of a HMA beam (3"(76.2mm) × 6"(152.4mm) ×20"(508mm)) with and 

without geosynthetics to resist thermal cracking. The geosynthetics used in the research were 

Bitutex composite, Pave-Dry 381, PetroGrid 4582, Ha Telit C40/17, Glass Grid 8501 and 

Star Grid G+PF. In the study, six beams were reinforced with geosynthetic materials, with the 

seventh unreinforced representing the “control” beam. The beams were prepared by 

compaction of a 1-inch (25.4mm) HMA “level up” course and cured in the mould for a 

minimum of 24 hours at room temperature. A geosynthetic material was applied to the level 

up course using AC-20 binder. After the material was allowed to set overnight and obtain full 

adhesion with the level-up course, the final overlay course of HMA was compacted in two 1" 

(25.4mm) layers. The beams were tested to failure in the overlay tester. They stated the 

geosynthetic materials consistently increased the number of cycles to failure in the laboratory 

test. The ranking of the relative effectiveness of each geosynthetic product in reducing 

reflective cracking in HMA overlays as tested in the laboratory is shown in Table 2.1 
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Figure 2.2: Schematic of TTI overlay tester (Cleveland et al, 2002) 

 

Table 2.1: Ranking of the geosynthetic products (Cleveland et al 2002) 

Product tested Relative effectiveness 

(1= best; 8 = worst) 

StarGrid GP+F 1 

GlassGrid 8501 2 

PaveDry 381 3 

Bitutex Composite 4 

PetroGrid 4582 5 

Control (with tack) 6 

HaTelix C40/17 7 

Control (with no tack) 8 

 

Farshad (2005) found that paving fabric effectiveness is related to joint or crack movement in 

the underlying pavement, crack width, overlay thickness, subgrade conditions, climate and 

traffic volume. He reported that nonwoven geotextile interlayer systems (paving fabrics) used 

in conjunction with asphalt overlays, typically 1.5-2.5 inches (38.1-63.5mm) may be used to 

absorb the stresses normally transferred from cracks in an old pavement into the overlay, thus 

retarding reflective cracking. He stated that the interlayer enhanced performance through two 

mechanisms, which are by stress relieving and water proofing. Prieto et al (2007) carried out 

research at the Road Laboratory of the Technical University Madrid in Spain to gather insight 

into the reflective cracking phenomenon, the evolution and configuration of the cracks and 

bonding conditions between materials. Rather than examining each parameter responsible for 

reflective cracking separately as Caltabiano, Sanders et al, Krevtov and Gorelysheva etc did, 
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they developed laboratory equipment capable of simultaneously applying the flexural, tensile 

and shear stresses involved in the process of reflective cracking in the overlays and 

geotextile-based anti-reflective system. The potential benefit of using three different 

geotextile inclusions was studied. They carried out the study with a test temperature of 5±1
o
C; 

maximum deflection of 0.45 mm; crack opening velocity of 0.6mm/hr and the response 

variable was the time to achieve relative vertical movement between edges greater than 

0.2mm. The specimens which comprised 10mm base and 50mm asphalt have width and 

height of 75mm and 60mm, respectively. The results indicated that the crack reflection 

strength values for specimens with geotextile were greater than those without. They reported 

that specimens without geotextile did not debond, thus the cracks reflected in a vertical 

direction, while those with geotextile experienced debonding making the cracks form at the 

side of the specimen. This highlighted that the introduction of interlayer materials may cause 

debonding at the interface. A schematic of their test equipment is shown in Figure 2.3. 

 

Figure 2.3: A schematic of wheel reflective cracking equipment (Prieto et al, 2007) 
 

Zielinski (2008) evaluated the influence of geosynthetics on interlayer bonding and fatigue 

life of beams reinforced with geosynthetic. The overlay mix was asphaltic concrete with 

gradation 0/12, 8mm and 0/16mm and stone mastic asphalt (SMA). The geosynthetics were 

polyester nonwoven, polyester geocomposite, composite: glass grid with polyester nonwoven 

and control (specimens without geosynthetics). The bitumens used were pure bitumen D-70, 
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two ordinary bitumen emulsions: K1:65 and K1:70 and bitumen emulsion K-1-65MP 

modified with polymer. Fatigue tests were performed on 3-point bending beam samples, 

under constant load frequency and the number of cycles leading to fatigue and initial strain 

under bending of beams were measured. He concluded that application of non-wovens in 

asphalt layers had no influence on fatigue characteristics, because of the low stiffness 

modulus. He stated further that the effectiveness of application of geocomposites increased at 

the higher temperature (e.g. +18
o
C), while at the temperature of -2

o
C, the effect of 

geosynthetics application gave a weaker influence on fatigue properties. He also found that 

the interlayer bonding achieved by spreading bitumen has a strong influence on fatigue 

properties of a layer, but did not consider the effect of the bond on the potential of the 

geosynthetic to retard reflective cracking. 

Bhosale and Mandal (2008) carried out a laboratory study on open graded asphalt concrete 

(OGAC) as a crack relief layer using an asphalt concrete slab fatigue testing equipment. Like 

Prieto et al, they evaluated both the effects of traffic load and temperature variation 

simultaneously. In the research, they investigated conventional dense bitumen macadam 

(DBM) and the OGAC overlay under simulated thermal and traffic loads with 5mm 

differential deflection. They performed the experimental work in a strain-controlled 

environment with an average room temperature of 29
o
C. A gap of 5mm was maintained 

between two pavement plates, representing the initial existing crack width in the old 

distressed pavement. Simulation of daily and seasonal thermal contraction and expansion 

cycles was achieved by cyclically opening and closing the initial existing crack by 1.83mm at 

a strain rate of 4.547mm/min. In mixed mode of displacement, vertical compressive load, 

generating a contact pressure of 478.7 kPa for a standard axle load of 80 kN was applied 

using a pneumatic jack through a 15 mm thick pressure plate which simulated the highway 

truck dual tire assembly. The vertical load with a load pulse of 1 second and a rest period of 4 
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seconds, simulating a vehicle speed of 1 mile/h (1.6 km/h), was applied simultaneously with 

simulated thermal load cycles of opening mode of displacement. They concluded that the 

conventional overlay of DBM showed a faster rate of decay with the number of simulated 

thermal load cycles than the OGAC overlay.  

Khodaii et al (2008) conducted an experimental program to determine the effect of 

geosynthetic reinforcement on mitigating reflection cracking in asphalt overlays. The study 

consisted of the following components representing a layered pavement structure: asphalt 

overlay 380mm × 150mm × 75mm, which was reinforced at the base and at one-third depth 

from the bottom and unreinforced, a block of asphalt or concrete simulating a discontinuous 

existing pavement (depth, 100mm) and a resilient subgrade modelled with neoprene rubber 

with an elastic modulus of 11000 kN/m
2
. Simulated repeated loading was applied to the 

specimens using a hydraulic dynamic loading frame, which applied cyclic square loads to the 

top centre of the beam through a circular loading plate (112mm diameter) with a frequency of 

10Hz simulating high speed traffic. A maximum load of 6.79kN creating 690kN/m
2
 was 

applied at 20
o
C and 60

o
C. Their test set up was as shown in Figure 2.4. Their results showed 

that geogrid inclusion in the asphalt sample improved overlay performance. Specimens with 

embedded geogrids outperformed non-reinforced samples both in terms of resistance to 

cracking as well as rutting. They stated that placing the geogrid at 1/3 height in the overlay 

was most effective, although it required the contractors to place the overlay in two layers, 

resulting in extra costs. Also, the effectiveness of the geogrid for overlay reinforcing with 

increasing crack/joint from 10-20 mm was not decreased, but at high temperature the 

effectiveness of the geogrid in overlay reinforcing in proportion to low temperature was 

reduced. 
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Figure 2.4: Test set-up (Khodaii et al, 2008) 

 

In summary, it is clear from the literature that crack resistance of interlayers has been 

principally investigated using beam tests (three-point or four point bending) and repeated 

load from traffic has been mostly simulated in the laboratory using hydraulic loading 

machines capable of applying dynamic loads. The crack resistance of interlayers against 

reflective cracking has been investigated either by simulating the simultaneous effect of both 

temperature variation and traffic loading in a test or by studying the effect of each 

independently. While both processes may occur in practice simultaneously, studying the 

effect of each independently will allow better understanding of the mechanisms involved. 

Therefore, in this study each parameter has been studied independently. The present study is 

meant to simulate the field situation as closely as possible, therefore a wheel tracking device 

has been chosen to study the effect of traffic loading, while a thermal cycling device capable 

of opening and closing a joint/crack in a specimen at chosen rates has been used to study the 

effect of temperature variation.  

Also this review has shown that the effectiveness of various interlayers depends on a number 

of factors such as crack movement, crack width, subgrade condition, climate, traffic volume, 

temperature etc. Furthermore, it was documented that the introduction of interlayers in a 

pavement may result in the debonding of the interlayer-overlay interface. Some of these 
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conditions have been investigated in this study in order to understand their influence on crack 

resistance.  

Other methods of delaying reflective cracking include thick overlay, modification of overlay 

mixtures, crack control methodologies, and crack and seat/rubblization. The Defence Estates 

design options for minimization of reflective cracking in the medium term and long term is 

shown in Table 2.2. Also, the Highways Agency recommended the use of a minimum of 

180mm asphalt overlay to jointed concrete, 150 mm for cracked and seated concrete and 

180mm for composite pavement when cement bound granular mixture (CBGM) is pre-

cracked (DMRB, 2006). 

 

Thick overlay 

The theory is that the thicker the overlay, the less the strain concentration around crack region. 

Also, when crack is intiated at the bottom of the overlay, it has to travel a longer distance to 

reach the surface. Mukhtar and Dempsey (1996) stated that thick overlays constructed with a 

high quality dense graded asphalt mix and low viscosity asphalt considerably delays 

reflective cracking. However, they noted they are usually the most expensive alternative. 

 

Modification of overlay mixtures 

This method is used to improve the fracture resistance of the overlay. The resistance of 

asphalt to cracking depends mainly on the binder content and its elastic characteristics, 

although the coefficient of expansion of the aggregate also contributes to the performance 

(Ellis et al, 2002). Thus, overlay modification is achieved majorly by modifying the binder. 

The use of modified binder improves the asphalt (overlay) ability to absorb stresses generated 

at cracks, its self healing properties and its resistance to ageing, which causes the asphalt to 

become brittle with time. A number modify asphalt mixes are described below: 
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Rubber asphalt: Addition of rubber particles to asphalt makes it more flexible, enabling it to 

withstand higher strains without breaking. The asphalt becomes softer and more elastic. 

Polymer modified asphalt: Admixing styrene-butadiene-styrene (SBS), ethylene-vinyl-acetate 

(EVA) or styrene-butadiene-rubber (SBR) polymers to bitumen produces binders which are 

less temperature susceptible and which have higher viscosity at ambient temperature than 

unmodified bitumen (Von Quintus et al, 2007; Ellis et al, 2002). The improved properties of 

the binder increase the resistance of the modified asphalt mixes to cracking. 

Sulphur asphalt: This is the modification of HMA by adding sulphur. This process increases 

the stability and stiffness of HMA at high temperatures and at the same time maintains the 

low (viscous) property of the asphalt. Admixing sulphur with HMA makes it soft at low 

temperatures and hard at high temperatures, thus the HMA has less cracking at low 

temperature as well as less rutting at high temperatures (Von Quintus et al, 2007). 

Air-blown asphalt: This involves improving temperature susceptibility of waxy and low 

viscosity asphalt by oxidation (air blowing). 

Carbon black: This is the addition of carbon black to HMA to increase its tensile strength. 

 

Crack control methodologies 

These are methods used to improve the load transfer across a crack. They include sawing and 

sealing of joints, re-strengthening of cracked pavement, heater scarification and pre-overlay 

repair. 

Sawing and sealing of joints in HMA overlay: This involves sawing straight clean joints in 

the overlay on top of a joint, the HMA overlay directly above the joint in the existing 



Chapter two: Literature review 

 

 
 28 

pavement. It has the advantage that the controlled saw cut can be more effectively sealed than 

a self-propagating zigzag reflection crack. 

Re-strengthening, treatment or modification of cracked pavement before overlaying: In this 

case, the cracked pavement is strengthened to have a better pavement surface condition 

before overlaying 

Heater scarification: This involves scarifying the cracked pavement surface to a depth of 

approximately 0.75in (9mm), so that the upper portion of any crack can be removed with any 

crack sealant and the lower portion of the crack sealed by the heating process. The remixed 

and re-compacted layer would then serve as a uniform un-cracked layer above the crack tip. 

As a consequence, the reflection cracking of the overlay should be significantly slowed down 

(Von Quintus et al, 2007). 

Pre-overlay repair: This means injecting cement grout under PCC slab to fill any voids. This 

produces a good result when used in conjunction with other methods to prevent reflective 

cracking. 

Crack and seat/Rubblization 

PCC slab are broken into small sections (2ft to 6 ft fragments) and properly seated using a 

roller before the overlay is laid. This method is recommended for jointed reinforced concrete 

pavement. Potter et al (2000) demonstrated the potential of crack and seat technique to inhibit 

reflective cracking in the maintenance of a jointed unreinforced concrete pavement. Mukhtar 

and Dempsey (1996) stated that the cracking and seating operation reduces the structural 

integrity of the existing pavement and it requires a much thicker overlay. The thick overlay 

not only increases the cost but also creates problems of clearance and shoulder edge drop off. 
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Table 2.2: Design options for the minimisation of reflective cracking in the medium and long 

term (Defence Estates, 2005) 

Severity Level Medium term Long term 

Low 
80mm Marshall Asphalt (MA) 

overlay 

150mm MA overlay or 

80mm MA asphalt + Porous 

Friction Course (PFC) 

Medium 150mm MA overlay 
220mm MA overlay or 

150mm MA overlay + PFC 

High 220mm MA overlay 

300mm MA overlay or 

220mm MA overlay + PFC 

or Crack and seat and overlay 

(MA/PFC) 

Very high 
Crack and seat and overlay or 

Geogrid +Overlay (MA/PFC) 

Crack and seat and overlay 

(MA/PFC) 

 

2.1.2 Field Investigations/ Accelerated pavement testing 

Although laboratory tests have been used successfully to investigate the crack resistance of 

interlayer materials, it is essential that field investigations or accelerated (large scale) testing 

are carried for the results obtained from laboratory tests to be applicable in the field. This is 

because the field conditions cannot be completely simulated in the laboratory. Large scale 

testing has been carried out in different ways. Sanders (2001) highlighted four different 

approaches: building a pavement and monitoring under real traffic; building trial sections as 

part of a new road or as part of a maintenance treatment and monitoring performance under 

real traffic; building trial sections in the field and monitoring performance under accelerated 

traffic; and building trial sections in the laboratory for use with accelerated loading. The last 

two options have usually been embraced because they save time as results can be quickly 

obtained and prevent wastage of resources (money, manpower, etc) in case trials do not work. 

This section looks at some studies that had been carried out in this regard. 

Allison (1989) evaluated the ability of rubber-asphalt binder stress absorbing membrane 

interlayer (SAMI) to delay or prevent reflective alligator cracking in the field under real 

traffic. In the study, rubber asphalt was placed as SAMI on two sections of SR-12 near 
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Morton, Washington in the US. The rubber asphalt consisted of AR-4000W asphalt and 

reclaimed rubber grade G274. In the field study, the existing roadway constructed in 1967 & 

1968 consisted of 0.25ft (76.2mm) of asphalt concrete pavement (ACP) over 0.92ft 

(280.4mm) of untreated gravel and had severe alligator cracking. Also a 400 ft control section 

(without SAMI) was constructed. He reported that alligator cracking reflected in neither the 

SAMI section nor the adjacent control section after 10 years. His conclusion was that either 

the overlay was sufficient to mask the benefits of the interlayer or that the interlayer provided 

no benefits. His test further buttresses the fact that the performance of interlayers in reducing 

reflective cracking have been mixed. 

Furthermore, Krevtov and Gorelysheva (2000) reported the use of organomineral mix 

(VOMS) as a thin interrupting layer on a rigid base course. They stated that inspection of the 

sections built with the mineral showed that VOMS slowed down development of reflected 

cracks in pavements.  Also, Storsteen and Rumpca (2000) evaluated the ability of 

geosynthetics (LinqTac-711N and Strata Grid-200‟s) to ease distress and reflective cracking 

in asphalt overlays of jointed concrete pavements under real traffic. In their study, a test 

section of 2.2 km (1.4 miles) located at MRM 14 in the southbound lane of an Interstate was 

divided into twelve segments. Each segment had 10 joints. Each set of joints either contained 

geosynthetic Strata Grid-200 or LinqTac-711N, no fabric, maximum or minimum 

rehabilitation, and a sawed or unsawed joint. They defined maximum rehabilitation as cutting 

and removing four-foot sections to the base aggregate and minimum rehabilitation as 

brushing off and repairing small holes. Their results like those of Allison showed that 

LinqTac-711N and Strata Grid-200‟s were not effective in reducing/retarding reflective 

cracking. Rather, they recommended that the minimum rehabilitation including restoring load 

transfer where necessary and repairing spalled areas on Portland cement concrete pavement 

(PCCP) joints be carried out prior to completing asphalt concrete overlays. The failure of the 
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geosynthetic in this case might be due to a number of factors like the workmanship, the 

properties of the geosynthetics, condition of the existing pavement etc. All these should be 

considered before selecting an interlayer for maintenance work. 

Engle (2001) investigated the effectiveness of two engineering fabrics: PavePrep and 

Proguard, to reduce reflective cracking on County F16, Audubon County, Iowa US. The 

existing hot mix asphalt (HMA) pavement was 22ft (6.71m) wide and was built in 1957. The 

original structure was a 6"(0.15m) HMA pavement placed over a granular surfaced roadway 

built in 1937. It was resurfaced in 1970 with a 3" (0.076m) asphalt overlay. He reported there 

was at least one slurry levelling course and at least one seal coat prior to his project. The 

existing pavement exhibited transverse cracking at approximately 40ft (12.19m) spacing, 

some quarter point cracking and some alligator cracking. A seal coat was placed in 1958 to 

alleviate surface ravelling in the experimental pavement. The field study consisted of a 

3"(0.076m) thick HMA overlay with PavePrep, Proguard and a “control” with no 

geosynthetic. The data indicated a statistically significant decrease in reflective crack 

formulation in the Proguard fabric sections compared to the control. There was little evidence 

of a similar effect for the PavePrep fabric section compared to the control. However, the rate 

of cracking for both fabrics and the control tended to be similar after three years. Thus, he 

concluded that the benefit of using a fabric did not outweigh the costs of up to $4200.00 per 

mile. His conclusion was in line with Allison and Storsteen and Rumpca. 

Ellis et al (2002) studied the performance of techniques to minimise reflection cracking for 

maintenance of UK military airfields. The techniques studied were: application of airfield 

friction course directly onto a jointed pavement before overlaying with Marshall asphalt, 

Stress Absorbing Membrane Interlayer (SAMI), SBS modified Marshall asphalt, fibreglass 

reinforcing grid and crack and seat. He found that the application of airfield friction course 

directly onto the jointed concrete pavement before overlaying with Marshall asphalt reduced 
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the occurrence of reflection cracking after nine years in service. Also, they reported that a 

SAMI and SBS modified Marshall asphalt wearing course overlay applied to a cracked 

flexible composite pavement reduced the amount of reflection cracking by about 80 per cent 

and the severity of cracks compared to an equivalent control area after nine years in service. 

They stated that the use of fibre glass reinforcing grid demonstrated the importance of 

installing it on an asphalt regulating layer and not directly on a milled surface under an 

asphalt overlay. They submitted that fewer reflection cracks occurred in test sections 

incorporating a polyester grid or fibreglass grid under 100mm of Marshall asphalt overlay, 

yet an associated control had cracked extensively. Again, Dempsey (2002) developed and 

evaluated the use of interlayer stress absorbing composite (ISAC) to alleviate the problem of 

reflective cracking in asphalt pavements. The ISAC consisted of a low-stiffness geotextile as 

the bottom layer, a viscoelastic membrane layer as the core, and a very high stiffness 

geotextile for the upper layer. In his study, a laboratory pavement section with an AC overlay 

placed on a jointed Portland cement concrete slab was constructed and tested in an 

environmental section. The thermal strain was simulated using a mechanical device, opening 

and closing the joint at extremely low rate.  The temperature of the chamber was maintained 

at -1.1
o
C. His results showed that the laboratory AC overlay section without ISAC (control) 

cracked and separated completely within seven cycles of joint movement. The AC overlay 

performed exceedingly well when it was treated with the ISAC system and tested under the 

same conditions as the control pavement. He reported that the overlay remained intact, when 

the slab movement increased progressively, and the crack appeared only when the slab 

movement had increased to 5.08mm and over and the ISAC geotextile had been subjected to 

158 cycles.  

Elseifi (2003) evaluated the potential of a specially designed geocomposite membrane to 

delay the reflection of cracks in flexible pavement systems using a 2D finite element model 



Chapter two: Literature review 

 

 
 33 

and falling weight deflectometer (FWD). The geocomposite membrane was made of a 2mm 

thick low modulus polyvinyl chloride (PVC) backed on both sides with polyester nonwoven 

geotextile. The test section consisted of 150mm of 21B (base stone) aggregate layer (Virgiana 

Department of Transpotation specifications), 75mm of cement-treated drainage layer, a 

geocomposite membrane sandwiched between two lifts of base mix and a surface mix, SM-

9.5D (asphalt concrete with 9.5 mm nominal maximum aggregate size), and the surface mix 

was an open-graded friction layer (OGFL). His FWD results showed that the area with 

geocomposite membrane had greater deflection than the area without geocomposite 

membrane. He concluded that the layer deflection should be anticipated and considered when 

geocomposite membrane is used to retard reflective cracking. He stated that large deflection 

implied that a pavement with a strain energy absorber (geocomposite membrane) would be 

less resistant to fatigue than a pavement without it, thus the overlay mixtures and thickness 

should be well designed to avoid premature failure of the pavement through a fatigue related 

mechanism. The test demonstrated the importance of having an overlay mixture with good 

properties and that caution should be taken in the design of the overlay mixture and thickness.  

Vespa (2005) evaluated the use of interlayer stress absorbing composite (ISAC) and three 

other products namely: PavePrep, Roadtac and Sand Anti-Fracture (SAF). The ISAC 

considered in the study was a three-layer system. The top layer was a high strength woven 

geotextile. The middle layer was a modified rubberized asphalt layer to absorb the strain 

energy and bond the two geotextiles together. The bottom layer was a low strength geotextile. 

His distress survey showed that the formation of reflective cracks and the subsequent 

deterioration of the cracks were delayed at ISAC treated joints and cracks. He reported that 

the ISAC areas consistently outperformed PavePrep and Roadtac. When compared to SAF, 

ISAC delayed reflective cracks by about two years. The test showed that interlayers were 

able to reduce reflective cracking, one interlayer performing better than the other. Antunes et 
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al (2008) carried out eight years‟ performance monitoring of anti-reflective cracking 

solutions. The anti-reflective solutions considered in the study were SAMI with modified 

binder, cold asphalt concrete overlay, bitumen-impregnated geotextile and steel mesh with 

slurry. Also, two sections were constructed of asphalt concrete without anti-reflective 

cracking solution (reference). The monitoring activities comprised visual assessment of the 

pavement surface, rut depth measurement and falling weight deflectometer (FWD) test. They 

monitored the performance of the test sections between 1998 and 2005 and found that the 

section where cracking and rutting were developing fastest was the one with the cold asphalt 

overlay, and the sections with better performance were the ones with bitumen-impregnated 

geotextile and steel mesh reinforcements.  They observed from the cores from the test 

sections that cracks originated at the surface and there was debonding at the geotextile and 

steel mesh interfaces. They stated that lack of bond was reflected in the FWD test results, 

since only the debonded sections presented an increase in the deflections between 2001 and 

2005. Their study showed that top-down cracking may occur in the rehabilitated pavements 

with SAMIs. 

Farshad (2005) reported that the field performance of paving fabric interlayer has generally 

been successful, but that there were cases where their use gave little or no improvement. He 

stated that they have been most effective when used for load-related fatigue distress, while 

they have not performed well when used to delay or retard thermal cracking. Vervaecke et al 

(2008) studied the long term performance of anti-cracking interfaces. In one of their 

experimental roads (Sint-Pieters-Leeuw), the bituminous overlay consisted of 5cm thick 

stone mastic asphalt (SMA), and four different anti-cracking interfaces were applied on the 

concrete slabs: a SAMI, a non-woven impregnated with elastomeric binder, a glass fibre grid, 

steel reinforcing nettings and a reference section without interface system. They divided the 

anti-cracking interfaces into two classes based on their performances. The first class was 
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formed by the SAMI and non-woven, both of which gave a considerable delay in crack 

initiation; the second class which performed noticeably better than the first class consisted of 

the grid and steel reinforcing netting. They reported that almost no cracks were visible with 

second class interlayers eight years after rehabilitation. While their tests showed that the 

reinforcing interlayers performed better than the stress absorbing ones, the cost analysis was 

not reported. It is generally known that the reinforcing interlayers are more expensive than 

stress relieving ones. 

Also, Palacios et al (2008) evaluated the use of fibre reinforced asphalt treatment as a stress 

absorbing membrane interlayer (SAMI) to mitigate reflective cracking. Their study involved 

field evaluation and comparison of overlays with interlayers and those without an interlayer 

(control) on pavement test sections at the Pennsylvania Transportation Institute (PTI) test 

track. The evaluation comprised observation of construction process, accelerated trafficking, 

periodic distress and image surveys, in addition to non-destructive and destructive structural 

evaluation. The control section consisted of 2" (50.8mm) hot mix asphalt (HMA) overlay on 

top of an existing asphalt pavement, while the experimental section additionally contained the 

SAMI between the old and the new HMA overlay. Both sections were made to experience 

controlled bus traffic and 1 million loading cycles using the Mobile Model Load Simulator 

1/3scale (MMLS3). They concluded the use of fibre-reinforced interlayer gave partial 

improvement in reflective cracking resistance. The examination of the field cores showed no 

reflected cracks were observed in the cores from the SAMI section, however an existing 

crack was observed propagating towards the surface of the new layer in the control section.  

In summary, field/accelerated trafficking evaluation of interlayer materials to retard reflective 

cracking clearly indicates that results have been mixed. While some researchers have 

reported that the introduction of interlayer materials retards the appearance of cracks in the 

overlay, some have reported that they were not effective and some investigations were 
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inconclusive. It is intended to bridge this gap in knowledge by studying the effectiveness of 

some selected stress absorbing membrane interlayers in retarding reflective cracking in a 

pavement test facility. The pavement facility is a large scale wheel tracking test (laboratory 

based) at the University of Nottingham capable of applying a load of up to 12kN at room 

temperature. The test is reported in chapter seven. The test was chosen because the facility is 

readily available for the study and past studies reviewed in this section have shown that 

accelerated pavement testing with trial sections in the laboratory has been used successfully 

to evaluate the performance of interlayer materials. 

 

2.2 Pavement design methods 

The objective of pavement design is to produce an engineering structure that will distribute 

traffic loads efficiently whilst minimising the whole life cost of the pavement (Read and 

Whiteoak, 2003). The two common methods of pavement design are the empirical and 

analytical approaches. The analytical approaches can further be classified into mechanistic-

empirical and mechanistic approaches. The empirical method is based on experience 

accumulated in practice and from specially constructed test sections. The empirical design 

methods are limited by the lack of capability to accommodate different conditions, such as 

temperatures, material properties, subgrade conditions, speed of traffic and other conditions 

that were not considered when they were developed. The mechanistic-empirical approach 

involves the relation of theory (calculated strains, stress and deflection) to observed 

performance under various conditions of traffic loading and environmental factors, while the 

mechanistic method employs the theoretical analysis of the mechanical properties of the 

materials and is able to accommodate any design situation. 
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2.2.1 Empirical design approach 

In this method, the design traffic is estimated for new roads by a traffic study and for 

maintenance schemes or realignment by carrying out a 12, 16 or 24 hours traffic count, which 

is converted to an average annual daily flow (AADT) and design value read from charts. Also, 

the California bearing ratio (CBR) of the subgrade is assessed by test and the thickness of the 

sub-base and if necessary capping is also obtained from charts. The design traffic is used to 

calculate the total thickness of the layers above the subbase for different pavement types: 

flexible, flexible composite, rigid and rigid-composite. Examples of empirical design 

methods include the Asphalt Institute method developed in 1982, and the AASHTO Interim 

Design Method first developed in 1972 and subsequently updated in 1983 and 1993.  

 

2.2.2  Analytical design approach 

The philosophy of analytical design is that a pavement should be treated in the same way as 

other civil engineering structures (DMRB, 2006). The procedures involved in the analytical 

design approach are as follows: 

a) Estimate the traffic loading in terms of an equivalent number of standard axle loads. 

b) Consider the available and permitted pavement materials. 

c) Estimate the size of the components (in situ dimensions and long-term performance of 

each individual layer of the pavement). 

d) Carry out structural analysis to determine the stresses, strains and deflections at 

critical points in the structure (using a simplified multi-layer elastic model of the 

pavement structure). 

e) Compare the critical stresses, strains and deflections in the pavement with maximum 

allowable values to check if the design is satisfactory. 
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f) Repeat steps c, d and e until a satisfactory pavement design is achieved. 

g) Consider the economic feasibility (the whole life value) of the design 

A number of computer programs have been developed which are capable of calculating 

stresses, strains and deflections for various pavement configurations. Some of them are as 

follows: 

 Bitumen Stress Analysis in Road (BISAR) developed by Shell. 

 CIRCLY developed in Australia as an integral component of the Austroads pavement 

Design Guide. 

 KENLAYER developed at University of Kentucky. 

 Design Manual for Roads and Bridges, Volume 7, (HD 24, 25 and 26) developed in 

the United Kingdom by the Highways Agency. 

Also, designers have adapted some of these into design models (software) for overlay designs. 

Some of these include: 

 EVERPAVE (Washington State Department of Transportation (WSDOT) 

mechanistic-empirical overlay design based on multilayered elastic analysis program; 

  WESLEA (Waterways Engineering Station Elastic Layer Analysis Pavement Suite) 

  AASHTO (DARwin) based on the AASHTO guide for design of pavement structures; 

 M-E pavement design guide; 

 Asphalt Institute (MS -17) equivalent thickness method. 

Although some of these methods have been used to design pavements against reflective 

cracking, it has to be stated that these methods do not account directly for reflective cracking. 

Different models have been generated for design of overlays incorporating reinforcing or 
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stress relieving interlayers against reflective cracking. Some of them are highlighted in 

section 2.2.3 

2.2.3 Design of overlays with interlayers 

A number of design methods have been used for the design of overlays incorporating 

reinforcing or stress relieving interlayers. Sanders (2001) observed that although several 

design approaches exist, assessment of the accuracy and applicability of the methods is not 

straight-forward. He noted this was because the comparison of predicted behaviour and 

subsequent performance was not often done. Hughes (1986) modified an analytical design 

procedure for flexible pavements designed at the University of Nottingham by Brown and 

Brunton (1984) to include the benefits of using polymer grid reinforcement at various 

positions in the pavement. He concluded the programme was able to demonstrate the benefits 

of polymer grids in pavements including increase in design life of pavements susceptible to 

fatigue permanent deformation and reflective cracking. Hughes considered the benefit of 

reinforcing interlayer inclusion in an overlay over a cracked pavement by introducing a life 

increase factor of 3. This is based on the results of his laboratory study. His approach is 

limited because it does not consider the factors that are responsible for the increase in life. 

Also, his choice of increase in life of a factor of three was based on laboratory work, which 

may be totally different from what will happen in the field. 

Also, Sousa et al (2001) developed a mechanistic overlay design method for reflective 

cracking. Their model was based on the finite element method (FEM) used to determine the 

stresses and strains in a hot mix asphalt overlay above a crack. They calibrated the FEM-

modelled crack movements using field measurements with a crack activity meter and a 

falling weight deflectometer (FWD) conducted in Portugal, Arizona and California. They 

carried out laboratory testing that simulated the observed field crack movement and measured 

stresses and strains on test specimens similar to the actual field mixes to generate data for the 
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model. They converted the mathematical statistical model into a practical pavement design 

method for reflective cracking by calculating the estimated traffic until reflective cracking for 

a given layer thickness and layer modulus and then comparing the actual and observed 

number of truck loadings and percent cracking. The researchers stated that the models were 

generated for dense-graded hot mix asphalt and gap-graded asphalt rubber (wet process- 80% 

asphalt and 20% ground tyre rubber), but that other HMA mixes used for overlay may be 

calibrated and used through the proposed method. Their approach is noteworthy in that it 

considers some of the factors that are responsible for reflective cracking on overlay over an 

existing pavement. The shortcoming of their design is that the model was developed for a 

particular region and mixtures. As they stated, while it is possible to use the moduli and 

fatigue characteristic of other mixtures, it must be assumed that the temperature adjustment 

factor or the aging adjustment factor will be identical to that of dense-graded hot mix asphalt 

(HMA-DG) and gap-graded asphalt rubber (AR-HMA-GG) used to generate the models. 

 

Elseifi and Al-Qadi (2003) developed an overlay design procedure to predict the service life 

of rehabilitated flexible pavement structures against reflective cracking. They used linear 

elastic fracture mechanics (LEFM) principles to derive a simple equation based on three-

dimensional (3D) finite element (FE) models that can be used to predict the number of cycles 

to failure against reflective cracking for rehabilitated flexible pavements. Their model 

considered both the crack initiation and propagation stages. The crack initiation stage was 

described using a traditional fatigue law (see equation 2.1) and the crack propagation stage 

was described using the Paris‟ law (see equation 2.2).  They used the commercial software 

ABAQUS 5.8-1 to indirectly calculate the stress intensity factor using the path independent 

integral, called J-integral (plain strain) (see equation 2.3).They established three levels of 

overlay fracture characteristics by relating the first fracture parameter (n) of the material to its 
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creep properties (see equation 2.4) and the second fracture parameter (A) was determined by 

means of the volumetric and modulus of the mix (see equation 2.5).  They developed a 

regression model to predict the number of cycles in ESALs as a function of the significant 

variables. The developed design equation (see equation 2.6) was based on the results of all 

the considered cases in their study. Although, Elseifi‟s approach is thorough in considering 

crack initiation and crack propagation through overlay on a crack pavement, it does not 

consider the introduction of a stress relieving or reinforcing interlayer to retard or delay 

reflective cracking.  

 

N = 4.856         
      …………………………………… (2.1) 

Where,  

N = number of cycles before crack initiation 

εzx = shear strains 0.4 inch (10 mm) above the existing crack 

  

  
          …………………………………………. (2.2) 

Where, C = crack length 

N = number of loading cycles 

A and n = fracture parameters of the material 

ΔK = stress intensity factor amplitude. 

   
    

 
             ………………………………………………………. (2.3) 

Where, 

J = J integral 

V = Poisson‟s ration 
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E = elastic modulus 

K = stress intensity factor 

   
 

 
  …………………………………………………….. (2.4) 

 

Where, m = slope of the log creep compliance versus log time curve 

 

Log A = -2.605104 + 0.184408AV – 4.704209 log AC – 0.00000066E ………. (2.5) 

Where 

AV = air-voids (%) 

AC = asphalt content (%) 

E = resilient modulus of the mixture (in psi). 

                                                                   

                              …………………….................................................... (2.6) 

Where,  

Wt80 = total number of 80-kN single-axle load applications 

Hoverlay = thickness of HMA overlay (mm) 

Eoverlay = resilient modulus of HMA overlay (MPa) 

HHMA = thickness of existing HMA layer (mm) 

EHMA = resilient modulus of existing HMA layer (MPa) 

Hbase = thickness of base layer (mm) 

Ebase = resilient modulus of base layer (MPa) 

Esubgrade = resilient modulus of subgrade (MPa) 
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The new AASHTO Mechanistic-Empirical Pavement Design Guide (MEPDG) for HMA 

overlays of existing HMA surfaced pavements considers distresses developing in the overlay 

as well as the continuation of damage in the existing pavement structure. However, it was 

stated that the reflective cracking models incorporated in the MEPDG were based strictly on 

empirical observations and were not a result of rigorous mechanistic-empirical analysis (Hajj 

et al, 2008). The proposed MEPDG overlay design procedure allows engineers to consider 

two types of reflective cracks: reflective cracks that exist on the surface prior to overlay 

placement; and those that develop in the existing surface after overlay placement. The 

percentage of reflective cracks through the overlay is predicted as a function of time using a 

sigmoidal function (see equation 2.7). The a and b fitting parameters are functions of the 

HMA overlay thickness and are hard coded in the MEPDG software. The designer cannot 

directly alter these parameters as inputs, but can change them in the software.  They 

recommended that an agency use historical data to develop a local reflection cracking model. 

Also, the MEPDG approach assumes based on empirical considerations that a properly 

installed fabric is equivalent to 2 inches (50.8 mm) of HMA overlay. Lastly, they 

recommended a minimum of 2 inches (50.8 mm) for the HMA overlay thickness (hac) of 

flexible pavements. As mentioned earlier, the consideration of reflective cracking in the new 

AASHTO Mechanistic-Empirical Pavement Design Guide (MEPDG) was based on empirical 

observation. This makes it difficult to accommodate other factors/conditions that were not 

considered in the empirical observation. 

 

RC = 
   

        …………………………….. (2.7) 

Where: 

RC = the percent cracks reflected 

T = the time in years 
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a = 3.5 + 0.7 ×     

b = - 0.688584 – 3.37302 ×      
          

    = HMA overlay thickness in inches 

Also, OLCRACK, a design program that allows the design of reinforced overlay against top-

down and bottom-up cracking was designed at University of Nottingham by Thom (2000). 

The program (in an Excel spreadsheet) estimates the rate of crack propagation using the 

relationship between tensile strain in the crack zone and material (fatigue) coefficients (see 

equation 2.8). The approach is similar to the Paris law described in equation 2.2, except that 

the stress intensity factor is replaced by the strain in the cracked zone. The software is in two 

parts - the first one considers two layers of asphalt over the existing pavement, while the 

second considers one layer of asphalt with reinforcement over existing pavement. 

OLCRACK is considered the best out of all the methods highlighted in this section because it 

considers many of the factors that play a part in crack initiation and propagation. It takes into 

account the debonding (slip) at interfaces. It also introduces the crack stitching effect which 

reduces the stresses and strains within the crack region. Again, it considers the stiffness and 

fatigue characteristics of the overlay and the interlayer, the crack width factor, crack spacing 

and crack shear modulus. Sanders (2001) used OLCRACK in his study to demonstrate the 

savings in asphalt thickness in overlay incorporating reinforcing grids.  

 

  

  
       ………………………………. (2.8) 

Where, 

  

  
 = crack growth rate 

A, n = Fatigue parameters 

ε = strain in the crack region 
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It has been shown in this section that a lot of methods are available for the design of overlay. 

The shortcomings of some of the methods have been mentioned. These include application of 

laboratory results without calibration in the field, consideration of reflective cracking based 

on empirical observations, and non consideration of reinforcing or stress relieving interlayer 

in the design. It is intended in this study to use analytical design method for the design of 

overlay incorporating SAMIs. This will be achieved by using software “OLCRACK” 

developed at University of Nottingham by Nick Thom (Thom, 2000). The choice of 

OLCRACK is informed by its unique ability to consider most of the factors responsible for 

crack initiation and propagation through overlay over a cracked pavement.  

 

2.3 Interface properties in pavement 

A number of researchers have investigated the bond between layers of pavement with and 

without interlayers using different approaches. Some of them are reviewed in this section. 

This was done to understand the importance of bond between pavement layers in pavements 

with and without interlayers. 

Hughes (1986) developed a shear box to study the strength of various interface conditions. 

He noted that there were some limitations with its use. The test specimens were constructed 

in two lifts. Normal and shear forces were applied using hydraulic actuators and monitored 

using load cells. The normal load was held approximately constant and the shearing force 

was supplied at a constant rate of strain (5mm/min). He examined five interface conditions 

namely: chip seal only; chip seal and grid; grid only; no treatment; and no interface 

(specimen compacted in one lift). He observed that both chip seal only and grid and chip seal 

interfaces had a reduction in shear strength of approximately 20% when compared to the no 

treatment condition. He observed that the chip seal rich in bitumen combined with the slow 

rate of loading in the test (5 mm/min) created a viscous failure along the predetermined 
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failure plane. The grid only condition reduced the shear strength of the interface by 10% 

compared to the untreated surface. He concluded that the reduction in shear strength should 

not be a problem in general practice, since rates of loading are significantly higher under 

traffic loading and viscous failure of the chip seal would be unlikely. Also, Caltabiano (1990) 

used the same shear box developed by Hughes to determine the interface shear strength for 

materials used to prevent reflection cracking employing a vibrating hammer instead of static 

pressure adopted by Hughes. He stated that the greatest reduction in shear strength was 

recorded for a geotextile interlayer (30% of control) placed with a bituminous seal in 

accordance with the manufacturer‟s recommendations. He observed that the geogrid 

interlayer with chip seal and the timber/emery paper interlayer showed a reduction of 

approximately 20% in shear strength from the control sample, which agreed with earlier 

findings of Hughes. Also, he concluded like Hughes that reduction in shear strength of the 

order of 20-30% obtained for laboratory testing should not cause any problems with overlay 

slippage for in-situ conditions, as field loading rates are significantly higher than the shearing 

rate used during testing. Sanders (2001) showed in his research on interface bonding in 

pavements with a reinforced interlayer using the same shear box as Hughes and Caltabiano 

that failure occurred on the interface between the reinforcement and the lower layer of asphalt. 

He concluded that the bonds between freshly-applied asphalt and the reinforcement were 

better than the bonds between the reinforcement and the „older‟ pavement. The shear box 

apparatus used by Hughes, Caltabiano and Sanders has the advantage that large specimen can 

be tested, allowing a representative sample of an interlayer to be examined. While it has been 

used successfully to study interface properties of pavement, it has a number of limitations. 

These include non-uniform stress distribution at the interface and stress concentration at the 

front and rear edges of the specimen causing failure along the shear plane, without the full 

shear strength of the interface being mobilized. This underestimates the shear strength of the 
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interface. However, their tests showed that the introduction of interlayers in cracked 

pavement gave a reduction in shear strength of the interface of the order of 10-30% of 

specimens without interlayer. 

Tschegg et al (1995) used a different approach from Caltabiano, Hughes and Sanders. He 

developed a wedge splitting test to characterize the fracture mechanical behaviour of layer 

bonding. The test involved introducing a rectangular groove into the specimen and placing a 

starter notch in the interface at the bottom of the groove, from where a crack started to grow 

into the interface during loading. Their results indicated that the specimens with an interface 

had less specific fracture energy than the ones without an interface, indicating a decrease in 

the interface stiffness. Although, the wedge splitting test is able to determine the maximum 

strength of interlayer bond, the fracture properties of an interlayer and differentiate between 

brittle and ductile behaviour, the loading method is not the type dominant in the field (an 

overlay over a cracked pavement). Therefore the method is considered inappropriate for the 

present study. Raab and Partl (2004) reported on research carried out by Swiss Federal Road 

Authority to determine the interface properties of a 30-year old concrete pavement of a 

motorway test section rehabilitated with an asphalt surface layer using three different 

intermediate bituminous layers: glass fibre mesh reinforced, steel wire grid reinforced and 

unreinforced. In the first system, before the application of the glass fibre mesh, as a first step, 

they sprayed a hot tack coat on the concrete pavement and the stone mastic asphalt was built 

(thickness 4 cm). The second system consisted of a steel wire grid reinforcement and slurry 

generally used for cold micro surfacing. In this case the steel wire grid was directly applied 

on the concrete pavement and slurry (thickness 0.5 to 1cm) was applied onto the steel wire 

grid and after the breaking of the emulsion the surfacing was finished with the application of 

a stone mastic layer (thickness 4.5cm). For the bituminous interlayer without reinforcement a 

hot tack coat was applied and spread with gravel, which was compacted afterwards. After 
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sucking off the surplus gravel, a 4 cm asphalt concrete surface was applied. They examined 

the interlayer adhesion with the Layer-Parallel Direct Shear Device (LPDS) and the modified 

pull-off device according to the Swiss standard.  For the pull off test, they reported that the 

specimens with still wire reinforcement were broken; hence the test could not be conducted, 

indicating insufficient bond. Their results showed the importance of interlayer shear 

performance, because the pavement with no reinforcement had the highest shear and pull-off 

force. The pavement with steel wire had less shear force than the one with glass fibre, while 

the maximum pull-off force for glass fibre was considerably less than that of the pavement 

with no reinforcement. They concluded that when using stress absorbing intermediate 

bituminous layers, it is important to choose appropriate and sufficiently established systems 

and construction techniques in order to minimize negative effects on adhesion. In the context 

of the present study, the test modes (shear and tension) used by Raab and Partl are very 

important because the an overlay over a cracked pavement is subjected to shear and tensile 

stresses as the wheel approaches the edge of the crack and tensile stresses when the wheel is 

directly over the crack. Therefore the two modes are considered in the present study. 

Investigations have also been carried out to evaluate the effects of the interface conditions 

such as the type and amount of tack coat, construction practice etc on the bond strength of the 

interface. Some of them are highlighted here. Collop et al (2003) used the Leutner shear test 

to assess the bond condition between surfacing and binder course materials and binder course 

and base materials without any interlayer. They investigated the bond at the upper two 

interfaces in a typical flexible or semi-rigid pavement structure.  The cores 150 mm in 

diameter were conditioned in a temperature-controlled cabinet at 20
o
C and tested at 20

o
C 

using a standard test loading rate (50mm/min), and the shear force and shear displacement 

were measured.  They observed that for HRA/20DBM, SMA/20DBM and 20DBM/28DBM 

interfaces, in the cases where a standard tack coat application was used, the interface shear 
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strengths approached those obtained from tests directly through each of the materials 

comprising the upper layer. For the HRA/20DBM and SMA/20DBM combinations, where no 

tack coat was used the interface shear strength was reduced, but not greatly. However, for the 

„very dirty‟ condition extra tack coat did not compensate, and the interface shear strengths 

were significantly reduced. The results for the 20DBM/28DBM combinations show 

significantly higher levels of variability (in terms of shear strength) compared with the results 

for the surfacing/binder course interfaces. They reported that it was likely due to the fact that 

significantly larger aggregates were involved compared with the surfacing/binder course 

combinations. In the 20DBM/CBM combination, it proved impossible to achieve a good 

bond, reflecting common experience on site. They stated that zero penetration of stones from 

the DBM into the CBM (that is, reduced aggregate interlock) may be the main reason. Their 

tests clearly showed that a number of factors influence the bond achieved at the interface. 

These factors include the interface condition, the amount of tack coat and materials in contact, 

with the principal factors that reduce the interface bond significantly being the interface 

condition and materials in contact. This implies that when an interlayer is used in pavement, 

it is very important to take into consideration the type of overlay or maximum nominal 

aggregates in the overlay and the interlayer as this may have influence on the interface 

properties.  

Kruntcheva et al (2006) investigated the factors affecting bond development between 

pavement layers using the Nottingham shear box. Their main set of test cases included a 

constant base material (20 mm DBM) and two distinct surfacing materials: 10 mm stone 

mastic asphalt (SMA); and porous asphalt (PA) with 15% voids. For these materials, they 

examined four different interface conditions: normal tack coat K1-40 application at 0.33 L/m
2
 

within the limits recommended by the British Standards Institute; excess tack coat rate (1.0 

L/m
2
); dirty interface (a clay-water slurry was placed on the interface); and no tack coat. 
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They observed like Collop et al (2003) that the interface bond depends on the materials in 

contact, but not the amount of the applied tack coat. Also, contrary to the finding of Collop et 

al, they found that the interface condition did not have significant effect on the interface bond. 

It was pointed out, that using materials that require more compaction time will ensure good 

bond at interface.  

Tashman et al (2008) investigated the influence of several construction practices on the bond 

strength at the interface between existing HMA surface and a newly constructed 50mm HMA 

overlay (Superpave 12.5 mm nominal maximum aggregate). The factors studied included the 

following: surface treatment (milled versus non-milled); Curing time (broken versus 

unbroken); approximate target residual binder (0.00, 0.08, 0.22 and 0.32 L/m
2)

; and 

equipment tracking (wheel path (WP) versus middle of lane (ML)). They performed three 

tests namely Florida Department of Transportation, FDOT shear test, the torque bond test, 

and the University of Texas El Paso, UTEP pull-off test. In the FDOT test, the field core was 

conditioned at a temperature of 25
o
C for 2hr before the test. The laboratory torque bond test 

was conducted at 20
o
C. They observed that the results from the UTEP pull-off test were 

generally different from the other two tests. Overall, milling provided a significantly better 

bond at the interface between the existing surface and the new overlay. For milled sections, 

the absence of tack coat did not significantly affect the bond strength at the interface. This 

was not true for the non-milled sections, where their results showed the absence of tack coat 

severely decreased the bond strength (there was no bond at all). They reported curing time 

had minimal effect on the bond strength at the interface and the residual rates in the range of 

0.08–0.32 L/m
2
 did not generally affect the bond strength at the interface which agreed with 

the findings of Kruntcheva et al (2006). Also the equipment tracking did not occur to the 

extent expected during the experiment; hence its effect on the bond strength was insignificant. 

Their tests showed that the interface condition play a great role in the quality of adhesion 
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achieved at the interface. This means that it is important that when SAMIs are to be 

introduced, the existing pavement surface must be free of dirt, dust, water and other things 

that may have negative impact on adhesion.                                                                 

 In summary, researchers have used different methods to determine the interface properties. It 

is important to consider the stresses that are dominant in the field before choosing any of the 

methods to assess the interface properties. In the present study as highlighted in section 1.3, 

tensile and shear stresses are generated when an overlay is placed on a cracked pavement  

Therefore, the interface properties between the SAMIs and the overlay have been studied 

using Leutner shear test and pull-off test at different temperatures. The Leutner shear test 

measures the bond strength of the interface between the layers in shear mode, while the pull-

off test measures the tensile strength of the interface in tension mode. 

As documented in the literature a number of factors affect interface bond. These include 

construction practice, the materials in contact, amount of tack coat, interface condition etc. 

While some authors stated that the interface bond was influenced by the amount of tack coat 

and interface condition, others suggested that the interface bond was influenced principally 

by the materials in contact. In this study, the overlay material is 10 mm asphalt concrete with 

40/60 penetration bitumen. This has been used with the SAMIs to produce specimens and 

examine the interface bond. The findings from literature reported in this section showed that 

it is important that the interface properties be examined when a different overlay material is 

to be used. The review showed that introducing interlayer materials of different types into a 

pavement affects the interface shear performance. 
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3 MATERIAL PROPERTIES 

3.0 Introduction 

The materials used for this study were aggregates, binder-penetration grade bitumen, polymer 

modified bitumen, and bitumen emulsion, glass fibre, forming different bituminous mixtures 

and rubber mat. The mechanical properties were determined using standard tests such as 

particle size distribution, penetration and softening point tests, dynamic mechanical analysis 

(DMA), indirect tensile stiffness modulus test (ITSM), indirect tensile fatigue test (ITFT) and 

repeated load axial test (RLAT). 

The tests were carried out because knowledge of the materials properties would be expected 

to help in predicting their performance. Also some of the results were required for the 

modelling of the wheel tracking test. The tests were carried out in accordance with British 

standards. 

 

3.1 Aggregate particle size distribution  

The aggregates for this study were as follows: 

 6mm and 10mm single sized aggregate sourced from Bardon quarry, Leiscester, UK 

 Dust sourced from Bardon aggregates, Leiscester, UK 

 Sand from Hints quarry, Tamworth, Staffordshire, UK. 

 Filler from Torr Works, Somerset, UK 

 0/4 Crushed rock fill graded aggregates sourced from Carnsew quarry, UK 

 Fine sand from Binnegar quarry, UK. and 
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 Limestone filler from Francis flower, Somerset, UK. 

The particle size distribution is a fundamental property which governs how an aggregate will 

perform (Hunter, 2000). The particle properties and size distribution play major roles in 

determining the strength of the material as a whole (Thom, 2008). The aggregate gradings 

were carried out in accordance with BS EN 933-1:1997 (BSI, 1997). The particle size 

distributions were as shown in Table 3.1 and Figure 3.1. 

Table 3.1: Grading of aggregates 

Sieve 

size 

(mm) 

10mm 6mm Dust 
Hint 

Sand 

Torr 

Filler 

0/4 

CRF 

Binnegar 

sand 

Limestone 

filler 

% Passing 

16 100 100 100 100 100 100 100 100 

14 100 100 100 100 100 100 100 100 

10 91.08 100 100 100 100 100 100 100 

8 50.74 99.07 100 100 100 100 100 100 

6.3 13.03 88.66 99.66 100 100 100 100 100 

4 2.71 14.64 92.76 100 100 100 100 100 

2.8 2.27 8.23 85.64 96.54 100 - - - 

2 1.98 2.66 70.89 95.08 100 76 99.0 100 

1 1.64 1.6 48.93 92.45 100 51.0 97.0 100 

0.5 1.35 1.38 33.54 85.34 100 33.0 92.0 100 

0.315 - - - - - 25.0 75.0 100 

0.25 1.18 1.25 22.73 27.11 100 21.0 61.0 100 

0.125 1.06 1.06 15.44 2.23 100 12.0 20.0 100 

0.08 - - - - - 6.5 5.5 87.0 

0.063 0.96 1.03 11.28 0.53 94.29 6.0 5.0 85.0 
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Figure 3.1: Particle size distribution of the aggregates 

 

3.2 Binder characterization 

The binders for the research were as follows: 

 10/20, 40/60 and 160/220 penetration grade bitumen from Shell bitumen 

 Ordinary bitumen emulsion
 
and  polymer modified bitumen emulsion 

 Polymer (styrene-butadiene-styrene (SBS)) modified binder 

Penetration test: The penetration test is a measure of the consistency of the bitumen expressed 

as the distance in tenths of a millimetre (decimilimeter) that a standard needle is allowed to 

penetrate vertically into a sample of the bitumen, under a specified load and loading time, at a 

fixed temperature of 25
o
C (Airey, 1997). The penetration test can be considered as an indirect 

measurement of the viscosity of the bitumen at 25
o
C (Liao, 2007). The penetration test was 

carried out in accordance with BS EN 1426:2007 (BSI, 2007a). 

Softening point: Softening point is the temperature at which material under standardized test 

conditions attains a specific consistency. The Ring and Ball method is an empirical test used 

to determine the consistency of bitumen by measuring the equiviscous temperature at which 
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the consistency of the bitumen is between solid and liquid behaviour (Airey, 1997). The 

procedure of the test is specified in BS EN 1427:2007 (BSI, 2007b).  

Viscosity: The measure of bitumen resistance to flow defines its viscosity, η. This property 

determines how the bitumen behaves at a given temperature and over a range of temperatures, 

thus it is the ratio of applied shear stress to the rate of shear strain. The rotational viscometers 

are normally used to determine, and in some cases specify the viscosity of bitumens at 

application temperatures (Read and Whiteoak, 2003). The rotational viscometers allow the 

testing of a wide range of bitumen over a wide range of temperatures.  The test procedure for 

the penetration grade and polymer modified bitumen is specified in BS EN 13302:2003 (BSI, 

2003a), while the test procedure for bitumen emulsion is specified in BS EN 14896:2006 

(BSI, 2006a). The penetration and softening point results are shown in Table 3.2, while the 

viscosity results are shown in Table 3.3.  

Table 3.2: Softening point and penetration results 

Binder  Grade(Bitumen) Penetration (dmm) Softening point (
o
C) 

40/60 Bitumen 49.0 51.2 

160/220 Bitumen 190.3 39.8 

10/20 Bitumen 14.0 73.0 

Polymer modified bitumen 60.0 52.2 

 

Table 3.3: Viscosity test results 

Penetration grade bitumen/ 

Polymer modified bitumen 

Viscosity (Pa.s) 

@ 140
o
C 

Viscosity (Pa.s) 

@ 160
o
C 

Viscosity (Pa.s) 

@ 180
o
C 

40/60 Bitumen 0.17 0.36 0.08 

160/220 Bitumen 0.13 0.08 0.04 

10/20 Bitumen 1.61 0.53 0.23 

Polymer modified bitumen 0.46 0.22 0.12 

Bitumen emulsion 
Viscosity (Pa.s) 

@ 25
o
C 

Viscosity (Pa.s) 

@ 30
o
C 

Viscosity (Pa.s) 

@ 40
o
C 

Ordinary bitumen emulsion 0.700 0.580 0.390 

polymer modified bitumen 

emulsions 
0.184 0.194 0.180 
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3.2.1 Bitumen rheology 

The dynamic mechanical analysis (DMA) was performed in a Bohlin Model DSR50 in 

accordance with BS EN 14770:2005 (BSI, 2005a) and the test conditions were as follows: 

Mode of loading: controlled strain 

Temperatures: 0, 10, 20, 30, 40, 50, 60, 70, and 80
o
C. 

Frequencies: 0.1, 0.158, 0.251, 0.398, 0.631, 1, 1.58, 2.51, 3.98, 6.31, 10 Hz 

The test parameters were as shown in Table 3.4. The DMA results were presented as master 

curves of complex modulus and phase angle at a reference temperature of 25
o
C as shown in 

Figures 3.2 and 3.3 respectively. The complex modulus curves give an indication of the 

binder stiffness. Figure 3.2 shows the 40/60 bitumen has greater stiffness than polymer 

modified bitumen, while polymer modified bitumen has greater stiffness than 160/ 220 

bitumen. This stiffness property of the binders is confirmed by the phase angle master curves, 

which show that the phase angle of polymer modified binder is greater than that of 40/60 

bitumen at a given frequency. Also, the phase angle of 160/220 bitumen at a given frequency 

is greater than that of polymer modified binder.      

                                         Table 3.4: Test parameters for DMA 

Parameters 40/60 bitumen 160/220 bitumen Coflex N 

Temperature (
o
C) 0-40

 
 40-80 0-40

 
 40-80

 
 0-40

 
 40-80

 
 

Plate diameter (mm) 8  25  8  25 8  25 

Gap width (mm) 2000 1000 2000  1000 2000  1000 

Strain 0.2 0.5 5 10 1.5 0.5 
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Figure 3.2: Complex modulus master curves at reference temperature of 25oC 

 

 

Figure 3.3: Phase angle master curves at reference temperature of 25oC 

 

3.3 Rubber stiffness 

The rubber mat was used in the wheel tracking test to simulate an elastic foundation and 

induce bending stress. The stiffness of the rubber mat was determined by conducting a 

compression test using the MAND axial testing machine. The stress rate was 100 N/s and the 
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diameter of load bearing plates (top and bottom) (mm) was 150 mm. Figure 3.4 shows the 

load-displacement curve. The rubber stiffness was calculated as follows: 

Rubber stiffness, k = 
  

  
 ……………………………………..3.1 

Where, P = load; L = the rubber thickness, δ = displacement and A = area of the rubber. 

Where 
 

 
 is the slope of the load-displacement curve. The rubber stiffness was calculated as 

6.45MPa.         

 

Figure 3.4: Load-displacement curve for the rubber mat 

 

3.4 Bituminous mixtures  

The bituminous mixtures for the research were prepared in accordance with the British 

standards. The particle size distribution for the blend of aggregates for the mixtures is shown 

in Figure 3.5. 
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Figure 3.5: Particle size distribution for the blend of aggregates for overlay and SAMIs 

 

3.4.1 Overlay and base mixtures 

A 10 mm Asphalt concrete in accordance with BS EN 13108-1:2006 (BSI, 2006b) was 

chosen as the overlay and the base (simulating existing pavement) mix. The mixture 

composition was as shown in Table 3.5. The same mixture was used for the base layer but the 

40/60 penetration grade bitumen was replaced with 10/20 penetration grade bitumen. The 

mixture was first selected in accordance with BS 4897-1:2005 (BSI 2005b) before it was 

withdrawn and replaced with the current standard for asphalt concrete.                    

                      Table 3.5: Mix design for 10 mm asphalt concrete 
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aggregate 
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Target air void 5% 
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3.4.2 Sand asphalt 

 A surface course mixture in accordance with BS EN 13108-4:2006 (BSI, 2006c) was chosen 

as one of the SAMIs. The mixture composition was as shown in Table 3.6.  Also, the mixture 

was first selected in accordance with BS 594-1:2005 (BSI, 2005c) before it was withdrawn 

and replaced with the current standard.                    

                                  Table 3.6: Mix design for sand asphalt 

Sample type 
% by composition 

of aggregate 

Sand 84% 

Filler 16% 

Binder type 160/220 bitumen 

Binder 

content 

10.3% by mass of 

total mix 

Target air 

void 
5% 

 

3.4.3 Proprietary SAMIs A and B  

Two blends of proprietary SAMI mixtures A and B were studied in this work. The mix 

compositions were as shown in Table 3.7.  

Table 3.7: Mix design for proprietary SAMIs A and B mixtures 

Sample type 

% by composition of 

aggregate 

% by composition of 

aggregate 

SAMI A SAMI B 

Carsew 0/4 CRF 95% 74.5% 

Binegar fine sand - 20% 

Filler 5% 5.5% 

Binder type Polymer modified binder Polymer modified binder 

Binder content 9 % by mass of total mix 9.1 % by mass of total mix 

Target air void 2% 2% 

 

3.4.4 Proprietary SAMIs C and D 

 Proprietary SAMIs C and D were produced by sandwiching glass fibres chopped to 60 mm 

at a rate of 120 g/m
2
 between two layers of bitumen emulsion spread at a rate of 0.9L/m

2
. A 
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layer of 6 mm aggregates spread at a rate of 8 kg/m
2
 was then compacted on the sandwiched 

glass fibres. 

Proprietary SAMI C was produced using ordinary bitumen emulsion while proprietary SAMI 

D was produced with polymer modified bitumen emulsion. 

 

3.5 Bituminous mixtures properties  

3.5.1 Sample preparation 

The aggregates and binder were batched as indicated in the mix designs and heated in the 

oven at 160
o
C, 185

o
C, 140

o
C and 180

o
C for 10 mm asphalt concrete (40/60 bitumen), 10 mm 

asphalt concrete (10/20 bitumen), sand asphalt and proprietary SAMIs A and B, respectively. 

The heated aggregates and binder were mixed in accordance with BS EN 12697-35:2004 

(BSI, 2004a).  

The mixtures were compacted with a roller compactor in accordance with BS EN 12697-

33:2003 (BSI, 2003b) at a temperature of 150
o
C, 180

o
C, 130

o
C and 154

o
C for 10 mm asphalt 

concrete (40/60 bitumen), 10 mm asphalt concrete (10/20 bitumen), sand asphalt and 

proprietary SAMIs A and B mixtures, respectively. Five cores of diameter 100 mm and 

thickness 40 mm were cut from each slab for the tests.  

3.5.2 Maximum density and air voids 

The maximum density for the samples was determined in accordance with BS EN 12697-5: 

2002 (BSI, 2002), while the air voids were determined in accordance with BS EN 12697-

8:2003 (BSI, 2003c). The maximum density was carried out to know the mass of materials to 

be used in the production of specimens for this study. Table 3.8 shows the maximum density 

for 10 mm asphalt concrete, sand asphalt and proprietary SAMIs A and B. The air voids 

results are presented in Table 3.9.  
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Table 3.8: Maximum density of mixtures 

Mixture types Maximum density 

(kg/m
3
) 

10 mm AC 2559 

Sand asphalt 2276 

Saflex AF (Mix A) 2312 

Saflex AF (Mix B) 2307 

 

Table 3.9: Air voids of mixtures 

Mixtures 10 mm AC Sand asphalt SAMI A SAMI B 

Air void 

(%) 

5.6 6.7 2.6 1.9 

5.5 6.7 2.6 2.2 

5.7 6.6 2.0 2.4 

5.2 5.8 1.5 2.0 

4.7 6.5 2.4 2.3 

5.4 6.5 2.5 1.9 

5.2 6.0 2.3 2.0 

6.0 6.4 1.8 2.0 

4.3 6.1 2.0 2.0 

5.4 6.0 2.5 2.0 

4.8 6.8 2.7 2.2 

4.8 6.6 2.7 1.8 

Mean 5.2 6.4 2.3 2.1 

 

3.5.3 Indirect tensile stiffness modulus test (ITSM) 

The ITSM test described in accordance with BS EN 12697-26:2004; DD 213: 1993 (BSI, 

2004b; BSI, 1993) is one of the most commonly used tests for asphalt because it is relatively 

simple to perform and non-destructive in nature. In the ITSM a load pulse is applied to the 

vertical diameter of the specimen positioned centrally between the upper and the lower 

platens and the resultant peak transient deformation along the horizontal diameter is 

measured. The method uses cylindrical specimens cored from the field or slabs in the 

laboratory.  

This is usually 150mm or 100mm in diameter and has thickness between 30 and 80mm. Input 

parameters include target horizontal deformation, load rise time, Poisson‟s ratio, test 
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temperature, specimen thickness and diameter. The test configuration for the ITSM in the 

Nottingham asphalt tester (NAT) is shown in Figure 3.6.  

For this study, the test conditions were as follows: 

Sample diameter: 100 mm 

Sample thickness: 40 ± 4mm 

Target rise time: 124 ± 4 ms 

Mean horizontal deformation: 5 ± 2 μm 

The stiffness of the mixtures at 20
o
C is shown in Table 3.10. The stiffness results at 10

o
C and 

30
o
C are shown in Tables 3.11 and 3.12, respectively. The mean values of the tests are shown 

in Table 3.13. The results show that the stiffness of the mixtures decreased with increasing 

temperature. Also, all the SAMI mixtures have lower stiffness than the overlay mixture (10 

mm asphalt concrete with 40/60 penetration grade bitumen). The sand asphalt with very low 

stiffness was chosen to evaluate an extreme case, different from the two proprietary SAMIs A 

and B. 

 

 

Figure 3.6: Test configuration for ITSM in NAT 
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Table 3.10: Stiffness of mixtures at 20
o
C 

Mixture 

type 
Stiffness (MPa) at 20

o
C 

10 mm AC 

(40/60) 
3504 3658 3667 3934 3644 4040 3566 3568 4271 4207 4280 4449 

10 mm AC 

(10/20) 
9351 9726 9652 8247 9057 9395 10612 9454 9524 9743 10297 10029 

Sand 

asphalt 
220 198 222 236 191 185 195 213 203 235 183 225 

SAMI A 2588 2746 2843 2951 2747 2723 2724 2697 2889 2381 2675 2739 

SAMI B 2773 2479 2298 2364 2280 2335 2497 2447 2332 2521 2508 2490 

 

Table 3.11: Stiffness of mixtures at 10
o
C 

Mixture type Stiffness (MPa) at 10
o
C 

10 mm AC (40/60) 10435 10271 9492 10158 9819 

10 mm AC (10/20) 16043 16254 14663 15462 14755 

Sand asphalt 521 596 673 614 772 

SAMI A 7449 9623 7776 8936 8932 

SAMI B 8262 8614 7989 6393 6563 

 

Table 3.12: Stiffness of mixtures at 30
o
C 

Mixture type Stiffness (MPa) at 30
o
C 

10 mm AC (40/60) 1072 1100 1041 1206 1073 

10 mm AC (10/20) 5116 5030 5411 4666 4816 

SAMI A 604 637 552 727 658 

SAMI B 662 545 444 472 427 

 

Table 3.13: Average stiffness of asphalt concrete and SAMIs 

Asphalt 

Concrete/SAMIs 

Stiffness (MPa) 

Temperature 

10
o
C 20

o
C 30

o
C 

AC10 (40/60) 10035 3899 1098 

AC10 (15) 15435 9591 5008 

Sand asphalt 635 209 118 

SAMI A 8548 2725 636 

SAMI B 7564 2444 510 
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3.5.4 Indirect tensile fatigue test (ITFT) 

The test involves applying a repeated diametrical line loading along the vertical diameter of 

the cylindrical specimen. This produces an indirect tensile stress on the horizontal diameter. 

The magnitudes of the stresses vary along the diameter but are at the maximum at the centre 

of the specimen. The ITFT has proved to be a quick and reliable procedure with potential use 

in practice (Hunter, 2000).  

This is due to its simplicity relative to other methods, its use of cylindrical specimens, which 

can be easily manufactured in the laboratory or cored from the pavement in the field. The test 

is described in BS EN 12697-24:2004; DD ABF: 1993 (BSI, 2004c; BSD 1993). The result is 

expressed as a relationship between tensile microstrain and the number of cycles to failure. 

The test configuration for the ITFT in the Nottingham asphalt tester (NAT) is shown in 

Figure 3.7.  

For this study, the test conditions were as follows: 

Target rise time of 124 ± 4 ms; stress level from 225-600kPa and temperature of 20
o
C.  

Figure 3.8 shows the fatigue lines for the overlay mixture (10 mm AC (40/60)), base mixture 

(10 mm AC (10/20)), sand asphalt, proprietary SAMI A and proprietary SAMI B. The 

empirical relationship used for regression analysis is as shown in equation 3.1 (Pell, 1973). 

Table 3.14 shows the material constants and the R-square of the regression analysis of the 

fatigue lines. Read (1996) stated that fatigue failure normally occurs at 30 to 200 microstrain. 

The fatigue life of the mixtures was compared at 200 microstrain (see Table 3.15). It can be 

seen that proprietary SAMI B has twice the fatigue life of proprietary SAMI A. This was due 

to the 20 percent of sand in the SAMI B mixture. Dukatz (1989) reported that the aggregate 

shape, morphology, gradation and strength have a major effect on fatigue. 

            
   …………………….. (3.1) 

Where: 
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Nf  is the number of load applications to failure 

εi is the initial strain and 

k1, and k2 are the material coefficients 

 

 

Figure 3.7: Test configuration for ITFT in NAT 

 

 

Figure 3.8: Fatigue lines for the bituminous mixtures 
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Table 3.14: Material constants and the R-square of fatigue regression analysis 

Mixture K1 K2 R-square 

10 AC (40/60) 1E+10 -2.798 0.9662 

10 AC (10/20) 1E+14 -4.260 0.9314 

Sand asphalt 8E+06 -1.498 0.7898 

SAMI A 2E+11 -3.115 0.8937 

SAMI B 2E+12 -3.377 0.9589 

 

Table 3.15: Fatigue life of mixtures at 200 microstrain 

Materials Fatigue life at 200 microstrain 

10 mm AC (40/60) 3645 

10 mm AC (10/20) 15762 

Sand asphalt 2859 

Saflex AF A 13593 

Saflex AF B 33920 

 

3.5.5 Repeated load axial test (RLAT) 

The test was developed in the University of Nottingham to measure the permanent 

deformation of bituminous mixtures. The test configuration is as shown in Figure 3.9. The 

input parameters are the temperature, stress and number of load pulses, the thickness and 

diameter of the cylindrical specimen. The test sample is usually a core of 40 mm thickness 

and either 100 or 150 mm in diameter. 

In the RLAT, the specimens are conditioned to ensure that the loading plates are properly 

seated on the specimen before testing commences. The conditioning is achieved by applying 

a static stress of 10 kPa on the specimen for ten (10) minutes. Then a 100kPa axial stress is 

applied in 1 second square wave pulses with 1 second rest periods. The test is repeated for 

1800 load cycles at 30 or 40
o
C lasting a period of 1800 seconds. The test is stopped, if the 

deformation of the specimen is more than 8 mm before reaching the specified number of 

pulses. 

The deformation is monitored by a pair of linear variable differential transformers (LVDTs) 

mounted on the upper loading plate. The permanent axial deformation is recorded after every 
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10
th

 load application until the test is completed or stopped. The permanent axial strain is 

calculated as in equation 3.2. The test method is described in DD 226: 1996 (BSI, 1996). The 

results of the permanent strain in this study are shown in Figure 3.10.  The results show that 

the accumulated strain increased rapidly at the start (primary stage) and with an almost linear 

relationship in log-log space towards the end defining the secondary stage of deformation. It 

shows that the 10 mm asphaltic concrete with 10/20 penetration grade bitumen has the lowest 

axial strain, while the sand asphalt has the highest axial strain. The permanent strains at 1800 

cycles are shown in Table 3.16. It can be seen in Table 3.16 that proprietary SAMI A has a 

better resistance to permanent deformation than SAMI B.  

P (n,T) = h/ho …………………………………….. (3.2) 

Where, 

P (n,T) = Permanent axial strain after n load applications at temperature, T. 

ho = Original distance between loading surfaces (specimen thickness) 

h = Change in distance between specimen loading surfaces (measures axial permanent 

deformation). 

 

Figure 3.9: Test configuration for RLAT in NAT 
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Figure 3.10: Permanent deformation results 

 

Table 3.16: Permanent strain at 1800 load applications 

Materials Permanent strain (%) 

10 mm AC (40/60) 1.3070 

10 mm AC (10/20) 0.7060 

Saflex AF A 1.1274 

Saflex AF B 1.5204 

Sand asphalt 7.4828 

 

 

3.6 Conclusion 

The properties of the materials reported in this section were determined in order to give better 

understanding of the materials that are used in this research. Also, some of the properties are 

required as input for the finite element modelling of the wheel tracking test to understand the 

stress-strain distribution and deflections in an overlay with and without SAMIs on a cracked 

pavement.  
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4 INTERFACE BOND 

4.0 Introduction 

Road pavement structures are made up of several layers and each layer contributes to 

pavement performance. The strength of the pavement depends on the strength and stiffness of 

each individual layer and the bond between the layers. This is because the state of adhesion at 

the interfaces between different layers seriously influences stress and strain distribution 

among the pavement layers, and thus, affects the performance of the pavement (Mohammad 

et al, 2005). If the bond at an interface is inadequate, the strains throughout the pavement 

may increase (under trafficking) and its life may consequently be reduced (Collop et al, 2003).  

Some state agencies, such as Wisconsin Department of Transportation (WisDOT) have 

experienced pavement failures that have been attributed to poor bonding at the interlayer 

(Mehta and Siraj, 2007).  

However, the situation is different in rehabilitated pavements having interlayers and overlay, 

where the properties of the interface influence the crack resistance of the interlayer. Debondt 

(1999) observed that the presence of layer interfaces is certainly not a disadvantage. The 

interfaces close to the surfacing layer are the most critical as observed by Mehta and Siraj 

(2007) and Sanders (2001). The introduction of interlayer materials which have different 

properties from other typical pavement interfaces may affect the interface bond. Other factors 

that affect the interface bond include segregation, low compaction of lower base layer, poor 

or excessive tack coat, contamination of lower layer due to the presence of dust or spillage of 

oil or fuel from construction traffic, cold joints and poor foundation condition (Khweir and 

Fordyce, 2003). However, in this study attention is focused on the effects of SAMIs and 

temperature on the overlay-SAMI interface bond. 
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The common method of assessing pavement interface bond is by a direct shear test, which 

measures the interface strength in shear mode. Sanders (2001), Caltabiano (1990) and Hughes 

(1986) used a shear box apparatus to assess the interface properties of reinforced overlay. 

Other methods include the pull off test (tension mode), torque bond test (torsional shear), and 

wedge splitting test. Also, Hakim et al. (1999) used a falling weight deflectometer to examine 

the interface bond. The cases where these methods have been used to determine interface 

bond have been reported in section 2.3. The test modes most important to the present study 

are the shear and tension modes. 

Debondt (1999) carried out theoretical analysis of the overlay-interlayer interface and found 

that the tensile stresses which occur along the interface is influenced by degree of subgrade 

support, overlay thickness and the amount of load transfer across the crack/joint. He stressed 

that the presence of tensile stresses demonstrates the importance of testing the interface 

properties in tension. In this study, the interface bond between overlay and SAMI was 

investigated using the Leutner shear test and pull-off test. This was done to assess the effect 

of the interface bond on the performance of the SAMIs against reflective cracking. The cross- 

section of the system examined for both Leutner shear test is shown in Figure 4.1 while that 

of the pull-off test is shown in Figure 4.2. The thickness of proprietary SAMIs A and B and 

sand asphalt for both tests were 20mm, while the thickness of proprietary SAMIs C and D 

was about 7 mm. 
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Figure 4.1: Cross-section of the system examined using Leutner shear test (a) with SAMI 

(b) without SAMI 
 

 

Figure 4.2: Cross-section of the system examined using Pull-off test (a) with SAMI (b) 
without SAMI 
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4.1 Leutner shear test 

The Leutner test was developed in Germany in the late 1970s as a simple means of 

undertaking a direct shear test on the bond between two asphalt layers. The test applies a 

constant shear displacement rate across the interface under investigation and the resulting 

shear force is monitored. The test is normally carried out on 150 mm diameter cores 

comprising at least two layers and the standard loading (displacement) rate and temperature 

are 50 mm/min and 20
o
C, respectively. The Leutner shear test is different from the direct 

shear box test because normal force is not applied. The shear test apparatus for this study was 

a modified Leutner shear apparatus which introduced a 5 mm gap into the shear plane to 

avoid misalignment between the interface to be examined and the shear plane of the Leutner 

load frame. The peak shear stress, displacement at peak shear stress and shear stiffness 

modulus are determined during the test 

The peak shear stress is the maximum value of shear stress, determined as the maximum 

force divided the initial cross sectional area of the specimen when tested.  Displacement at 

peak shear stress is the displacement at the maximum value of shear stress of a specimen 

when tested and the shear stiffness modulus is the peak shear stress divided by the 

displacement at the peak shear stress of a specimen when tested. A schematic of the Leutner 

frame cross section and the Leutner shear test apparatus in an Instron hydraulic machine are 

shown in Figures 4.3 and 4.4 respectively. 
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                       Figure 4.3: Schematic of the shear test equipment 

 

 

Figure 4.4: Leutner shear test equipment 

 

4.2 Specimen preparation 

The test specimens were prepared in three layers, the top layer (overlay) was a 10 mm 

asphaltic concrete with 40/60 penetration grade bitumen (see Table 3.5), the middle layer was 

the SAMI and the base layer was also a 10mm asphaltic concrete with 10/20 penetration 

grade bitumen (see Table 3.5). The control specimens were prepared in two layers (top and 

base) without a SAMI. The base layer for each specimen was 60 mm thick, the top layer 

(overlay) was 30 mm thick and the middle layer (where present) was 20 mm thick for 

proprietary SAMIs A and B (see Table 3.7) and sand asphalt (see Table 3.6), while 
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proprietary SAMIs C and D defined in section 3.4.4 were about 7mm thick. The mix 

compositions for the asphalt concrete and SAMIs were detailed in chapter 3. 

For the base layer, the aggregates and binder were batched and heated in the oven at 185
o
C. 

The heated aggregates and binder were mixed and compacted in a mould 305 mm × 305 mm 

× 130 mm with roller compactor at 180
o
C to a thickness of 60 mm. For the middle layer, the 

sand asphalt and SAMIs A and B aggregates and binder were batched and heated at 140
o
C 

and 180
o
C, respectively. The heated aggregates and binder were mixed and compacted on the 

base layer at temperatures of 130
o
C and 150

o
C, respectively to a thickness of 20 mm. 

Proprietary SAMIs C and D were prepared by sandwiching 60 mm glass fibre strands 

between layers of bitumen emulsion and 6 mm aggregates were compacted on them. The 

bitumen emulsion for proprietary SAMI C was ordinary bitumen emulsion while that of 

proprietary SAMI D was polymer modified emulsion. 

 The top layer (overlay) aggregates were batched and heated at 160
o
C and the heated 

aggregates and binder were mixed and compacted to achieve a thickness of 30mm at 150
o
C. 

Two cores of diameter 150mm and depth 110 mm were cut from each slab. All the mixtures 

were mixed in accordance with BSI, (2004) and compacted in accordance with BSI (2003).  

Typical 150 mm cores are shown in Figure 4.5. 
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Figure 4.5: Typical 150 mm cores 

 

4.3 Test procedure 

The specimens were placed in a temperature control conditioning cabinet at the test 

temperature for a minimum of 5 hours. The specimen was fitted in the Leutner test frame and 

the interface to be evaluated was aligned between the upper and the lower shear ring. The 

Leutner shear frame was fixed into Instron hydraulic machine with a temperature control 

cabinet. The load (shear displacement) was applied at the rate of 50mm/min and the resulting 

load was recorded to the nearest 0.1kN and the displacement to the nearest 0.1mm. The test 

was stopped when the interface failed. The shear stress-shear displacement graphs were 

produced and the peak shear stress, displacement at peak shear stress and shear stiffness 

modulus were determined. The peak displacement was adjusted with a correction factor to 

account for displacement when the load starts to build up. The correction factor was 

determined as the ratio of the slope and the intercept of the linear part of the shear stress-

displacement curve. The tests were carried out at 10
o
C, 20

o
C and 30

o
C. The test procedure is 

described in Highways Agency (2008). The shear stress was calculated as shown in equation 

4.1. 

Interface 
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τ = 
 

   
 ………………………………….. 4.1 

Where: 

τ = shear stress in (MPa) 

F = shear force (load) (in kN) 

r = initial radius of specimen (in mm) 

 

4.4 Results and analysis of Leutner shear test  

The results of the Leutner shear test are presented as graphs of the shear stress versus 

displacement. A typical graph of shear stress versus displacement is shown in Figure 4.6. All 

the other graphs are shown in Appendix A. These show that the shear stress increased with 

increasing shear displacement until the peak shear stress was attained (defining the shear 

strength of the interface). After the peak shear stress, the interface started failing and the 

shear stress decayed rapidly to zero as the sample split into two. Tables 4.1, 4.2 and 4.3 show 

the results of the Leutner shear tests at 10
o
C, 20

o
C and 30

o
C respectively. Figures 4.7, 4.8, 

and 4.9 show the peak shear stress versus peak shear displacement of the interfaces tested at 

10
o
C, 20

o
C and 30

o
C, respectively.  

It can be seen from Figure 4.7 that the overlay-SAMI A interface had the highest shear 

strength of all the interfaces tested at 10
o
C. It was followed closely by the overlay-SAMI B 

interface. The shear strengths of these two interfaces were greater than that of the control 

(AC10 (40/60)-AC10 (10/20)) indicating that they were well bonded to the overlay. Also, the 

overlay-SAMI C interface has higher shear strength than overlay-SAMI D interface, while 

their shear strengths were lower than that of overlay-sand asphalt. This implied the overlay-

sand asphalt interface had stronger bond than the overlay-SAMI C and the overlay-SAMI D 
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interfaces. Figure 4.8 indicates that the overlay-SAMI B interface had greater shear strength 

than overlay-SAMI A interface at 20
o
C. Also, both overlay-SAMI A and overlay-SAMI B 

interfaces have higher shear strength than the control (AC10 (40/60)-AC10 (10/20)), but the 

control had higher shear strength than other interfaces. Again, the overlay-SAMI C interface 

had greater shear strength than SAMI D interface, but their shear strengths were less than that 

of the sand asphalt. 

Figure 4.9 indicates that the interface bond at 30
o
C followed the same trend as interfaces 

tested at 20
o
C, but with less shear strength at the interfaces. Although as presented in Figures 

4.7, 4.8 and 4.9 both overlay-SAMI A and overlay-SAMI B interfaces have higher shear 

strength than the control specimens, their shear stiffnesses were lower, because the control 

specimens have lower displacement rate. Figure 4.10 shows that the interfaces with SAMIs 

have lower shear stiffness than the control interface and the interface stiffness decreased with 

increasing temperature. In general, it can be concluded that the introduction of stress 

absorbing membrane interlayers in a pavement influences the interface bond. A typical failed 

interface after the test is shown in Figure 4.11. Also, comparing the interface shear strength 

of the overlay-SAMI interface with Highways Agency‟s recommendation for good 

performance (1MPa), it can be seen that at 10
o
C and 20

o
C, all the interfaces examined have 

greater interface shear strength except the overlay-proprietary SAMI C and overlay-

proprietary SAMI D interfaces, while at 30
o
C, all the interfaces have lower interface strength. 
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Figure 4.6: A typical shear stress versus displacement graph 
 

Table 4.1: Leutner shear test results at 10
o
C 

Interface 

Average 

Peak 

shear 

force(kN) 

Average 

peak 

displacement 

(mm) 

Average 

Peak shear 

stress 

(MPa) 

Shear 

stiffness 

modulus 

(MPa/mm) 

Shear 

stiffness 

modulus 

as % of 

control  

10AC(40/60)-

SAMI A 
86.5 2.57 4.96 2.23 69.91 

10AC(40/60)-

SAMI B 
83.8 3.07 4.81 1.56 48.90 

10AC(40/60)-

Sand asphalt 
27.25 2.05 1.56 0.76 23.82 

10AC(40/60)-

SAMI C 
14.5 0.85 0.83 0.98 30.72 

10AC(40/60)-

SAMI D 
11.7 1.38 0.68 0.53 16.61 

Control 

10AC(40/60)-

10AC(10/20) 

38.25 0.74 2.20 3.19 100 
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Table 4.2: Leutner shear test results at 20
o
C 

Interface 

Average 

Peak shear 

force(kN) 

Average peak 

displacement 

(mm) 

Average 

Peak shear 

stress 

(MPa) 

Shear 

stiffness 

modulus 

(MPa/mm) 

  Shear 

stiffness 

modulus 

as % of 

control  

10AC(40/60)-

SAMI A 
40.15 3.16 2.31 0.75 57.69 

10AC(40/60)-

SAMI B 
45.45 3.24 2.61 0.81 62.31 

10AC(40/60)-

Sand asphalt 
19.1 2.37 1.10 0.46 35.38 

10AC(40/60)-

SAMI C 
6.6 1.71 0.38 0.22 16.92 

10AC(40/60)-

SAMI D 
4.75 1.41 0.27 0.20 15.30 

Control 

10AC(40/60)-

10AC(10/20) 

26.35 1.17 1.51 1.30 100 

 

 

Table 4.3: Leutner shear test results at 30
o
C 

Interface 

Average 

Peak shear 

force(kN) 

Average peak 

displacement 

(mm) 

Average 

Peak shear 

stress 

(MPa) 

Shear 

stiffness 

modulus 

(MPa/mm) 

Shear 

stiffness 

modulus 

as % of 

control  

10AC(40/60)-

SAMI A 
15.85 4.41 0.91 0.21 42.86 

10AC(40/60)-

SAMI B 
16.15 4.19 0.93 0.23 46.94 

10AC(40/60)-

Sand asphalt 
6.05 2.97 0.35 0.12 24.49 

10AC(40/60)-

SAMI C 
2.05 1.26 0.12 0.11 24.45 

10AC(40/60)-

SAMI D 
2.10 1.98 0.12 0.08 16.32 

Control 

10AC(40/60)-

10AC(10/20) 

14.10 1.69 0.81 0.49 100 
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Figure 4.7: Peak shear stress versus peak shear displacement at 10oC 

 

 

Figure 4.8: Peak shear stress versus peak shear displacement at 20oC 
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Figure 4.9: Peak shear stress versus peak shear displacement at 30oC 

 

 

Figure 4.10: Shear stiffness of the interface 
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Figure 4.11: A typical failed interface after test 

 

4.5 Summary 

 The Leutner shear test showed that the shear strength of the interface between the 

SAMIs and the overlay increases with decreasing temperature 

 The overlay-SAMI A and overlay-SAMI B interfaces have greater shear strength but 

lower shear stiffness than the control specimens. 

 Overlay-sand asphalt, overlay-SAMI C and overlay-SAMI D interfaces have lower 

shear strength than the control specimens. 

 The Overlay-SAMI C interface has greater shear strength than the overlay-SAMI D 

interface. 

 Overlay-SAMI C and overlay-SAMI D interfaces have the weakest bond. This is 

thought to be due to the aggregate being compacted onto the sandwiched fibre which 

did not bond well with the overlay. 

 The shear stiffnesses of all the interfaces with SAMI are lower than the control 

interface. 

 The effect of the interface stiffness on the performance of the SAMIs is considered in 

chapters five and eight. 

Failed 

Interface 
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4.6 Pull-off test 

The pull off test was developed at the University of Texas at El Paso (UTEP) (Tashman et al. 

2008). The test measures the tensile strength of the interface. The pull-off test is usually 

considered because the surfacing layer of a road pavement is not only effective in shear but 

also in tension mode under trafficking, as the moving traffic exerts normal pressure on the 

interface. Debondt (1999) observed that due to the action of wheel loads at locations next to 

discontinuities (cracks/joints) in the existing pavement structure, quite large tensile stresses 

perpendicular to the plane of the interface were found to occur. In this study, the tensile 

strength of the overlay-SAMI interface was examined using the pull-off apparatus shown in 

Figure 4.12. 

 

 

Figure 4.12: Pull-off test set up 

 

4.7 Sample preparation 

The test specimen for the pull-off test was a 3-layer asphaltic slab of dimension 305 mm × 

305 mm × 80 mm. The base layer was 30 mm thick 10 mm asphaltic concrete with 10/20 

bitumen (see Table 3.5), the middle layer was SAMI (20 mm thick proprietary SAMIs A and 
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B (see Table 3.7) and sand asphalt (see Table 3.6) and about 7 mm proprietary SAMIs C and 

D (see section 3.4.4)) and the top layer (overlay) was 30 mm thick 10 mm asphaltic concrete 

with 40/60 bitumen. The control specimen was manufactured in two layers without a SAMI, 

the base layer was 30 mm thick 10 mm asphaltic concrete with 10/20 bitumen and the top 

layer (overlay) was 30 mm thick 10 mm asphaltic concrete with 40/60 bitumen.  

The mixtures were prepared for each of the layers as discussed in section 4.2. The top layer 

of the slab was isolated by cutting down to the top of the middle layer (SAMI) without 

damage to the SAMI. The plan for the cut was as shown in Figure 4.13. The cutting was done 

such that there were two isolated areas of 100 mm × 100 mm at the top layer. A steel plate of 

dimension 100 mm × 100 mm × 10 mm was glued to each of the areas with epoxy glue.  

 

Figure 4.13: Plan of cuts for the 305 mm × 305 mm slab 

 

4.8 Test procedure 

The test was carried out in a tensile pull-off apparatus (Instron hydraulic machine). The 

sample for the test was placed in a temperature conditioning cabinet at test temperature for a 

minimum of 5 hours. The specimen was attached to the Instron hydraulic machine using a 

hook on the steel plate. It was loaded at a rate of 20 mm/min until the interface bond failed. 

 

                              10                                     102.5mm 

 

                                                                                             100mm   305mm 

 

                                                                                             102.5mm 

 

25mm   100mm     55mm     100mm      25mm 

                 305mm 

  Area of cut 
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The maximum load required to pull-off the top layer from the interlayer was recorded and the 

tensile strength of the interface was calculated. Slower loading rate was applied to prevent 

premature failure of the interface. 

 

4.9 Results and analysis of pull-off test 

It can be seen from Tables 4.4, 4.5 and 4.6 that the overlay-SAMI A and overlay-SAMI B 

interface did not fail at 10
o
C, 20

o
C and 30

o
C. The values are recorded with a greater than (>) 

sign because they are the maximum values to failure of the steel plate at the glue interface. 

This indicated they were well bonded and had stronger bond than the control (AC10 

(40/60)/AC10 (10/20)), thus, confirming the results of the shear test. Also, as shown in table 

4.4, the control (AC10 (40/60)/AC10 (10/20)) interface did not fail at 10
o
C.  

 Figure 4.14 shows that at 10
o
C, the overlay-sand asphalt interface has a greater tensile 

strength than the overlay-SAMI C or overlay-SAMI D interfaces, which had the same 

strength. Also, this was in agreement with the shear test results. The Figure shows that the 

overlay-SAMI C interface had slightly better interface tensile bond than the overlay-SAMI D 

interface at 20
o
C and 30

o
C, respectively, but both interfaces had lower tensile strengths than 

the overlay-sand asphalt interface. The control (AC10 (40/60)/AC10 (10/20)) had the highest 

tensile strength and better tensile bond than the other three interfaces. 

Figure 4.14 indicates that the tensile strength of all the interfaces tested decreased with 

increasing temperature, indicating stronger bond at lower temperature than higher 

temperature as observed in the Leutner shear test. A typical failed interface is shown in 

Figure 4.15. 
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Table 4.4: Pull off test results at 10
o
C 

Interface 
Peak Tensile 

force (kN) 

Mean Peak 

Tensile force 

(kN) 

Peak Tensile 

Stress (MPa) 

Mean Peak 

Tensile Stress 

(MPa) 

AC10 (40/60)/SAMI 

C 

5.27 
4.48 

0.53 
0.45 

3.69 0.37 

AC10 (40/60)/SAMI 

D 

5.30 
4.64 

0.49 
0.45 

3.98 0.40 

AC10 (40/60)/SAMI  

A) 

>14.74 
>15.30 

>1.47 
>1.53 

>15.85 >1.59 

AC10 (40/60)/SAMI 

B) 

>11.44 
>12.56 

>1.10 
>1.21 

>13.67 >1.31 

AC10 (40/60)/Sand 

asphalt 

14.91 
12.98 

1.49 
1.31 

11.04 1.13 

AC10 

(40/60)/AC10(10/20) 

>10.02 
>10.09 

>1.00 
>1.00 

>10.16 >1.00 
 

Table 4.5: Pull off test results at 20
o
C 

Interface 
Peak Tensile 

force (kN) 

Mean Peak 

Tensile force 

(kN) 

Peak Tensile 

Stress (MPa) 

Mean Peak 

Tensile Stress 

(MPa) 

AC10 (40/60)/SAMI 

C 

2.17 
1.79 

0.22 
0.18 

1.4 0.14 

AC10 (40/60)/SAMI 

D 

2.36 
1.66 

0.24 
0.17 

0.96 0.10 

AC10 (40/60)/SAMI  

A) 

>9.05 
>10.30 

>0.90 
>1.03 

>11.56 >1.16 

AC10 (40/60)/SAMI 

B) 

>11.48 
>11.58 

>1.15 
>1.15 

>11.67 >1.16 

AC10 (40/60)/Sand 

asphalt 

6.40 
6.06 

0.63 
0.60 

5.72 0.58 

AC10 

(40/60)/AC10(10/20) 

7.00 
7.04 

0.69 0.69 

 7.08 0.69 
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Table 4.6: Pull off test results at 30
o
C 

Interface 
Peak Tensile 

force (kN) 

Mean Peak 

Tensile force 

(kN) 

Peak Tensile 

Stress (MPa) 

Mean Peak 

Tensile Stress 

(MPa) 

AC10 (40/60)/SAMI 

C 

1.39 
1.2 

0.14 
0.12 

1.01 0.10 

AC10 (40/60)/SAMI 

D 

0.98 
1.08 

0.10 
0.11 

1.17 0.12 

AC10 (40/60)/SAMI  

A) 

>6.53 
>6.07 

>0.64 
>0.59 

>5.60 >0.55 

AC10 (40/60)/SAMI 

B) 

>5.52 
>5.51 

>0.54 
>0.54 

>5.49 >0.54 

AC10 (40/60)/Sand 

asphalt 

2.86 
2.89 

0.29 
0.29 

2.92 0.29 

AC10 

(40/60)/AC10(10/20) 

3.68 3.62 

 

0.36 0.36 

 3.55 0.36 

 

 

 

Figure 4.14: Pull of test results at 10oC, 20oC, 30oC 
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Figure 4.15: A typical failed interface after test 

 

4.10 Summary 

 The overlay-SAMI A and overlay SAMI B interfaces had greater tensile strengths 

than the control and overlay-sand asphalt, overlay-SAMI C and overlay-SAMI D 

interfaces at 10
o
C, 20

o
C and 30

o
C.  

 The overlay-sand asphalt, overlay-SAMI C and overlay-SAMI D interfaces had 

weaker tensile strength than the control at 10
o
C, 20

o
C and 30

o
C. 

 The overlay-SAMI C interface had a slight stronger bond than the overlay-SAMI D 

interface at 20
o
C and 30

o
C, while they have the same strength at 10

o
C. 

 The pull-off test like the Leutner shear test shows the strength of the interface is 

affected by the introduction of SAMIs. 
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5 WHEEL TRACKING TEST 

5.0 Introduction  

Pavements that exhibit cracking (fatigue or thermal cracking), are normally rehabilitated by 

overlaying with new surfacing mixture. Experience has shown that the cracks are reflected 

onto the new surface after a period of service, a phenomenon known as reflective cracking. 

The two principal causes of reflective cracking highlighted are the effects of traffic loading 

and daily or seasonal temperature variation. Although field testing is the best way to assess 

the resistance of interlayer materials against reflective cracking, the use of small scale 

laboratory tests allows different factors and conditions to be investigated in a short period of 

time and gives room for better planning and utilization of highway budgets. 

A number of test configurations have been used to study the effectiveness of interlayer 

materials against reflective cracking, among which are 4-point bending, 3-point bending, slab 

testing, etc. Most of the tests have been found suitable except the slab testing facility in which 

there can be difficulty in manufacturing the specimens and results can be masked by 

permanent deformation (Sanders, 2001). 

It was intended that the current test should simulate field conditions as closely as possible, 

while being able to study different factors that affect crack initiation and propagation. 

Therefore, the use of small laboratory wheel tracking facilities was seen as the best option. 

The test was designed to study the effect of traffic loading on crack propagation in overlays 

with and without SAMIs. Trial tests were carried out and the equipment was found to 

function well and was able to evaluate SAMIs crack resistance potential. The test is capable 

of generating the maximum shear stress and the maximum bending stress that occur when a 

moving wheel is either slightly offset from or directly over a crack. This produces mode I and 

mode II cracking. 
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The test reported here was carried out in a wheel tracking machine located in a temperature 

controlled room, which allows the effect of temperature on SAMI performance to be studied. 

The wheel tracker consists of a reciprocating table which moves forwards and backwards 

with a frequency of 0.8Hz under the loaded wheel with a travel length of 225 mm. The solid 

tyre fitted to the wheel has an outside diameter of 200 mm and width of 50 mm. The test 

replicates what happens when a cracked pavement overlaid with and without interlayers 

(SAMIs) is trafficked. The schematic of the test is shown Figure 5.1. 

 

Figure 5.1: Schematic of the wheel tracking test 

 

5.1 Materials 

The materials for the specimens are as follows. 

The base layer: The base layer simulates the old pavement. This was made of 10 mm 

asphaltic concrete with 10/20 penetration grade bitumen. The mix composition is as shown in 

Table 5.1. 

The top layer: The top layer simulates the overlay. Also, this was made of 10 mm asphaltic 

concrete with 40/60 penetration grade bitumen. The mix composition is as shown in Table 

5.1 
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The middle layer: The middle layer (where present) is the stress absorbing membrane 

interlayer (SAMI). The stress absorbing membrane interlayers (SAMIs) in this research 

included 4 proprietary mixtures and conventional sand asphalt with 160/220 penetration 

grade bitumen as shown in Table 5.2. The proprietary mixtures were named proprietary 

SAMI A (see Table 5.3), proprietary SAMI B (see Table 5.4) and proprietary SAMIs C and 

D.   

Proprietary SAMI C is prepared by sandwiching chopped glass fibre at 120g/m
2 

between 

layers of ordinary bitumen emulsion at 0.9L/m
2
 and 6 mm aggregates spread and compacted 

on them at the rate of 8 kg/m
2
. Proprietary SAMI D is prepared by sandwiching chopped 

glass fibre at 120g/m
2 

between layers of polymer modified bitumen emulsion at 0.9L/m
2
 and 

6 mm aggregates spread and compacted on them at the rate of 8 kg/m
2
. The indirect tensile 

stiffness moduli of the mixtures are shown in Table 5.5. The test procedure is described in 

section 3.5.3. 

Table 5.1: Mix composition for 10 mm asphalt concrete 

Sample type 
Percent by composition of 

aggregate 

10mm aggregate 37% 

6 mm aggregate 26% 

Dust 36% 

Filler 1% 

Binder type 10/20
1
, 40/60

2
 bitumen 

Binder content 5.3%  by mass of total mix 

Target air void 5% 

                              
1
 Base layer 

2
 Top layer 

Table 5.2: Mix composition for sand asphalt 

Sample type % by composition of aggregate 

Sand 84% 

Filler 16% 

Binder type 160/220 bitumen 

Binder content 10.3% by mass of total mix 

Target air void 5% 
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Table 5.3: Mix composition for Proprietary SAMI A 

Sample type % by composition of aggregate 

Carsew 0/4 CRF 95% 

Filler 5% 

Binder type Polymer modified binder 

  9% by mass of total mix 

Target air void 2% 

 

Table 5.4: Mix composition for Proprietary SAMI B 

Sample type % by composition of aggregate 

Carsew 0/4 CRF 74.5% 

Binegar fine sand 20% 

Filler 5.5% 

Binder type Polymer modified binder 

Binder content 9.1 % by mass of total mix 

Target air void 2% 

 

Table 5.5: Indirect tensile stiffness moduli 

Asphalt 

concrete 

(AC)/SAMIs 

Stiffness (MPa) 

Temperature 

 

10
o
C 20

o
C 30

o
C 

AC (40/60) 10035 3899 1098 

AC (10/20) 15435 9591 5008 

Sand asphalt 635 209 118 

Proprietary 

SAMI A 
8548 2725 636 

Proprietary 

SAMI B  
7564 2444 510 

 

5.2 Sample preparation 

The test specimens were made up of 3-layer beams of length 404 mm and width 50 mm. The 

bottom (base) layer was a 30 mm thick 10 mm asphaltic concrete with 10/20 penetration 

grade bitumen, the middle layer (where present) was SAMI (10mm, 20mm and 30 mm 

thicknesses used) and the top layer (overlay) was a 10mm asphaltic concrete with 40/60 

penetration grade bitumen, of thickness up to 80 mm (thickness of each specimen varies with 

the SAMIs and overlay thicknesses). The control specimens were prepared in two layers 

without SAMI (the base and top layers).  



Chapter five: Wheel tracking test 

 

 
 100 

The beams were obtained by manufacturing a slab of dimension 500mm × 500 mm (see 

Figure 5.2). Also, the slab thickness varies depending on the overlay and SAMI thicknesses. 

For the base layer, the aggregates and binder were batched as shown in Table 5.1, heated at 

185
o
C and compacted in a mould of dimension 500 mm × 500 mm × 205 mm with a roller 

compactor at a temperature of 180
o
C to a thickness of 30 mm.  

The aggregates and binders for sand asphalt were heated at 140
o
C and compacted at 130

o
C, 

while the aggregates and binder for proprietary SAMIs A and B were batched and heated at a 

temperature of 180
o
C, and compacted on the bottom layer at a temperature of 150

o
C. The 

Proprietary SAMIs C and D were prepared by sandwiching 60 mm glass fibre strands 

between layers of bitumen emulsion and 6 mm aggregates compacted on them. The top layer 

aggregates were batched and heated at 160
o
C and compacted to the required thickness at 

150
o
C. All the mixtures were mixed in accordance with BSI, (2004) and compacted in 

accordance with BSI (2003).   

Ten beams of length 404 mm and width 50 mm were cut from each slab and a 10mm notch in 

width was sawn at the centre of the beam through the 30 mm bottom layer to simulate the 

crack. A typical beam with 10 mm notch at the base layer is shown in Figure 5.3. Strain 

gauges were glued to beam, with one placed at 4mm above the crack top, the second was 

placed 20 mm from the bottom of the overlay (which is equivalent to 30 mm, 40 mm and 

50mm from the bottom of the overlay for control specimens with 10 mm, 20 mm and 30 mm 

SAMIs) and the third was placed 40mm from the bottom of the overlay. The strain gauge 

placed 40 mm from the bottom of the overlay was discontinued later in the study. Two 

aluminium brackets were glued to each side of the split base as LVDT measurement points. A 

typical beam with strain gauges and aluminium brackets (LVDT measurement points) is 

shown in Figure 5.4.  
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Figure 5.2: A typical 500 mm by 500 mm slab 
 

 

Figure 5.3: A typical beam with notch for wheel tracking test 
 

Top layer 

(Overlay) 

Middle layer 

(SAMI) 

Bottom 

layer (Base) Notch 

(Crack) 
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Figure 5.4: A typical beam with strain gauges and LVDT measurement points 
 

5.3 Test procedure 

The test was carried out by placing a 10 mm thick rubber mat on the base of a steel mould on 

a reciprocating table. The beams with the strain gauges were placed in the conditioning 

cabinet at test temperature for a minimum of five hours. The top and the middle layer (where 

present) above the simulated crack were painted white to allow monitoring of crack growth 

during the test. The beams were placed centrally on the 10 mm rubber mat such that the 

wheel loaded them symmetrically as the reciprocating table moved forward and backward. 

The beams were clamped at the top and at the sides of both ends to simulate pavement 

continuity. The linear variable differential transformers (LVDTs) and the strain gauges were 

connected to the data acquisition system. The tyre was released on the beams and loaded. The 

numbers of wheel cycles for crack growth from the crack tip to the top of the SAMI and top 

layer (overlay) were recorded. The strain gauges and LVDT readings were acquired using a 

data logger. The wheel tracker with the sample in place is shown in Figure 5.5. The test was 

carried out at 10
o
C, 20

o
C and 30

o
C. The test plan is shown in Table 5.6.  

 

Strain gauge 40mm from 

bottom of overlay 

Strain gauge 
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bottom of 
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in SAMI 
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Figure 5.5: Wheel tracking machine with sample 

 

 

Table 5.6: Test plan 

Load 2.4kN 1.35kN 

Temperature (
o
C) 10 20 30 30 

Base thickness 

(mm) 

Overlay thickness 

(mm) 

 

SAMIs thickness (mm) 

10 20 30 10 20 30 10 20 30 10 20 30 

30 40 × √ √ × √ √ × √ √ × √ √ 

30 60 √ √ × √ √ × √ √ × √ √ × 
 

 

5.4 Test Results 

The results from the wheel tracking test were processed. Firstly, the number of wheel cycles 

for crack propagation to the top of the SAMI was recorded for specimens with SAMIs. Also, 

the number of wheel cycles for crack propagation to failure (crack appearing at the top of the 

overlay) was recorded for specimens with SAMIs (test specimens) and without SAMIs 

(control specimens). The number of wheel cycles to failure as a ratio of control was obtained 

by dividing the number of wheel cycles to failure for the test specimens by the number of 

Sample 

Wheel 

LVDT 
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wheel cycles to failure for the control specimens. This allows the comparison of the test 

specimens and the control specimens.  

The vertical displacements of the specimens during test were obtained with linear variable 

differential transformers (LVDTs). The calibrated LVDT readings from the two measurement 

points on the specimens were logged in volts during tests. The readings were converted from 

volts to millimetres. The average of the readings for each LVDT was determined over 20 

wheel cycles. The calculated average from the LVDT over 20 cycles was subtracted from 

each reading over the same cycles. The difference of the values was determined and the 

relative displacement was obtained as the average of the difference between the maximum 

and minimum relative displacements. The absolute displacement was determined as the point 

where the relative displacement equals zero, that is, when the load is at the centre of the beam 

directly above the crack. A typical LVDTs analysis is shown in Figure 5.6. As seen in Figure 

5.6, there is relative movement of the split base as the moving wheel is offset from the crack, 

while the relative movement is zero when the moving wheel is directly over the crack. 

The readings from the strain gauges placed at 4 mm above the crack top and at 20 mm from 

the bottom of the overlay for test specimens and at equivalent points for control specimens 

were logged. These were used to determine the initial strain under loading responsible for 

crack initiation. The value was calculated from readings logged in the first cycle. The average 

of the two trough readings (when the wheel load was at the edge of the beam) was subtracted 

from the average of the crest readings (when the wheel was at the centre) as shown in Figure 

5.7. Two replicates were tested in each case and the results presented are the average of the 

readings. 
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Figure 5.6: A typical LVDTs analysis 

 

 

 

 

Figure 5.7: A typical strain readings analysis 

 

 

5.4.1 Number of wheel cycles 

The specimen names and references used for the presentation of results are shown in Table 

5.7. The results for the number of wheel cycles to the top of the SAMI and the overlay 

(failure) at 10
o
C, 20

o
C and 30

o
C with 2.4 kN (1.1MPa) load applied are shown in Tables 5.8, 
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5.9 and 5.10 respectively. Table 5.11 shows the same results at 30
o
C with 1.35 kN (0.6MPa) 

load applied.  

Figure 5.8 shows that the SAMIs except Proprietary SAMI C and D were not able to retard 

reflective cracking with 2.4 kN (1.1 MPa) load applied at 10
o
C, while 30 mm thick 

Proprietary SAMI A with 40 mm overlay matched the life of the control specimen. The 

inability of the SAMIs to retard reflective cracking at 10
o
C is probably due to the high 

stiffness of the SAMIs (see Table 5.5), which restricts the SAMIs‟ flexibility and therefore 

hinders their ability to absorb strain concentration around the crack top. Also, the strong 

adhesion between the SAMIs and the overlay (see Figure 4.7) makes the beam act more like a 

unit, therefore it was not able to isolate the overlay from the strain concentration at the tip of 

the crack. In his study Debondt (1999) computed the tensile stresses at the bottom of an 

asphaltic overlay in relation to shear stiffness of the interface between overlay and the old 

surface. He observed that an optimum interface stiffness exists. Lower (too soft interlayer) 

and greater (too stiff) stiffnesses compared to the optimum lead to increased tensile stresses at 

the bottom of the overlay. This emphasizes the importance of the interface stiffness and the 

interlayer properties on their ability to retard reflective cracking. 

Figure 5.9 indicates that when the test was carried out at a temperature of 20
o
C under a 2.4 

kN (1.1 MPa) load, the SAMIs except 30 mm thick sand asphalt with 40 mm overlay 

(SA30O40) and 20 mm thick sand asphalt with 60 mm overlay (SA20O60) have good 

resistance to reflective cracking. In general they have a life between 1.10 to 5.50 times that of 

the control specimens. For both SA30O40 and SA20O60, their ineffectiveness is thought to 

be due to the extreme low stiffness and thickness of the SAMI leading to more bending of the 

overlay. As explained earlier, very low stiffness of the SAMIs leads to increased tensile 

stresses. The optimum interface stiffness between the overlay and SAMIs seems to be 

achieved at 20
o
C.  It can be seen in Figure 5.10 that at 30

o
C with a load of 2.4 kN (1.1MPa), 
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all the specimens with SAMIs outperformed those without, except the test specimens with 

sand asphalt as SAMI. The results as presented in Figure 5.11 show that at 30
o
C and under a 

reduced load of 1.35 kN (0.6MPa), all the specimens with SAMIs outperformed those 

without, except for the 20 mm thick sand asphalt with 40 mm overlay (SA20O40) with a life 

0.95 times the control and 30 mm thick sand asphalt with 40 mm overlay (SA30O40) with a 

life 0.93 times of control. The low stiffness of the SAMI at 30
o
C allows the deformation of 

this layer vertically and horizontally in response to the shear and tensile stresses generated by 

the wheel load. Also, this is aided by the slip between the overlay and the SAMI as a result of 

the low shear strength/stiffness of the interface (see Figures 4.9 and 4.10). It was found that 

the specimens were susceptible to permanent deformation at 30
o
C, especially the specimens 

with 40 mm overlay. 

In general, it was found from the test that the SAMIs except the sand asphalt provide some 

gains in terms of life of the overlay compared to the control specimens. At 10
o
C with the 

samples having high interface strength/stiffness and the SAMI stiffness very high, the SAMIs 

were ineffective, while at 20
o
C and 30

o
C with lower adhesion between the overlay and SAMI 

and lower SAMI stiffness, they were able to retard reflective cracking. This indicates that the 

stiffness of the overlay and SAMI interface and the SAMI stiffness have great effect on the 

performance of the SAMI. Again, it shows that the stiffness of the SAMI or its flexibility has 

an effect on the performance of the SAMIs against reflective cracking. 
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Table 5.7: Specimen names and references 

Specimen name Specimen reference 

47 mm Overlay (Control) O47 

Proprietary SAMI C with 40 mm Overlay PCO40 

 Proprietary SAMI D with 40 mm Overlay PDO40 

60 mm Overlay (Control) O60 

20 mm thick sand asphalt with 40 mm overlay SA20O40 

20 mm thick Proprietary SAMI A with 40 mm overlay PA20O40 

20 mm thick Proprietary SAMI B with 40 mm overlay PB20O40 

Proprietary SAMI C with 60 mm Overlay PCO60 

Proprietary SAMI D with 60 mm Overlay PDO60 

70 mm Overlay (Control) O70 

30 mm thick sand asphalt with 40 mm overlay SA30O40 

30 mm thick Proprietary SAMI A with 40 mm overlay PA30O40 

30 mm thick Proprietary SAMI B with 40 mm overlay PB30O40 

10 mm thick sand asphalt with 60 mm overlay SA10O60 

10 mm thick Proprietary SAMI A with 60 mm overlay PA10O60 

10 mm thick Proprietary SAMI B with 60 mm overlay PB10O60 

80 mm Overlay (Control) O80 

20 mm thick sand asphalt with 60 mm overlay SA20O60 

20 mm thick Proprietary SAMI A with 60 mm overlay PA20O60 

20 mm thick Proprietary SAMI B with 60 mm overlay PB20O60 

 

Table 5.8: Number of wheel cycles at 10
o
C with 2.4 kN (1.1MPa) load applied 

Specimen 

reference 

Cycles to crack 

at top of SAMI 
Cycles to failure 

Cycles to failure 

as ratio of control 

O47 - 223 1 

PCO40 1606 2970 13.32 

PDO40 715 1431 6.41 

O60 - 5557 1 

SA20O40 994 1569 0.28 

PA20O40 1612 2349 0.42 

PB20O40 1002 1862 0.34 

PCO60 5051 6723 1.21 

PDO60 3501 4537 0.82 

O70 - 14503 1 

SA30O40 6890 9223 0.64 

PA30O40 10526 15192 1.05 

PB30O40 6334 9970 0.69 

SA10O60 3448 5915 0.41 

PA10O60 4302 9350 0.64 

PB10O60 2709 5003 0.34 

O80 - 110038 1 

SA20O60 11944 16293 0.15 

PA20O60 22480 27425 0.25 

PB20O60 9191 12718 0.12 
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Table 5.9: Number of wheel cycles at 20
o
C with 2.4 kN (1.1MPa) load applied 

Specimen 

reference 

Cycles to crack 

at top of SAMI 
Cycles to failure 

Cycles to failure 

as ratio of control 

O47 - 68 1 

PCO40 139 294 4.32 

PDO40 128 257 3.78 

O60 - 404 1 

SA20O40 560 698 1.73 

PA20O40 1051 1871 4.64 

PB20O40 727 906 2.25 

PCO60 1443 2221 5.50 

PDO60 847 1472 3.65 

O70 - 2421 1 

SA30O40 478 924 0.38 

PA30O40 2625 4486 1.85 

PB30O40 2464 4548 1.88 

SA10O60 2245 3304 1.36 

PA10O60 1992 3362 1.39 

PB10O60 1899 3446 1.42 

O80 - 5645 1 

SA20O60 2559 3062 0.54 

PA20O60 5495 6396 1.13 

PB20O60 5102 6224 1.10 

 

Table 5.10: Number of wheel cycles at 30
o
C with 2.4 kN (1.1MPa) load applied 

Specimen 

reference 

Cycles to crack 

at top of SAMI 
Cycles to failure 

Cycles to failure 

as ratio of control 

O47 - 50 1 

PCO40 84 132 2.63 

PDO40 68 117 2.34 

O60 - 132 - 

SA20O40 47 132 1 

PA20O40 97 296 2.24 

PB20O40 125 349 2.64 

PCO60 176 340 2.58 

PDO60 153 263 1.99 

O70 - 693 1 

SA30O40 81 147 0.21 

PA30O40 324 548 0.79 

PB30O40 747 1052 1.52 

SA10O60 40 136 0.20 

PA10O60 313 777 1.12 

PB10O60 316 817 1.18 

O80 - 851 - 

SA20O60 243 491 0.58 

PA20O60 563 1209 1.42 

PB20O60 381 660 0.77 
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Table 5.11: Number of wheel cycles at 30
o
C with 1.35 kN (0.6MPa) load applied 

Specimen 

reference 

Cycles to crack 

at top of SAMI 
Cycles to failure 

Cycles to failure 

as ratio of control 

O47 - 126 1 

PCO40 282 507 4.02 

PDO40 256 514 4.08 

O60 - 736 1 

SA20O40 322 699 0.95 

PA20O40 2011 2968 4.03 

PB20O40 764 1162 1.58 

PCO60 583 953 1.29 

PDO60 298 681 0.93 

O70 - 1311 - 

SA30O40 767 1214 0.93 

PA30O40 1041 2543 1.94 

PB30O40 1852 2983 2.28 

SA10O60 1618 3136 2.39 

PA10O60 2665 4241 3.24 

PB10O60 2374 4309 3.29 

O80 - 1621 1 

SA20O60 943 1821 1.12 

PA20O60 3918 5074 3.13 

PB20O60 1749 2832 1.75 

 

  

Figure 5.8: Number of wheel cycles to the top of SAMI and overlay at 10oC with 2.4kN load 

applied 
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Figure 5.9: Number of wheel cycles to the top of SAMI and overlay at 20oC with 2.4kN load 

applied 

 

 

 

Figure 5.10: Number of wheel cycles to the top of SAMI and overlay at 30oC with 2.4kN 

load applied 
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Figure 5.11: Number of wheel cycles to the top of SAMI and overlay at 30oC with 1.35kN 

load applied 

 

5.4.2 Effect of SAMI thickness 

In the study, the effect of the thickness of SAMIs against reflective cracking was investigated 

using SAMIs (sand asphalt, proprietary SAMIs A and B) of thicknesses 10 mm, 20mm and 

30 mm. The results of two different SAMI thicknesses with the same overlay thickness were 

normalized against their respective control specimens and compared. The specimen 

references are shown in Table 5.12.  Only the results of the tests carried out at 20
o
C and 30

o
C 

were considered because as explained in section 5.4.1, the SAMIs were found to be 

ineffective against crack propagation at 10
o
C.  

At 20
o
C and 2.4 kN (1.1MPa) load as shown in Figures 5.12 and 5.13 the SAMIs‟ (sand 
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probably because of the low stiffness of the SAMIs, so increasing the SAMI thickness tends 

to increase the flexure of the overlay causing rapid propagation of crack. 

Figures 5.14 and 5.15 show that at 30
o
C and 2.4 kN (1.1MPa) load, the results were mixed 

with the SAMIs being more effective when a thickness of 20mm was used than 30 mm with 

both having 40 mm overlay (Figure 5.12), while 20mm thick SAMIs were more effective 

than 10 mm with both having 60 mm overlay, except in the case of proprietary SAMI B. The 

reason for the mixed result is probably due to the combined action of high load magnitude 

and temperature. As shown in Figures 5.16 and 5.17, the test carried out at 30
o
C under a 

reduced load of 1.35kN (0.6MPa) to remove the effect of high load showed that the SAMIs 

were more effective when lower thickness was used. Elseifi (2003) observed in his study that 

the use of a soft interlayer against reflective cracking results in more vertical and horizontal 

deformations. In the same vein, the finding was in line with that of Molenaar et al (1986), 

who identified important factors that affect SAMI performance including stiffness of the 

SAMI, which is affected by its modulus and thickness. 

Table 5.12: Specimen names and references 

Specimen name 
Specimen 

reference 

Sand asphalt with 40 mm overlay SAO40 

Proprietary SAMI A with 40 mm overlay PAO40 

Proprietary SAMI B with 40 mm overlay PB040 

Sand asphalt with 60 mm overlay SAO60 

Proprietary SAMI A with 60 mm overlay PAO60 

Proprietary SAMI B with 60 mm overlay PBO60 
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Figure 5.12: Number of wheel cycles to failure as ratio of control with 20 mm and 30 mm 

SAMIs and 40 mm overlay at 20oC and 2.4kN (1.1MPa) 

 

 

 

Figure 5.13: Number of wheel cycles to failure as ratio of control with 10 mm and 20 mm 
SAMIs and 60 mm overlay at 20oC and 2.4kN (1.1MPa) 

 

 

0 

1 

2 

3 

4 

5 

Control SAO40 PAO40 PBO40 

Li
fe

 a
s 

ra
ti

o
 o

f 
co

n
tr

o
l 

Specimens 

20 mm 30 mm 

0 

0.5 

1 

1.5 

2 

2.5 

Control SAO60 PAO60 PBO60 

Li
fe

 a
s 

ra
ti

o
 o

f 
co

n
tr

o
l 

Specimens 

10 mm 20 mm 



Chapter five: Wheel tracking test 

 

 
 115 

 

Figure 5.14: Number of wheel cycles to failure as ratio of control with 20 mm and 30 mm 

SAMIs and 40 mm overlay at 30oC and 2.4kN (1.1MPa) 

 

 

Figure 5.15: Number of wheel cycles to failure as ratio of control with 10 mm and 20 mm 

SAMIs and 60 mm overlay at 30oC and 2.4kN (1.1MPa) 
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Figure 5.16: Number of wheel cycles to failure as ratio of control with 20 mm and 30 mm 

SAMIs and 40 mm overlay at 30oC and 1.35kN (0.6MPa) 

 

 

 

Figure 5.17: Number of wheel cycles to failure as ratio of control with 10 mm and 20 mm 

SAMIs and 60 mm overlay at 30oC and 1.35kN (0.6MPa) 
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is representative of tyre pressures on airfields and the latter representative of tyre pressures on 

highways. The numbers of wheel cycles to failure for the test specimens were normalized 

using their respective control specimens. The results as shown in Figure 5.18 indicate that the 

resistance of the SAMIs against reflective cracking was more pronounced in specimens tested 

under a load of 1.35kN (0.6MPa) than 2.4kN (1.1MPa). 

This happens probably because the traffic loads on an overlay over a cracked pavement 

generate the critical stress concentration at the tip of the crack. As the load on the overlay 

increases, the stress concentration increases due to the low stiffness of the SAMI causing 

rapid propagation of the crack. Figure 5.18 shows that the SAMIs are more suited for 

highways than airfield pavements because of the low SAMI stiffness. For airfield pavements 

with higher load magnitude, a reinforcing interlayer (not investigated in this study) which 

allows the overlay to support larger bending of the pavement for a given asphalt strength may 

be more suitable. 

 

 

Figure 5.18: The number of wheel cycles to failure as ratio of control with 2.4kN and 
1.35kN loads applied at 30oC 
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5.4.4 Effect of temperature 

One of the factors that affect the rate of crack propagation is the environmental condition. 

Temperature is one of the environmental conditions that play a part in crack propagation. In 

this study, the influence of temperature on resistance of SAMIs against reflective cracking 

was investigated by carrying out tests at three different temperatures (10
o
C, 20

o
C and 30

o
C) 

with a 2.4kN (1.1MPa) load applied. The results presented in Figures 5.19 show that although 

the SAMIs were ineffective at 10
o
C, the life of the test specimens decreased as temperature 

increases. This is possibly because of the effect of temperature on overlay and SAMI 

stiffnesses and the interface stiffness. As shown in Table 5.5, the stiffness of the overlay and 

SAMIs increases with decreasing temperature. 

In order to further understand the effect of temperature on the performance of SAMIs, the 

number of cycles to failure of the test specimens at 20
o
C and 30

o
C were normalized by their 

respective control specimens (see Figure 5.20). It can be seen from the graph that the SAMIs 

performed better at 20
o
C, except for proprietary SAMIs C and D that were produced with 

bitumen emulsion.  Although in this case, the SAMIs performed worse at 30
o
C than 20

o
C, 

probably because at 30
o
C the overlay becomes susceptible to permanent deformation. 

Barksdale (1991) noted that as the interlayer becomes softer, and its shear strength lowers, it 

becomes more effective in delaying reflective cracking. For the specimens with proprietary 

SAMI C, the crack resistance increases with decreasing temperature, while proprietary SAMI 

D was more effective at 20
o
C. This was the case probably because the bitumen emulsion used 

in proprietary SAMI C was more viscous than the one used in proprietary SAMI D, therefore 

allowing its flexibility to be mobilized at lower temperature.  
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Figure 5.19: Number of wheel cycles to failure at 10oC, 20oC and 30oC under a load of 

2.4kN (1.1MPa) 

 

 

Figure 5.20: The number of wheel cycles to failure as ratio of control with 2.4kN load 

applied at 20oC and 30oC 
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crack is initiated, it has to grow through more depth of the overlay before appearing at the 

surface. However life gained as a result of the increase in overlay depth may be small 

compared to the cost incurred, thus raising question about its cost effectiveness. Therefore, 

there is need to always use the most appropriate thickness that will be cost effective. 

In this study to assess the influence of overlay thickness on performance of SAMIs, two 

different overlay thicknesses of 40 mm and 60 mm were used. To ensure the thickness of the 

SAMIs does not influence the results, SAMIs (sand asphalt, proprietary SAMIs A and B) 

with the same thickness of 20 mm and proprietary SAMIs C and D were compared. The 

results were normalized by dividing the number of cycles to failure of the test specimens by 

the number of wheel cycles to failure for control specimens of equivalent overall thickness. 

Therefore, for the test specimens with 20 mm SAMIs and 40 mm overlay, the control 

specimen thickness was 60 mm, while for the specimens with 20 mm SAMIs and 60 mm 

overlays, the control specimen thickness was 80 mm. The specimen references for 

presentation of the results are shown in Table 5.13. 

The results shown in Figures 5.21 and 5.22 indicate that after normalizing with their 

respective control specimens, using 60 mm thick overlay on the 20 mm SAMIs was less 

effective than with a 40 mm thick overlay. Although Barksdale (1991) stated that a stress-

relieving layer is not a substitute for the AC overlay‟s load-carrying capacity and that design 

thickness of the AC overlay should not be reduced even when a stress relieving layer is used 

in an attempt to delay reflective cracking, it was found in this study that an optimum overlay 

thickness at which the SAMI‟s incorporation in a cracked pavement gives good results and 

the best economical value exists. Molenaar et al (1986) found that when SAMIs are used 

against reflective cracking, a thin overlay would have a longer life than a thick overlay. The 

results of the test at 30
o
C and 1.35 kN load (see Figure 5.23) shows that the 20 mm thick sand 

asphalt and proprietary SAMI B with 60 mm overlay were more effective than when the 
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overlay thickness is 40 mm. This reason for the mixed result in this case is probably because 

of high temperature and lower load magnitude, which results in deformation of the test 

specimens, a situation that is more pronounced in specimens with 40 mm overlay. Figures 

5.24, 5.26 and 5.27 indicate that for proprietary SAMIs C and D, the use of 40 mm overlay 

was more effective than 60 mm overlay. However, in Figure 5.25 the reverse was the case, 

the test specimens with 60 mm overlay were more effective than the ones with 40 mm 

overlay.  

Table 5.13: Specimen names and references 

Specimen name 
Specimen 

reference 

20 mm thick Sand asphalt  SA20 

20 mm thick proprietary SAMI A  PA20 

20 mm thick proprietary SAMI B  PB20 

Proprietary SAMI C PC 

Proprietary SAMI D PD 

 

 

Figure 5.21: The number of wheel cycles to failure as ratio of control for specimens with 

20mm SAMI and 40 mm and 60 mm overlay and 2.4kN load applied at 20oC 
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Figure 5.22: The number of wheel cycles to failure as ratio of control for specimens with 

20mm SAMI and 40 mm and 60 mm overlay and 2.4kN load applied at 30oC 

 

 

Figure 5.23: The number of wheel cycles to failure as ratio of control for specimens with 

20mm SAMI and 40 mm and 60 mm overlay and 1.35kN load applied at 30oC 
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Figure 5.24: The number of wheel cycles to failure as ratio of control for specimens with 

SAMIs C and D and 40 mm and 60 mm overlay and 2.4kN load applied at 10oC 

 

 

Figure 5.25: The number of wheel cycles to failure as ratio of control for specimens with 

SAMIs C and D and 40 mm and 60 mm overlay and 2.4kN load applied at 20oC 
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Figure 5.26: The number of wheel cycles to failure as ratio of control for specimens with 

SAMIs C and D and 40 mm and 60 mm overlay and 2.4kNload applied at 30oC 

 

 

Figure 5.27: The number of wheel cycles to failure as ratio of control for specimens with 

SAMIs C and D and 40 mm and 60 mm overlay and 1.35kN load applied at 30oC 
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with 40 and 60 mm overlay and control (no SAMI) with 60 mm overlay, while Figure 5.31 

was for a load of 1.35kN at 30
o
C for the specimens with proprietary SAMIs C and D with 40 

and 60 mm overlay and control (no SAMI) with 60 mm overlay. Figures 5.32, 5.33, and 5.34 

show graphs of displacement versus number of wheel cycles at 10
o
C, 20

o
C and 30

o
C, 

respectively with 2.4kN load applied for 20 mm thick SAMIs with 40 mm overlay and 

control (no SAMI) with 60 mm overlay, while Figure 5.35 was for the same specimens with a 

load of 1.35kN at 30
o
C. 

Also, Figures 5.36, 5.37, and 5.38 show the graphs of displacement versus number of wheel 

cycles at 10
o
C, 20

o
C and 30

o
C, respectively with 2.4kN load applied for 30 mm thick SAMIs 

with 40 mm overlay and control (no SAMI) with 70 mm overlay, while Figure 5.39 was for 

the same specimens with a load of 1.35kN at 30
o
C. The graphs of displacement versus 

number of wheel cycles at 10
o
C, 20

o
C and 30

o
C with 2.4kN load applied were shown in 

Figures 5.40, 5.41 and 5.42, respectively for specimens having 10 mm thick SAMIs and 60 

mm overlay and control (no SAMI) with 70 mm overlay, while Figure 5.43 was for the same 

specimens with a load of 1.35kN at 30
o
C. 

Figures 5.44, 5.45, and 5.46 are the graphs of displacement versus number of wheel cycles at 

10
o
C, 20

o
C and 30

o
C, respectively with 2.4kN load applied for 20 mm thick SAMIs with 

60mm overlay and control (no SAMI) with 80 mm overlay, while Figure 5.47 was for a load 

of 1.35kN at 30
o
C. The graphs show that the relative displacement of the split base increases 

as the test progresses due to crack propagation. It can be seen from the graphs that in most 

cases, the control specimens had lower displacement than the specimens with SAMIs. 

Although, Sanders (2001) stated that prediction of crack growth using deflection data would 

be difficult and inaccurate, the general trend in these graphs shows that the more the vertical 

movement of the test specimens the less the life. This will perhaps explain why most of the 

specimens with sand asphalt were not effective in retarding crack growth.  
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The initial absolute and relative displacements of the specimens are shown in Figures 5.48 

and 5.49, respectively. Both graphs show that the vertical movement of the specimens 

increases with temperature. Also, although the low vertical movement of the specimens at 

10
o
C does imply increased life, the specimens with SAMIs except the ones with proprietary 

SAMIs C and D were ineffective at 10
o
C. Furthermore, Figures 5.48 and 5.49 indicate that 

the control specimens have lower displacement than their equivalent test specimens with 

SAMIs. This means that introduction of soft interlayer materials in a pavement is 

accompanied by more vertical movement of the pavement structure. As observed by Debondt 

(1999), the larger flexural (bending) deformations/deflections caused by the introduction of 

interlayer materials do not necessarily imply that the tensile stress in the overlay increases. 

 

Figure 5.28: Displacement versus number of wheel cycles at 10oC with 2.4kN (1.1MPa) 

load applied for specimens with proprietary SAMIs C and D 
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Figure 5.29: Displacement versus number of wheel cycles at 20oC with 2.4kN (1.1MPa) 

load applied for specimens with proprietary SAMIs C and D 

 

 

Figure 5.30: Displacement versus number of wheel cycles at 30oC with 2.4kN (1.1MPa) 

load applied for specimens with proprietary SAMIs C and D 
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Figure 5.31: Displacement versus number of wheel cycles at 30oC with 1.35kN (0.6MPa) 

load applied for specimens with proprietary SAMIs C and D 

 

 

Figure 5.32: Displacement versus number of wheel cycles at 10oC with 2.4kN (1.1MPa) 

load applied for specimens with 20 mm SAMI and 40 mm overlay 
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Figure 5.33: Displacement versus number of wheel cycles at 20oC with 2.4kN (1.1MPa) 

load applied for specimens with 20 mm SAMI and 40 mm overlay 

 

 

Figure 5.34: Displacement versus number of wheel cycles at 30oC with 2.4kN (1.1MPa) 

load applied for specimens with 20 mm SAMI and 40 mm overlay 
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Figure 5.35: Displacement versus number of wheel cycles at 30oC with 1.35kN (0.6MPa) 

load applied for specimens with 20 mm SAMI and 40 mm overlay 

 

 

Figure 5.36: Displacement versus number of wheel cycles at 10oC with 2.4kN (1.1MPa) 

load applied for specimens with 30 mm SAMI and 40 mm overlay 
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Figure 5.37: Displacement versus number of wheel cycles at 20oC with 2.4kN (1.1MPa) 

load applied for specimens with 30 mm SAMI and 40 mm overlay 

 

 

Figure 5.38: Displacement versus number of wheel cycles at 30oC with 2.4kN (1.1MPa) 
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Figure 5.39: Displacement versus number of wheel cycles at 30oC with 1.35MPa (0.6MPa) 

load applied for specimens with 30 mm SAMI and 40 mm overlay 

 

 

Figure 5.40: Displacement versus number of wheel cycles at 10oC with 2.4kN (1.1MPa) 
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Figure 5.41: Displacement versus number of wheel cycles at 20oC with 2.4kN (1.1MPa) 

load applied for specimens with 10 mm SAMI and 60 mm overlay 

 

 

Figure 5.42: Displacement versus number of wheel cycles at 30oC with 2.4kN (1.1MPa) 

load applied for specimens with 10 mm SAMI and 60 mm overlay 
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Figure 5.43: Displacement versus number of wheel cycles at 30oC with 1.35kN (0.6MPa) 

load applied for specimens with 10 mm SAMI and 60 mm overlay 

 

 

Figure 5.44: Displacement versus number of wheel cycles at 10oC with 2.4kN (1.1MPa) 

load applied for specimens with 20 mm SAMI and 60 mm overlay 
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Figure 5.45: Displacement versus number of wheel cycles at 20oC with 2.4kN (1.1MPa) 

load applied for specimens with 20 mm SAMI and 60 mm overlay 

 

 

Figure 5.46: Displacement versus number of wheel cycles at 30oC with 2.4kN (1.1MPa) 

load applied for specimens with 20 mm SAMI and 60 mm overlay 
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Figure 5.47: Displacement versus number of wheel cycles at 30oC with 1.35kN (0.6MPa) 

load applied for specimens with 20 mm SAMI and 60 mm overlay 

 

 

 

Figure 5.48: Initial absolute displacement of the specimens under 2.4kN load at 10oC, 

20oC and 30oC 
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Figure 5.49: Initial relative displacement of the specimens under 2.4kN load at 10oC, 20oC 

and 30oC 

 

5.5 Strain 

The initial strain at 4mm above the crack top is shown in Figure 5.50, while the initial strain 

at 20 mm from the bottom of the overlay and equivalent positions in their respective control 

specimens is shown in Figure 5.51. For the control specimens with 60 mm overlay (O60) and 

80 mm overlay (O80), the depth from the bottom of the overlay was 40 mm while for control 

specimens with 70 mm overlay (O70), the depth was 30 mm from the bottom. Figure 5.50 

shows that there is greater strain concentration at 4mm above the crack top for the specimens 

with SAMIs than those without SAMI (control). However, Figure 5.51 shows that at 20 mm 

from the bottom of the overlay less strain is measured in the specimens with SAMIs than 

those without SAMI (control) with the exception of the specimens with sand asphalt. This 

shows the potential of SAMIs to isolate the overlay from stress concentration around the 

crack region. It can be seen from both figures that the strain in the specimens increases with 

temperature. Also, the specimens with less strain concentration give better performance than 

those with higher strain concentration.  
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Figure 5.50: Strain at 4 mm above the crack top under 2.4kN (1.1MPa) load at 10oC, 20oC 

and 30oC 

 

 

Figure 5.51: Strain at 20 mm from bottom of overlay and equivalent depth in control 

specimens under 2.4kN (1.1MPa) load at 10oC, 20oC and 30oC 

 

5.6 Conclusion 

The following conclusions were drawn from this study: 

 The test was capable of simulating the situation of overlay over cracked pavement 

in the field. 
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 The SAMIs (proprietary SAMIs A, B, C and D) were able to retard reflective 

cracking at 20
o
C and 30

o
C, while only proprietary SAMIs C and D were able to 

retard reflective cracking at 10
o
C.  

 It was discovered that the performance of proprietary SAMIs A and B was mixed. 

Generally proprietary SAMI A performed better when the thickness was 20 mm 

while proprietary SAMI B performed better when the thickness was 30 mm. This 

was due to the composition of the mixtures.  

 The study also showed that specimens with proprietary SAMIs C performed better 

than the ones with proprietary SAMI D. This was the case probably because the 

bitumen emulsion in proprietary SAMI C is more viscous, thereby allowing more 

flexibility of the interlayer. 

 It was found that sand asphalt was mostly ineffective in retarding crack growth, a 

situation that was probably due to the very low stiffness of the SAMI and its 

fatigue resistance. This further demonstrates that an optimum stiffness at which 

the SAMIs are effective exists. Having too soft or too stiff (hard) an interlayer will 

yield undesired results. 

 The test results showed that SAMI thickness (sand asphalt, proprietary SAMIs A 

and B) has an effect on performance. They were found to be more effective when 

lower thickness was used. This is possibly due to increased flexure caused by 

increasing the thickness of the soft interlayer. 

 It can also be seen that the resistance of the SAMIs against reflective cracking was 

more pronounced when a load of 1.35kN (tyre pressure approximately 0.6MPa) 

was used than with a load 2.4kN (tyre pressure approximately 1.1MPa). This 

indicates that when high load magnitudes are expected such as on an airfield, 

having a reinforced interlayer may be most appropriate. 
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 Furthermore, the test results showed that the performance of the SAMIs was 

affected by temperature. The SAMIs (sand asphalt, proprietary SAMIs A and B) 

were found to be mostly effective at 20
o
C and 30

o
C, while the performance of 

proprietary SAMIs C and D decreased with increasing temperature.  

 It was found that the relative benefit of the SAMIs decreases as the overlay 

thickness increases.  
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6 FINITE ELEMENT ANALYSIS OF WHEEL 
TRACKING TEST 

6.0 Introduction 

Finite element modelling was carried out in this study to give a better understanding of the 

deflection and stress-strain distribution in overlaid cracked pavements with and without 

SAMIs. Successful modelling of a well controlled laboratory test will allow the model to be 

applied to other conditions. In the modelling, the propagation of the crack was not considered; 

therefore the modelling only gives the deflection and stress-strain distribution before crack 

initiation.  

In mechanistic analysis, hot-mix asphalt has traditionally being considered to behave in a 

linear elastic manner. This has some shortcomings in that, in reality, asphalt concrete behaves 

more like a viscoelastic material. Hot-mix asphalt only behaves as an elastic material at low 

temperature and high loading frequency, while it behaves like a viscous fluid at high 

temperature and low loading frequency. At intermediate temperatures and loading 

frequencies, it behaves like a viscoelastic material that exhibits a significant level of elastic 

solid stiffness while dissipating energy by frictional resistance as a viscous fluid.  

Although asphalt behaves more like a viscoelastic material, for simplicity it was considered 

appropriate to use a linear elastic model for the analysis. As observed by Sousa et al (2001), 

two major factors are of particular interest in the mechanical analysis of hot-mix asphalt: the 

material characterization method and its accuracy in reflecting the material resistance to 

loading; and the accuracy of mechanistic models to predict the pavement performance. For 

this study, the material stiffnesses were determined. The modelling was done with a 

commercial finite element program Abaqus 6.7-1. The Abaqus finite element system includes 

(Abaqus Theory Manual, 2007): 
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 Abaqus/Standard, a general-purpose finite element program 

 Abaqus/Explicit, an explicit dynamics finite element program 

 Abaqus/CAE, an interactive environment used to create finite element models, submit 

Abaqus analyses, monitor and diagnose jobs and evaluate results; and 

 Abaqus/Viewer, a subset of Abaqus/CAE that contains only the postprocessing 

capabilities of the Visualization module. 

For this study, Abaqus/Standard was implemented in Abaqus/CAE to generate models for the 

study. 

 

6.1 Finite element formulation for the wheel tracking test 

The procedure for the wheel tracking test has been described in section 5.3. The specimens 

were manufactured in three layers; the base layer (simulating the existing pavement) with a 

10 mm notch (simulating the crack), which was made of 10 mm asphalt concrete with 10/20 

penetration grade bitumen, the middle layer (where present) was SAMI, the SAMIs 

considered in the modelling being proprietary SAMIs A and B and sand asphalt, and the top 

layer (overlay) was also made of 10 mm asphalt concrete but with 40/60 penetration grade 

bitumen. The control specimens were made in two layers: the top layer and the base layer. 

The specimen was placed on a 10 mm rubber mat in a steel mould. It was loaded after 

clamping it at the top and side at both ends to simulate pavement continuity. The specimen 

arrangement for the control and test models is as shown in Figure 6.1.   

As mentioned earlier, a linear elastic material model was adopted for the specimens. 

Therefore, each layer was assumed to behave in an elastic manner. Thus, the material 

properties required for the finite element modelling are the elastic modulus, E and Poisson‟s 

ratio, μ. The elastic modulus (stiffness) was determined using the indirect tensile stiffness 
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modulus (ITSM) test described in section 3.5.3. The stiffness was used directly because the 

temperatures are the same and wheel loading rate is close to the ITSM loading rate. The 

properties of each of the layers at 10
o
C, 20

o
C and 30

o
C are as shown in Table 6.1.  The 

parameters considered in the modelling include the overlay and SAMI thicknesses, and the 

test temperature. The test temperature was considered by using the material properties 

obtained in the laboratory tests at 10
o
C, 20

o
C and 30

o
C for the modelling. 

 
(a) 

 
(b) 

Figure 6.1: Specimen arrangement (a) with SAMI (b) without SAMI 
 

Table 6.1: Layer properties 

Materials 
Properties 

E, MPa, (μ) at 10
o
C E, MPa, (μ) at 20

o
C E, MPa, (μ) at 30

o
C 

10 mm AC (40/60) 10035 (0.25) 3899 (0.35) 1098 (0.45) 

10 mm AC (10/20) 15435 (0.25) 9591 (0.35) 5008 (0.45) 

Proprietary SAMI A 8548 (0.25) 2725 (0.35) 635 (0.45) 

Proprietary SAMI B 7564 (0.25) 2444 (0.35) 510 (0.45) 

Sand asphalt 635 (0.25) 209 (0.35) 118 (0.45) 

Crack 1 (0.35) 

Rubber 6.45 (0.49) 

Steel 209000 (0.3) 
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6.2 Model geometry and dimension  

To investigate the performance of the SAMIs, two models were developed: one incorporating 

SAMIs and the other without SAMIs (Control). The model length and width are 404 mm and 

50 mm, respectively. The overall model thickness varies with thicknesses of the middle 

(SAMI) and the surface (overlay) layers. The overall thicknesses considered in the model are 

110 mm, 120 mm and 130 mm. The combinations investigated are as shown in Table 6.2. 

Each combination was investigated at 10
o
C, 20

o
C and 30

o
C for the three SAMIs: Proprietary 

SAMI A and B and sand asphalt.  

A 3-dimensional analysis was carried out allowing the load to be placed across the entire 

beam width of 50 mm as was the case for the laboratory study. All the layers were simulated 

using an 8-node linear brick, reduced integration element (C3D8R) – a first order 

isoparametric element. The C3D8R elements have only one integration point, thereby 

reducing the computational time without any great effect on the result accuracy. Reduced 

integration usually means that an integration scheme one order less than the full scheme is 

used to integrate the element internal forces and stiffness (Abaqus Theory Manual, 2007). 

Typical 3-dimensional structural models for the wheel tacking test for specimens with 10 mm 

and 20 mm SAMIs and 60 mm overlay are shown in Figures 6.2 and 6.3, respectively. The 

models for specimens with 30 mm and 20 mm SAMIs and 40 mm overlay are shown in 

Figures 6.4 and 6.5, respectively.  Typical Control models (no SAMI) with 60 mm, 70 mm 

and 80 mm overlay are shown in Figures 6.6, 6.7 and 6.8, respectively. Cracks in an existing 

pavement have been modelled using different approaches by researchers. Wu and Harvey 

(2008) modelled a crack with empty spaces in the underlying layer; Minhoto et al (2008) in 

their study of reflective cracking behaviour for traffic and temperature effects modelled 

cracks using elements without stiffness. Pais and Pereira (2000) modelled cracks as a void 

with a negligible stiffness of 1MPa. Also, Dave et al (2008) and Baek and Al-Qadi (2008) 
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modelled cracks using a cohesive zone model. In this study, for simplicity, the crack was 

modelled by assigning a low material stiffness to the elements (see Table 6.1). 

The mesh density that is appropriate for the study was determined by checking different mesh 

densities. A density that saved time without affecting the accuracy of the results was selected. 

For this analysis, the specimens with 20 mm SAMI and 40 mm overlay and control 

specimens with 60 mm overlay are modelled with 31200 elements, while the specimens with 

30 mm SAMI and 40 mm overlay, 10 mm SAMI and 60mm overlay and control specimens 

with 70 mm overlay are modelled with 33600 elements. Lastly, the specimens with 20 mm 

SAMI and 60 mm overlay and control specimens with 80 mm overlay were modelled with 

37200 elements. 

 

Table 6.2: Combinations investigated 

Layer 

thickness 

(mm) 

C1 C2 C3 C4 
C5 

(Control) 

C6 

(Control) 

C7 

(Control) 

Overlay 40 40 60 60 60 70 80 

SAMI 20 30 10 20 - - - 

Base 30 30 30 30 30 30 30 

Rubber 10 10 10 10 10 10 10 

Steel 10 10 10 10 10 10 10 

Total 110 120 120 130 110 120 130 

C- Combination 
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Figure 6.2: A typical model with 10 mm SAMI and 60 mm overlay 
 

 

 

Figure 6.3: A typical model with 20 mm SAMI and 60 mm overlay 
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Figure 6.4: A typical model with 30 mm SAMI and 40 mm overlay 

 

 

 

Figure 6.5: A typical model with 20 mm SAMI and 40 mm overlay 
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Figure 6.6: A typical model (Control) 60 mm overlay 

 

 

 

Figure 6.7: A typical model (Control) 70 mm overlay 
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Figure 6.8: A typical model (Control) 80 mm overlay 

 

6.3 Loading and boundary conditions  

A distributed load of 2.4 kN (1.1MPa) was used in the modelling. This was placed on the 

whole width (50 mm) of the beam over a length of 45 mm. The load was placed at two 

different locations: 90 mm away from the centre of the crack, termed „edge load‟, and 

directly above the simulated crack, termed „centre load‟, as shown in Figures 6.9 and 6.10, 

respectively. Only one side of the model was considered because of symmetry.  

The model support was simulated by applying a fixed boundary condition to the steel base. 

The tests simulated pavement continuity by clamping; the model simulated clamping using 

fixed boundaries. The fixed boundary condition (encastre) constrains the model movement, 

i.e., the displacement and rotation in x, y and z directions. 
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Figure 6.9: A typical model assembly with edge load and boundary conditions 

 

 

Figure 6.10: A typical model assembly with centre loading and boundary conditions 

 

6.4 Contact modelling 

Two cases were investigated for the interaction between the layers: overlay-SAMI, SAMI-

base, base-rubber and rubber-steel interfaces. The first assumed a full bond condition 

(compatibility of stresses and strains). The second case assumed a friction-type contact (slip) 

between the SAMI and the base layers i.e., the layer interface was allowed to separate 

(debond), while other interfaces are assumed to be fully bonded. The friction-type contact 
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was achieved by using the penalty contact method. Finite sliding that allows arbitrary motion 

of the surfaces and the surface to surface discretization method were selected in Abaqus CAE. 

A friction coefficient of 0.7 was used and the default slip tolerance of 0.005 mm specified by 

Abaqus was used.  

 

6.5 Results and analysis  

For this study, 180 models were formulated and the results analysed. The results of the 

models were obtained at 4 mm above the crack top, the bottom of the overlay and at 20 mm 

from the bottom of the overlay. For the specimens with 10 mm, 20 mm and 30 mm SAMIs, 

20 mm from the bottom of the overlay is equivalent to 30 mm, 40 mm and 50 mm from the 

bottom of the overlay in their respective control specimens. The specimen references are 

shown in Table 6.3  

Table 6.3: Specimen references 

Specimens name Specimens references 

60 mm Overlay (Control) O60 

20 mm thick sand asphalt with 40 mm overlay SA20O40 

20 mm thick Proprietary SAMI A with 40 mm overlay PA20O40 

20 mm thick Proprietary SAMI B with 40 mm overlay PB20O40 

70 mm Overlay (Control) O70 

30 mm thick sand asphalt with 40 mm overlay SA30O40 

30 mm thick Proprietary SAMI A with 40 mm overlay PA30O40 

30 mm thick Proprietary SAMI B with 40 mm overlay PB30O40 

10 mm thick sand asphalt with 60 mm overlay SA10O60 

10 mm thick Proprietary SAMI A with 60 mm overlay PA10O60 

10 mm thick Proprietary SAMI B with 60 mm overlay PB10O60 

80 mm Overlay (Control) O80 

20 mm thick sand asphalt with 60 mm overlay SA20O60 

20 mm thick Proprietary SAMI A with 60 mm overlay PA20O60 

20 mm thick Proprietary SAMI B with 60 mm overlay PB20O60 
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6.5.1 Displacement 

The measured and predicted absolute displacements at 10
o
C, 20

o
C and 30

o
C are shown in 

Figures 6.11, 6.12 and 6.13.  It can be seen from the figures that there is more absolute 

displacements in the specimens with SAMIs than the control sections without SAMI. As 

observed in the wheel tracking test, the results show that the specimen with lower SAMI 

thickness has less displacement than the ones with greater thickness. Also, it can be seen that 

the absolute displacements of the specimens increase with temperature. The figures show that 

greater displacements are predicted in the debond cases than the full bond cases 

The finite element analysis shows that the predicted absolute displacements are more or less 

the same as the measured displacements, indicating that the wheel tracking test reported in 

chapter five did what it was intended to do. 

 

Figure 6.11: Absolute displacement at 10oC 
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Figure 6.12: Absolute displacement at 20oC 

 

 

Figure 6.13: Absolute displacement at 30oC 
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specimens with SAMIs are greater than strains in the control specimens with no SAMIs for 

both the full bond and debond conditions except for the specimens with sand asphalt as 

SAMI. As explained in section 6.5.1, the use of soft interlayers (SAMIs) increases deflection 

of the pavement. This in turn results in high strain concentration around the crack as seen in 

Figures 6.14 and 6.15. Figure 6.16 indicates that at 30
o
C for the full bond cases less strain 

was predicted at 4 mm above the crack top in the specimens with SAMIs than the control 

specimens without SAMI with the exception of the specimens with sand asphalt which are in 

compression, while for the debond cases greater strain was predicted in the specimens with 

SAMIs than those without SAMI. 

 Figures 6.17 and 6.18 show the strain predicted at the bottom of the overlay for both control 

specimens and those with SAMIs (full bond and the debond cases). It can be seen from both 

figures that the strains at the bottom of the overlay are smaller in the specimens with SAMIs 

than those without SAMIs. Figures 6.19 and 6.20 show the strain measured and predicted at 

20 mm from the bottom of the overlay at 10
o
C and 20

o
C. The figures show that for the 

specimens with 10 mm SAMI and 20 mm SAMI and 60 mm overlay, lower strain are 

measured and predicted in specimens with SAMIs than in those without SAMIs for SAMIs A 

and B, while the specimens with sand asphalt as SAMI have greater strain than the control.  

Figure 6.21 shows that at 30
o
C the results are mixed. This is probably due to the high load 

magnitude and temperature. As observed in the laboratory test, the test carried out using a 

reduced load of 1.35kN (0.6MPa) at 30
o
C shows clearly, the crack resistance of SAMI 

against reflective cracking. Generally, it can be seen from the measured and predicted strains 

at 20mm from the bottom of the overlay that, although high strain concentration exists around 

the crack region in the specimens with SAMIs, they are able to isolate the overlay from the 

strain concentration. This shows the crack resistance potential of the proprietary SAMIs A 
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and B. Also, it can be seen from the results that greater strains are predicted in the debond 

cases than the full bond cases. 

 

Figure 6.14: Strain at 4 mm above the crack top at 10oC 

 

 

Figure 6.15: Strain at 4 mm above the crack top at 20oC 

 

0 

50 

100 

150 

200 

250 

300 

350 

400 

M
ic

ro
st

ra
in

 

Specimens 

Measured Full bond Debond 

-400 
-200 

0 
200 
400 
600 
800 

1000 
1200 
1400 
1600 

A
xi

s 
Ti

tl
e

 

Axis Title 

Measured Full bond Debond 



Chapter six: Finite element analysis of wheel tracking test 

 

 
 157 

 

Figure 6.16: Strain at 4 mm above the crack top at 30oC 

 

 

Figure 6.17: Strain at the bottom of the overlay (Full Bond) 
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Figure 6.18: Strain at the bottom of the overlay (Debond) 

 

 

Figure 6.19: Strain at 20 mm from the bottom of the overlay at 10oC 
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Figure 6.20: Strain at 20 mm from the bottom of the overlay at 20oC 

 

 

Figure 6.21: Strain at 20 mm from the bottom of the overlay at 30oC 
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shown in Figures 6.22, 6.23, 6.24 and 6.25, respectively. It can be seen from the figures the 

potential of SAMIs to relieve stress in the overlay.  

Figure 6.26 and 6.27 show that when the load was placed at the centre, the tensile stresses 

predicted at 4 mm above the crack top in the specimens with SAMIs are smaller than the ones 

without SAMI. Also the figures show that unlike all the other specimens, the specimens with 

sand asphalt as SAMI are in compression. This is because of the very low stiffness of the 

sand asphalt, which shows the pavement might be susceptible to permanent deformation. 

Again, Figures 6.28 and 6.29 show that when the load was placed at the centre, the tensile 

stresses predicted at the bottom of the overlay of the specimens with proprietary SAMIs A 

and B are smaller than the tensile stresses predicted at the bottom of the overlay of their 

respective control specimens, while for the specimens with sand asphalt as SAMI, the tensile 

stresses predicted at the bottom of the overlay are greater than the ones for the specimens 

without SAMI. This agrees with the wheel tracking test which shows that the specimen with 

proprietary SAMIs A and B were able to retard reflective cracking indicating both SAMIs are 

able to isolate the overlay from the stress/strain concentration at the crack tip, while the 

extreme low stiffness of sand asphalt inhibits its crack resistance ability. As observed by Kim 

and Buttlar (2002), the primary benefit of a soft interlayer is to reduce the longitudinal 

stresses in the overlay caused by wheel load and/or thermal cycling. It is evident in this study, 

that the SAMIs are able to reduce the tensile stress transferred to the overlay from stress 

concentration generated around the crack region by traffic loading. 
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                                 (a)                                                                  (b) 

Figure 6.22: 80 mm Overlay at 20oC with centre load (O80) (a) Full bond (b) Debond 

 

 

                                 (a)                                                                  (b) 

Figure 6.23: 20 mm sand asphalt with 60 mm Overlay at 20oC with centre load (SA20O60) 

(a) Full bond (b) Debond 

 

 

                                 (a)                                                                  (b) 

Figure 6.24: 20 mm proprietary SAMI A with 60 mm Overlay at 20oC with centre load 

(PA20O60) (a) Full bond (b) Debond 

 



Chapter six: Finite element analysis of wheel tracking test 

 

 
 162 

 

                                 (a)                                                                  (b) 

Figure 6.25: 20 mm proprietary SAMI B with 60 mm Overlay at 20oC with centre load 

(PB20O60) (a) Full bond (b) Debond 

 

 

Figure 6.26: Longitudinal stress at crack tip at 10oC, 20oC and 30oC with the load placed at 

the centre (Full bond) 

 

-0.40 
-0.20 
0.00 
0.20 
0.40 
0.60 
0.80 
1.00 
1.20 
1.40 
1.60 

Lo
n

gi
tu

d
in

al
 s

tr
e

ss
 (

M
P

a)
 

Specimens 

10oC 20oC 30oC 



Chapter six: Finite element analysis of wheel tracking test 

 

 
 163 

 

Figure 6.27: Longitudinal stress at crack tip at 10oC, 20oC and 30oC with the load placed at 

the centre (Debond) 

 

 

Figure 6.28: Longitudinal stress at bottom of overlay at 10oC, 20oC and 30oC with the load 

placed at the centre (Full bond) 
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Figure 6.29: Longitudinal stress at bottom of overlay at 10oC, 20oC and 30oC with the load 

placed at the centre (Debond) 
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is because the major stress responsible for crack initiation and propagation in this case is the 

shear stress generated by the relative movement of the cracked pavement.  

  
                                  (a)                                                                  (b) 

Figure 6.30: 80 mm Overlay at 20oC with edge load (O80) (a) Full bond (b) Debond 

  

 
                                  (a)                                                                  (b) 

Figure 6.31: 20 mm sand asphalt with 60 mm Overlay at 20oC with edge load (SA20O60) 

(a) Full bond (b) Debond 

 

 

                                 (a)                                                                  (b) 
Figure 6.32: 20 mm proprietary SAMI A with 60 mm Overlay at 20oC with edge load 

(SA20O60) (a) Full bond (b) Debond 
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                                (a)                                                                  (b) 

Figure 6.33: 20 mm proprietary SAMI B with 60 mm Overlay at 20oC (SA20O60) (a) Full 

bond (b) Debond 

 

 

Figure 6.34: Longitudinal stress 4 mm above the crack top at 10oC, 20oC and 30
o
C with 

the load placed at the edge (Full bond) 
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Figure 6.35: Longitudinal stress 4 mm above the crack top at 10oC, 20oC and 30oC with the 

load placed at the edge (Debond) 

 

 

Figure 6.36: Longitudinal stress at bottom of overlay at 10oC, 20oC and 30oC with the load 

placed at the edge (Full bond) 
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Figure 6.37: Longitudinal stress at bottom of overlay at 10oC, 20oC and 30oC with the load 

placed at the edge (Debond) 

 

6.6 Conclusions 

The following conclusions can be drawn from the finite element analysis: 

 The results show that when SAMIs are introduced in cracked pavements to retard 

reflective cracking, greater deflection of the pavement occurs. This is due to the 

reduced axial/bending stiffness of the pavement caused by the introduction of SAMIs 

of lower stiffness than the overlay between the overlay and the existing pavement.  

 The finite element analysis shows that the specimens (models) with greater SAMI 

thickness have greater deflection, which may imply less life to failure. This indicates 

that lower SAMI thickness gives better performance. 

 The study shows that greater deflections, stresses and strains are predicted in the 
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less crack resistance of the SAMIs in this condition, but because crack propagation 

was not modelled, the effect of the slip on the SAMIs‟ performance could not be 

quantified. 
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 The finite element analysis shows that although SAMIs are required to have lower 

stiffness than the overlay, an optimum stiffness exists below which the SAMIs are not 

able to retard reflective cracking. 

 Lastly, it is clear from the finite element analysis that the predictions are good when 

compared with the measured results. This shows that the wheel tracking test did more 

or less what it was intended to do. 
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7 PAVEMENT TEST FACILITY 

7.0 Introduction 

Although, small-scale laboratory tests have been used successfully to evaluate the 

performance of materials and mixtures, it is not practicable to implement laboratory findings 

directly in the field without field or large-scale testing. This is because the field conditions 

cannot entirely be replicated or simulated at small scale. To bridge the gap, it is necessary to 

carry out field or accelerated pavement testing. Accelerated pavement testing is generally 

defined as the application of wheel loads to a specially constructed or in-service pavement to 

determine response and performance under a controlled and accelerated accumulation of 

damage in a short period of time (Saeed and Hall, 2003). Because of time and resources 

(equipment, money etc) available for this study, pavement test facility (PTF), a large scale 

wheel tracking test located at the Nottingham Transportation Engineering Centre, University 

of Nottingham laboratory was selected for this study. 

This is a half scale test capable of applying a maximum wheel load of 12kN. Therefore, the 

pavement for the study was designed such that the failure of the pavement (appearance of 

crack at the surface of the overlay) would occur within a reasonable number of wheel load 

repetitions. 

 

7.1 Pavement Test Facility device 

The pavement test facility was developed at the University of Nottingham about three 

decades ago. It was developed for the purpose of assessing the performance of asphalt 

materials to generate data for the design of pavements. It is made up of the following: 

reaction beams that provide the necessary reaction for any lateral position of the loading 

frame and the main beam; the load carriage used to mount the guide bearings and wheel 
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loading assembly; the cable system which consists of an 8mm cable wound around a 150mm 

drum; the hydraulic system which consists of a hydraulic power pack (oil pump), hydraulic 

motor and a servo valve; and the feedback transducers and electronic control system used to 

monitor the carriage speed, carriage position and the wheel load (Brodrick, 1977). The 

pavement test facility is shown in Figure 7.1. The wheel movement is controlled by the 

hydraulic motor which pulls the cable (steel ropes) in both directions (forward and backward). 

It was designed to apply a load magnitude of up to 12kN and maximum speed of 14.5 km/hr. 

The PTF pavement has length, width and depth of 5.0 m, 2.4 m and 1.5m, respectively.  

 
(a) 

 
(b) 

Figure 7.1: Pavement test facility (a) Photograph (b) Schematic of the PTF side view 

(Brown and Brodrick, 1981) 
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7.2 Material properties 

The materials used for the construction of the pavement were clay subgrade, crushed rock 

subbase material, proprietary SAMIs A, C and D as SAMIs and 10 mm asphalt concrete with 

40/60 penetration grade bitumen for the base and surface layers (overlay). The properties of 

the SAMIs have been detailed in Chapter three, while properties of the clay subgrade, 

subbase material and the 10mm asphalt concrete are presented here.  

7.2.1 Subgrade and subbase layers 

The strength of the subgrade and subbase layers was determined using the Dynamic Cone 

Penetrometer (DCP). The DCP has an 8kg weight dropping through a height of 575 mm and 

a 60
o
 cone having a diameter of 20 mm (see Figure 7.2). The result of the DCP test showing 

the layers is shown in Figure 7.3. The California bearing ratio (CBR) was determined from 

the DCP data using the software UK DCP version 3.1 described by Done and Piouslin (2006). 

Also, the approximate stiffness of the sections was calculated from equation 7.1 reported by 

Powell et al (1984). The California bearing ratio (CBR) and the stiffness values are shown in 

Table 7.1. The subgrade has average CBR and stiffness of 1.5% and 22.5MPa, respectively, 

while the subbase has average CBR and stiffness of 17% and 106MPa, respectively. 

E = 17.6        …………………………….. (7.1) 
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Figure 7.2: Dynamic cone penetrometer 

 

 

Figure 7.3: DCP test results 

 

Table 7.1: CBR and stiffness of subgrade and subbase 

Sections Subgrade Subbase 

CBR (%) Stiffness (MPa) CBR (%) Stiffness (MPa) 

1 1 17.6 14 96.29 

2 2 27.4 16 103.79 

3 2 27.4 15 99.59 

4 1 17.6 21 123.52 

5 2 27.4 17 107.89 

6 1 17.6 17 107.89 

Average 1.5 22.5 17 106 
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7.2.2 Base and the surface (overlay) layers 

The base and the surface layers as earlier stated were made of 10 mm asphalt concrete with 

40/60 penetration grade bitumen. The asphalt was supplied by Cliffe Hill Quarry, Leicester. 

Specimens for testing were prepared by reheating some of the asphalt and compacting at 

130
o
C into a 305 mm × 305 mm × 130 mm mould to a thickness of 60 mm using a roller 

compactor. Five cores of diameter 100 mm and trimmed thickness 40 mm were cored from 

each slab. The indirect tensile stiffness modulus (ITSM) test, indirect tensile fatigue test 

(ITFT) and repeated load axial test (RLAT) were carried out. The procedures for the indirect 

tensile stiffness modulus (ITSM) test, indirect tensile fatigue test (ITFT) and repeated load 

axial test (RLAT) were described in sections 3.5.3, 3.5.4 and 3.5.5, respectively. The air 

voids and ITSM results at 10
o
C, 20

o
C and 30

o
C are shown in Table 7.2. The fatigue line of 

the mixture and the repeated load axial test results are shown in Figures 7.4 and 7.5, 

respectively. These show that it has good fatigue characteristic and resistance to permanent 

deformation. As shown in Figure 7.5, the permanent strain at 1800 load applications was 

0.9373. The results show the asphalt properties do not differ much from the mix produced in 

the laboratory. 

Table 7.2: Indirect stiffness modulus test and air void results 

Specimens  1 2 3 4 5 Average 

Air voids(%) 8.00 7.79 7.97 7.50 7.54 7.76 

ITSM at 10
o
C 8106 7475 7178 7299 7661 7544 

ITSM at 20
o
C 4711 4313 3574 4261 4261 4224 

ITSM at 30
o
C 2281 2239 1923 2001 2215 2132 
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Figure 7.4: Fatigue line of the asphalt 
  

 

Figure 7.5: Repeated load axial test results 

 

7.3 PTF pavement construction 

The existing granular materials in the PTF were removed to the clay subgrade (with a 

capping of fine sand) as shown in Figure 7.6. Crushed rock subbase material supplied by 

Midland Quarry Products, Leicester was spread and compacted with a vibrating plate (see 

Figure 7.7) in three layers to a thickness of 400 mm as shown in Figure 7.8. The first and 

second layers of the subbase were compacted to a thickness of 130 mm, while the third layer 

was compacted to a thickness of 140 mm. The strength of the prepared granular layer and the 

subgrade was determined using a dynamic cone penetrometer (see figure 7.2). The results 

were reported in section 7.2.1. 
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Figure 7.6: PTF Subgrade and capping 

 

 

Figure 7.7: Vibrating plate 

 

Initially, the plan was to use a 40 mm thick 10 mm asphalt concrete with 10/20 penetration 

grade bitumen as the base, as in the small wheel tracking test reported in chapter five, but this 

could not be achieved because of difficulties in both supply and, potentially, compaction 

(because of rapid cooling of the mixture). Therefore, 10mm asphalt concrete with 40/60 

penetration grade bitumen supplied by Cliffe Hill Quarry, Leicester was laid and compacted 
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using a pedestrian roller (See Figure 7.9) at a thickness of 60 mm instead of the 40 mm 

earlier planned for the base, as shown in Figure 7.10. 

To create the crack, the pavement was divided into six sections as shown in Figure 7.11. 

Transverse cracks were created at the centre of each section by cutting the full depth of the 

asphalt concrete (simulating existing pavement). The cut thickness was about 5 mm 

(thickness of the blade). Also, to study the situation where cracks are closely-spaced in the 

field, cracks were created at 200 mm from the end and at the end of each section. A diagram 

of the cuts (cracks) and the PTF base layer with the cuts are shown in Figures 7.12 and 7.13, 

respectively. 

The SAMI for sections 1 and 3 was proprietary SAMI A compacted to thicknesses of 10 mm 

and 5 mm, respectively (see Figure 7.14). The aggregates and binders for proprietary SAMI 

A were batched and heated at a temperature of 180
o
C, and compacted at a temperature of 

150
o
C using a vibrating hammer (Kango) shown in Figure 7.15. The SAMI layer for sections 

4 and 6 were proprietary SAMIs C and D, respectively. Proprietary SAMIs C and D were 

prepared by sandwiching 60 mm glass fibre strands between layers of bitumen emulsion, and 

6 mm aggregates were compacted on top using a vibrating plate. Ordinary bitumen emulsion 

was used to prepare proprietary SAMI C, while polymer modified emulsion was used for 

proprietary SAMI D. Sections 2 and 5 were given no treatment (Control). The surface layer 

(Figure 7.16) was made of 10 mm asphalt concrete with 40/60 penetration grade bitumen. 

The asphalt (bagged when supplied) was reheated in the laboratory at average temperature of 

130
o
C and compacted using a pedestrian roller (Figure 7.9). The planned pavement structure 

of sections 1, 2 and 3 is shown in Figure 7.17, while that of sections 4, 5 and 6 is shown in 

Figure 7.18. However the average thickness actually achieved in the layers of each section is 

shown in Table 7.3. 
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Figure 7.8: PTF granular layer 

 

 

Figure 7.9: Pedestrian roller 

 

Subbase  
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Figure 7.10: PTF base layer 

 

Figure 7.11: Schematic of the PTF pavement sections 
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Figure 7.12: Simulated cracks in PTF sections 

 

 

Figure 7.13: PTF base layer with cracks (cuts) 
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Figure 7.14: PTF SAMIs 

 

 

Figure 7.15: Vibrating hammer (Kango) 
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Figure 7.16: PTF surface layer 

 

 

Figure 7.17: Pavement structure for sections 1, 2 and 3 
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Figure 7.18: Pavement structure for sections 4, 5 and 6 
 

Table 7.3: Layer thickness achieved in the PTF (average of two cores) 

Sections Surface layer 

(Overlay) 

Middle layer 

(SAMIs) 

Base layer (existing 

pavement) 

1 36 15 53 

2 53 - 57 

3 44 6 55 

4 47 7 55 

5 57 - 62 

6 45 7 51 
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of the wheel paths. A long steel channel spanning the entire length of the pavement and 

resting on another steel channel on the concrete part of the pavement was used to hold two 

linear variable differential transformers (LVDTs) placed across the crack at the centre of each 

section to measure the relative displacement as shown in Figure 7.19. The full opening of 

cracks (cracks opening and closing as the wheel passes) was chosen as the failure criterion.  

The pavement was divided into two wheel paths (Figure 7.20). Wheel path one consists of 

sections 1, 2, and 3, while wheel path 2 consists of sections 4, 5 and 6. The wheel path was 

painted white to monitor the appearance of cracks on the surface layer (Figure 7.21). The 

pavement was trafficked using a 9.6kN wheel load at an average speed of 3 km/hr. Initial 

readings of the LVDTs and the transverse profiles were recorded. The number of wheel 

repetitions as the wheel load moves forward and backward was logged with the use of an 

electronic counter. A digital thermocouple was used to monitor the room temperature during 

the test. The two wheel paths in the pavement were trafficked and the results were analysed. 

 

 

Figure 7.19: LVDTs placed across cracks 
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Figure 7.20: Wheel paths and LVDTs’ locations 

 

 

Figure 7.21: Wheel path painted white 
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7.5 Test results 

The trafficking of the two wheel paths was carried out from May to July 2011. The average 

room temperature in the morning, noon and evening when wheel path one was trafficked 

were 24
o
C, 27.1

o
C and 28.2

o
C, respectively, while for wheel path 2 the average morning, 

noon and evening room temperature were 22.7
o
C, 25.9

o
C and 26.9

o
C, respectively. The 

number of wheel cycles to first appearance of cracking and to failure, relative displacement 

and permanent deformation results are presented here. Also, cores were taken from the 

pavement after the test to check the interface bond of the trafficked and non-trafficked areas 

and the air void and stiffness of the 10 mm asphalt concrete. 

7.5.1 Number of wheel cycles to failure 

The number of wheel load applications to the first appearance of cracking and to failure for 

wheel paths 1 and 2 are shown in Tables 7.4 and 7.5, respectively. The tables show that the 

crack appeared first in the control sections 2 and 5 with no SAMI. Figure 7.22 shows that 

section 3 with 5 mm thick proprietary SAMI A withstood 63828 wheel load applications 

before failure, while section 1 with 10 mm thick proprietary SAMI A withstood 31880 before 

failure. This indicates that section with 5 mm proprietary SAMI A has life before failure 

twice and 4.5 times that of the sections with 10 mm proprietary SAMI A and control (no 

SAMI), respectively. This finding agrees with the wheel tracking test which showed that 

SAMI with lower thickness was more effective. This better performance of the section with 5 

mm proprietary SAMI A over the section with 10 mm proprietary SAMI A is thought to be 

due to reduced flexural bending of the surfacing layer that accompanies the use of lower 

SAMI‟s thickness. It can be seen in Figure 7.23 that both sections 4 and 6 with proprietary 

SAMIs C and D performed better than section 5 with no SAMI. Also, section 4 with 

proprietary SAMI C performed better than section 6 with proprietary SAMI D. This also 

agrees with the findings of the wheel tracking test. The lower viscosity of the bitumen 



Chapter seven: Pavement test facility 

 
 188 

emulsion used in the proprietary SAMIs aids the SAMI‟s performance, therefore allowing 

more flexibility of the layer. 

Since the two wheel paths were not trafficked simultaneously, it was considered unreasonable 

to compare the performance of the SAMI sections in both wheel paths directly. Therefore, to 

make comparison, the number of wheel cycles to failure for the SAMI sections was divided 

by those of their respective control sections. Figure 7.24 shows the life to failure of the SAMI 

sections as a ratio of the control. It can be seen from the results that life to failure as a ratio of 

control ranges from 1.93 to 4.53. Also, section 3 with 5 mm proprietary SAMI A gave the 

best performance with life to failure of 4.53 times that of the control. This was followed by 

section 4 having proprietary SAMI C, then section 1 having 10 mm thick proprietary SAMI 

A and section 6 with proprietary SAMI D, with lives to failure of 2.92, 2.26 and 1.93 times 

the control, respectively. The results show that the SAMIs in this study were able to retard 

reflective cracking.  

To investigate a situation where cracks are closely spaced, cracks were simulated in the base 

layer by cutting three transverse cracks that were 200mm apart as shown in Figure 7.11. The 

number of wheel cycles to first appearance of cracking and to failure is presented in Tables 

7.6 and 7.7, respectively.  It was observed that cracks appeared at the surface shortly after 

trafficking started. This was thought to be due to the fact that the surfacing layer (overlay) 

was laid and compacted in three parts, thereby creating joints in the overlay close to the 

closely-spaced cracks in the base layer. 

Figures 7.25 and 7.26 show that the results followed the same trend as the case when the 

cracks were located at the centre. As seen in Figure 7.25, section 3 with 5 mm thick 

proprietary SAMI A performed better than section 1 with 10 mm thick proprietary SAMI A. 

Also Figure 7.26 shows that section 4 with proprietary SAMI C performed slightly better 
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than section 6 with proprietary SAMI D. Again, to compare all the sections with SAMI 

treatment, the number of wheel cycles to failure of the SAMI section was divided by the 

number of wheel cycles to failure of the control section. Figure 7.27 shows that section 3 with 

5mm proprietary SAMI A gave the best performance with a life to failure 1.77 times that of 

the control, followed by section 5 with proprietary SAMI C, then section 6 with proprietary 

SAMI D and section 1 with 10 mm proprietary SAMI A with lives 1.36, 1.29 and 1.27 times 

that of control, respectively.  

For the cracks at the centre of each section in the base layer, it was observed during the test 

that for the SAMI sections cracks appeared first in the overlay, about 100 mm away from the 

simulated crack in the base. These are thought to be top-down cracks because a final crack 

always appeared right above the crack in the base. The crack patterns on the two wheel paths 

are shown in Figure 7.28. After trafficking was stopped (cracks deemed to have appeared 

fully on the overlay), cores were taken from the two wheel paths to show the crack 

propagation through the base layer to the overlay. The cores and the holes showing the cracks 

are shown in Appendix B. 

Table 7.4: Number of wheel load applications to the first appearance of cracks 

Wheel path 1 Wheel path 2 

Section 
Interlayer 

(SAMI) 

No of load 

application 

Ratio 

of 

control 

Section 
Interlayer 

(SAMI) 

No of load 

application 

Ratio 

of 

control 

1 

10 mm 

thick 

SAMI A 

23639 2.26 4 SAMI C 44258 
4.51 

 

2 

Control 

(No 

SAMI) 

10456 1 5 Control 9810 1 

3 

5 mm 

thick 

SAMI A 

34083 3.26 6 SAMI D 26513 
2.70 
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Table 7.5: Number of wheel load applications to failure 

Wheel path 1 Wheel path 2 

Section 
Interlayer 

(SAMI) 

No of load 

application 

Ratio 

of 

control 

Section 
Interlayer 

(SAMI) 

No of load 

application 

Ratio 

of 

control 

1 

10 mm 

thick 

SAMI A 

31880 2.26 4 SAMI C 58995 2.92 

2 

Control 

(No 

SAMI) 

14105 1 5 Control 20185 1 

3 

5 mm 

thick 

SAMI A 

63828 4.53 6 SAMI D 39052 1.93 

 

Table 7.6: Number of wheel load applications to the first appearance of cracks for the closely 

spaced cracked section 

Wheel path 1 Wheel path 2 

Section 
Interlayer 

(SAMI) 

No of load 

application 

Ratio 

of 

control 

Section 
Interlayer 

(SAMI) 

No of load 

application 

Ratio 

of 

control 

1 

10 mm 

thick 

SAMI A 

1345 1.33 4 SAMI C 2380 1.24 

2 

Control 

(No 

SAMI) 

1012/1012 1 5 Control 1805/2023 1 

3 

5 mm 

thick 

SAMI A 

1138 1.12 6 SAMI D 2504 1.31 
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Table 7.7: Number of wheel load applications to failure for the closely spaced cracked 

section 

Wheel path 1 Wheel path 2 

Section 
Interlayer 

(SAMI) 

No of load 

application 

Ratio 

of 

control 

Section 
Interlayer 

(SAMI) 

No of load 

application 

Ratio 

of 

control 

1 

10 mm 

thick 

SAMI A 

7185 1.27 4 SAMI C 9180 1.36 

2 

Control 

(No 

SAMI) 

6020/5280 1 5 Control 6275/7183 1 

3 

5 mm 

thick 

SAMI A 

10015 1.77 6 SAMI D 8673 1.29 

 

 

 

 

Figure 7.22: Number of load applications to the appearance of cracks and failure for 

wheel path 1 
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Figure 7.23: Number of load applications to the appearance of cracks and failure for 

wheel path 2 

 

 

Figure 7.24: Life to failure as ratio of control 

 

0 

10000 

20000 

30000 

40000 

50000 

60000 

70000 

SAMI C Control (No SAMI) SAMI D 

N
u

m
b

e
r 

o
f 

w
h

e
e

l l
o

ad
 a

p
p

lic
at

io
n

s 

SAMI in each section 

Appearance of crack Failure 

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 

4.5 

5 

Section 1 Section 3 Section 4 Section 5 

Li
fe

 t
o

 f
ai

lu
re

 a
s 

p
e

rc
e

n
t 

o
f 

co
n

tr
o

l 

Sections 



Chapter seven: Pavement test facility 

 
 193 

 

Figure 7.25: Number of load applications to the appearance of cracks and failure for 

wheel path 1 for closely spaced cracks  

 

 

Figure 7.26: Number of load applications to the appearance of cracks and failure for 

wheel path 2 for closely spaced cracks 
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Figure 7.27: Life to failure as ratio of control for closely-spaced cracks 

 

 

 

Figure 7.28: Crack patterns on wheel paths 1 and 2 
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relative displacement than section 1 having 10 mm proprietary SAMI A, while section 2 with 

no SAMI has more relative displacement. The relative displacement was more in the section 

1 with 10 mm proprietary SAMI A than in section 3 with 5 mm SAMI A because the 

additional 5 mm of the SAMI results in less bending stiffness of the section and in turn more 

deflection. Also Figure 7.30 show that section 4 with proprietary SAMI C has less relative 

deflection than section 6 with proprietary SAMI D and section 5 with no SAMI (control). In 

this case, section 5 with no SAMI has less displacement that section 6 with SAMI D.  

This probably explains why the crack propagates faster to the surface in the control section 

than in those sections with a SAMI, because the SAMI was able to isolate the overlay from 

the relative movement of the underlying layer. The section with SAMI D has higher 

deflection because of the lower viscosity of the modified polymer bitumen emulsion 

compared to the ordinary bitumen emulsion used in proprietary SAMI C. 

 

Figure 7.29: Relative displacement for wheel path 1 
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Figure 7.30: Relative displacement for wheel path 2 

7.5.3 Permanent Deformation 

The permanent deformation of the pavement was measured after trafficking. That of wheel 

path 1 which consists of sections 1, 2 and 3 having 10 mm proprietary SAMIs A, no SAMI 

and 5 mm proprietary SAMI A as the SAMI layers was measured after 64495 wheel load 

applications, while wheel path 2 consisting of sections 4, 5 and 6 having proprietary SAMI C, 

no SAMI and proprietary SAMI D was measured after 61662 wheel load applications. The 

rut depths measured at seven points along the wheel paths are shown in Tables 7.8 and 7.9. 

Figures 7.31 and 7.32 show that the permanent deformation of the control sections (2 and 5) 

of both wheel paths 1 and 2 is less than their respective test sections with SAMIs (1, 3, 4 and 

6). This agrees with the findings of Elseifi (2003) that when a soft interlayer is used, more 

vertical and horizontal deformations are expected. However, the life of the test sections (with 

SAMIs) before the appearance of cracks and to failure was more than the control sections, 

despite more permanent deformation of the test sections. 

It is not reasonable to compare the permanent deformation of the two wheel paths because the 

room temperatures during trafficking and the number of wheel loads applied to the wheel 

paths were different. As reported in section 7.5, the average room temperatures in the 
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o
C, 27.1

o
C and 28.2

o
C, 
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respectively, while those of wheel path 2 were 22.7
o
C, 25.9

o
C and 26.9

o
C, respectively. 

Knowing that deformation of bituminous mixtures is greatly affected by temperature; 

obviously more deformation is expected in the sections in wheel path 1. This proved to be the 

case as the average deformation of the control (no SAMI) section for wheel path 1 was 

5.36mm while that of wheel path 2 was 3.36mm. It can be seen from Figure 7.31 that the 

permanent deformation of section 3 having 5 mm proprietary SAMI A is less than that of 

section 1 having 10 mm proprietary SAMI A. This is because increasing the thickness of the 

SAMI results in the reduction of the flexural stiffness of the pavement. Also, as shown in 

Figure 7.32, the lower viscosity of the emulsion used in SAMI D reflected in the results as 

section 4 with proprietary SAMI C has significant less permanent deformation than 

proprietary SAMI D. Again, the permanent deformation of the sections may also be because 

of the weak subgrade (1.5% CBR) used in this study.  

Table 7.8: Permanent deformation measurement for wheel path 1 

Points 

Permanent deformation (mm) 

Section 1 (10 mm 

thick SAMI A) 
Section 2 (Control) 

Section 3 (5 mm 

thick SAMI A) 

1 7.0 5.5 7.0 

2 8.0 5.0 6 .5 

3 7.5 6.0 6.5. 

4 7.5 6.0 7.5 

5 7.5 6.0 6.0 

6 5.5 4.5 7.5 

7 7.0 4.5 7.0 

Average 7.14 5.36 6.86 

 

Table 7.9: Permanent deformation measurement for wheel path 2 

Points 
Permanent deformation (mm) 

Section 1 (SAMI C) Control Section 1 (SAMI D) 

1 3.0 4.0 10.0 

2 4.5 2.5 9.5 

3 6.5 3.0 9.5 

4 5.5 3.5 10.0 

5 4.0 3.5 7.0 

6 5.5 2.0 10.0 

7 4.5 5.0 9.5 

Average 4.79 3.36 9.36 
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Figure 7.31: Permanent deformation for wheel path 1 

 

 

Figure 7.32: Permanent deformation for wheel path 2 
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7.5.4.1 Interface test 

Leutner shear tests were carried on cores at 20
o
C. Only cores from sections 1, 2, 3 and 5 were 

tested. Cores from sections 4 and 6 with proprietary SAMIs C and D split into two during 

coring, indicating weak bond between the layers. The test procedure has been described in 

section 4.3. The results are presented in Table 7.10 and Figure 7.33. It can be seen from 

Figure 7.33 that the interface strength increased after trafficking except for section 5. This 

indicates that the interface bond becomes stronger under trafficking. Also, Figure 7.33 shows 

that the interface shear strength between the overlay and 10 mm SAMI A in section was 

greater than that of section 2 (control) and section 3 (5mm SAMI A), while that of 5mm 

SAMI A was less than the control section.  

7.5.4.2 Stiffness modulus and the air voids 

The air voids and the stiffness modulus of the cores were determined at 10
o
C, 20

o
C and 30

o
C. 

The results are presented in Table 7.11. The results show there was high voids content which 

is thought to be due to rapid cooling of the mixture during compaction. Also as expected 

because of the high voids content, the mixture stiffnesses are considerably lower compared to 

the specimens compacted with the roller compactor. The stiffnesses for the sections at 10
o
C, 

20
o
C and 30

o
C as shown in Figures 7.34, 7.35 and 7.36, respectively indicate there is no 

appreciable difference in the stiffness of the cores from the sections, therefore this could not 

have an effect on the number of wheel load applications recorded for the test and control 

sections. 
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Table 7.10: Leutner shear test results at 20
o
C 

Section Interface Cores 

condition 

Mean peak 

shear force 

(kN) 

Mean peak 

displacem

ent (mm) 

Mean peak 

shear 

stress 

(MPa) 

Mean 

stiffness 

modulus 

(MPa/mm) 

1 Overlay- 10 

mm SAMI A 

NT1 16.8 1.66 0.98 0.61 

T1 18 2.07 1.03 0.50 

2 Overlay-base 

layer 

NT2 12.8 1.52 0.74 0.49 

T2 15 1.40 0.86 0.61 

3 Overlay-5mm 

SAMI 

NT3 10.1 1.27 0.58 0.47 

T3 13.8 2.17 0.79 0.37 

5 Overlay-base 

layer 

NT5 14.3 1.29 0.82 1.29 

T5 12.7 1.48 0.73 0.49 

NT: Non-trafficked T: Trafficked 

 

 

 

Figure 7.33: Peak shear stress versus peak displacement (mm) 
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Table 7.11: Indirect tensile stiffness modulus (ITSM) of the cores from the PTF pavement 

Sections Layer SAMIs 
Air void 

(%) 

Stiffness (MPa) 

10
o
C Mean 20

o
C Mean 30

o
C Mean 

1 

10mm 

proprietary 

SAMI A 

Overlay 
15.62 5537 

4907 
3921 

3231 
2014 

1786 
20.55 4276 2541 1558 

Base 
15.97 4383 

3934 
2766 

2405 
994 

924 
18.19 3484 2044 853 

2 
No SAMI 

(Control) 

Overlay 
16.40 4732 

5030 
3124 

3045 
1327 

1350 
17.46 5328 2966 1373 

Base 
14.11 5562 

5539 
3011 

2979 
1222 

1249 
12.42 5515 2946 1276 

3 

5mm 

proprietary 

SAMI A 

Overlay 
15.23 5261 

5292 
2673 

2941 
1535 

1451 
14.07 5322 3209 1367 

Base 
14.41 5132 

5096 
2588 

2602 
1021 

1012 
14.71 5059 2615 1002 

4 
Proprietary 

SAMI C 

Overlay 
15.97 5548 

5160 
3693 

3318 
1763 

1556 
19.00 4771 2943 1348 

Base 
16.96 4059 

4182 
2444 

2372 
944 

944 
16.29 4305 2299 943 

5 
No SAMI 

(Control) 

Overlay 
15.20 5519 

5283 
3009 

2928 
1376 

1377 
15.31 5047 2846 1378 

Base 
14.88 5135 

4845 
2649 

2504 
1094 

1058 
16.66 4555 2359 1021 

6 
Proprietary 

SAMI D 

Overlay 
16.53 4424 

4679 
2678 

2770 
995 

1193 
14.93 4934 2861 1390 

Base 
19.76 3998 

4723 
2420 

2416 
855 

902 14.91 5447 2411 948 

 

 

 

Figure 7.34: Stiffness modulus at 10oC 
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Figure 7.35: Stiffness modulus at 20oC 

 

 

Figure 7.36: Stiffness modulus at 30oC 

 

7.6 Conclusion 

The following conclusions can be drawn from the study: 
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 The results show that section with 5 mm proprietary SAMI A performed better than 

that with 10mm proprietary SAMI A, indicating that SAMI of lower thickness gives 

better results. 

 The study shows that when SAMIs are used in pavement, more deflection of the 

pavement occurs demonstrating the importance of using an overlay with good fatigue 

properties. 

 The study also shows that when SAMIs are introduced into a pavement to retard 

reflective cracking, more permanent deformation of the pavement is expected; 

therefore, it is important that the mixture that is used in the overlay have good 

resistance to permanent deformation. 

 Lastly, it can be seen from this study that the crack resistance of the SAMI is 

influenced by a number of factors like the interface properties between the overlay 

and the SAMI, the SAMI stiffness and the thickness of the SAMI. 
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8 THERMAL CYCLING TEST 

8.0 Introduction 

It has been identified that daily and/or seasonal temperature variation is one of the causes of 

reflective cracking in rehabilitated pavement (overlaid with new surfacing material). This 

causes the cracks on the existing pavement to propagate to the surface of the overlay. The 

appearance of cracks on the surface paves the way for water to penetrate the pavement 

causing the deterioration of its structure. This study looks into the crack resistance of some 

stress absorbing membrane interlayers (SAMIs) used in pavement subjected to temperature 

variation. 

Thermal cracking in pavements is common in countries with extreme winter weather and/or 

large daily/seasonal temperature fluctuation. Two types of thermal cracking are the low 

temperature cracking and the thermal fatigue cracking. The low temperature cracking is 

caused by a single drop in temperature below the fracture temperature of the asphalt concrete 

while thermal fatigue cracking is caused by a series of repeated temperature variation over a 

period with the temperature above the fracture temperature of the asphalt concrete (Epps, 

2000). The thermal cracking mechanism is such that when the temperature drops, the asphalt 

concrete contracts. Thermal stresses develop in the overlay as the base contracts. Therefore 

cracks are initiated in the overlay and then grow through the overlay to the surface under 

further thermal loading. 

As observed by Vinson et al (1989), the thermal stresses that develop when the temperature 

drops in warm weather are dissipated through stress relaxation because asphalt concrete 

behave more like a viscoelastic material at this temperature range. At low temperature when 

asphalt concrete behave more like an elastic material, the thermal stresses cannot dissipate, 

therefore cracks appear in the asphalt and the stress is relieved. 
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The factors that influence thermal cracking include: type and percentage of binder in a mix; 

aggregate type and gradation; air voids content; temperature; rate of cooling; pavement 

thickness; age of pavement; bond between the pavement layers; and the subgrade strength 

(Boutin and Lupien, (2000), Epps (2000), Vinson et al (1989)). Also, Debondt (1999) stated 

the magnitude of the tensile stress which is generated in the overlay depends on the properties 

of the overlay, characteristics of overlay and existing pavement interface, length of slab 

(PCC), roughness of the slab (existing surface)-support interface and the magnitude of 

temperature variation. 

The thermal stress in the pavement can be calculated from a pseudo-elastic beam analysis 

equation (8.1) developed by Hills and Brien (1996) cited in Kanerva et al (1994). 

 (                 
  

  
    -------------------------- 8.1 

Where: 

 (   ) = accumulated thermal stress for a particular cooling rate 

  = coefficient of thermal contraction generally assumed to be 2 to 2.5 × 10
-5

 

To, Tf = initial and final temperature 

S (t, T) = asphalt concrete mix stiffness (modulus) time- and temperature dependent and 

   = temperature increment over which S (t, T) is applicable. 

Vinson et al (1990) stated that low temperature cracking is more likely to develop at 

temperatures lower than -7
o
C and/or rapid cooling rate, while thermal fatigue will normally 

occur at milder temperatures in the range of -7
o
C to 21

o
C. In this study, the test was carried 

out at a constant temperature of -3
o
C to simulate the low temperature condition (the lowest 

temperature achievable in the temperature controlled room) while the contraction and 
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expansion of the underlying pavement due to temperature change was achieved by opening 

and closing the thermal cycling apparatus over for 6 hour periods. 

 

8.1 Thermal cycling device 

The thermal cracking simulation apparatus developed by Brown et al (1999) at the University 

of Nottingham was used for this study. The schematic and photograph of the thermal 

cracking testing device are shown in Figures 8.1 and 8.2, respectively. The mould and the 

control unit were modified for the present study. The thermal cracking device is made up of a 

horizontal frame 2m and 0.2m in length and width, respectively. The horizontal frame is in 

two halves with one half fixed and the other half connected to a DC motor through a worm 

drive. This is to allow it to be opened and closed at a chosen rate. 

It was modified such that the motor will provide selectable, variable extension and 

contraction rates between 1.0mm in one hour and 1.0mm in twenty four hours. To allow the 

motor to rest, the delay between individual operations varies between 5 and 95 seconds. The 

contraction/expansion rates were read from a linear variable differential transformer (LVDT). 

The indicator lights on the device control unit were used to monitor the direction of 

movement of the movable plate, completion of selected operation and any fault encountered 

during the test. 
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Figure 8.1: Schematic of the thermal cycling device (Baxter, 2001) 
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(b) 

Figure 8.2: Thermal cycling device (a) rig (b) control unit 

 

8.2 Specimen preparation and instrumentation  

The test specimens were made up of 3-layer beams of length 1000mm and width 125mm. 

The first (base) layer was a 40mm thick 10 mm asphaltic concrete with 10/20 penetration 

grade bitumen, the middle layer (where present) was SAMI of 10mm thickness for sand 

asphalt, proprietary SAMIs A and B and about 7mm for proprietary SAMIs C and D. The top 

layer was a 30mm thick 10mm asphaltic concrete with 40/60 penetration grade bitumen. The 

control specimens were prepared in two layers without SAMI (the base and surface layers). 

In this case, the base and the top layers were both 40mm thick.  

The beams for the first (base) layer were produced by manufacturing a slab of dimension 

500mm × 500mm ×40mm. The aggregates and binder were batched as shown in Table 3.5, 

mixed at 185
o
C and compacted in a mould 500mm × 500mm × 205mm with a roller 

compactor at a temperature of 180
o
C just before compaction to a thickness of 40 mm.  The 

slabs were cut into beams of 500mm and 125mm in length and width, respectively. Two steel 

and end plates were bolted on the frame; then the two beams were glued on the steel plates 
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and the sides of the mould were bolted to the end plates as shown in Figure 8.3.  The SAMI 

material i.e. sand asphalt and proprietary SAMIs A and B were batched as shown in Tables 

3.6 and 3.7. The aggregates and binders for sand asphalt were heated at 140
o
C and compacted 

at 130
o
C, while the aggregates and binder for proprietary SAMIs A and B were batched and 

heated to a temperature of 180
o
C, and compacted on the bottom layer at a temperature of 

150
o
C. Proprietary SAMIs C and D were prepared by sandwiching 60mm glass fibre strands 

between layers of bitumen emulsion and 6 mm aggregates compacted onto them. Proprietary 

SAMI C was prepared with ordinary bitumen emulsion while proprietary SAMI D was 

prepared with polymer modified bitumen emulsion. The compaction was done with a 

vibrating hammer (Kango). The top layer aggregates were batched as shown in Table 3.5 and 

heated to 160
o
C and compacted to the required thickness at 150

o
C. All the mixtures were 

mixed in accordance with BSI, (2004). A view of the thermal testing device with a specimen 

in place is shown in Figure 8.4. 

Demec pips were glued to the centre of the top layer 50.8mm apart to measure the surface 

strain. The plan for the location of the demec pips is shown in Figure 8.5, while the demec 

gauge and pips are shown in Figure 8.6. Also the expansion and contraction (opening and 

closing) of the frame was monitored using the LVDT readings. The top of the specimen was 

painted white to monitor the appearance of cracks. 
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Figure 8.3: Thermal cycling testing device with the specimen’s base layer, the end plates 
and the two side plates. 

 

 

Figure 8.4: Thermal cracking testing device with the specimen in place 
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Figure 8.5: Plan for the location of demec pips 

 

 

Figure 8.6: Demec gauge and pips 

 

8.3 Test procedure 

The thermal cycling testing device with the specimen in place was placed in a temperature 

controlled room at test temperature of -3
o
C for a minimum of five hours. The test was 

conducted by opening the movable part of the rig for a period of 6 hours and closing it for 

                                        500                                                          500 

 

                                                                                                                                                                            62.5 

   125 

                                                                                                                                                                            62.5 

          17.4 50.8 50.8  50.8  50.8   50.8    50.8     50.8   50.8  50.8    50.8    50.8   50.8    50.8   50.8    50.8  50.8    50.8  50.8  50.8  17.4 

 

 Demec pip locations 

            All dimensions in mm 

1000 

Demec gauge 
Demec pips 



Chapter eight: Thermal cycling test 

 
 213 

another 6 hours. This was achieved by setting the contraction (closing) or the expansion 

(opening) rate on the control box and the required travel distance. The travel distances used 

for the test were 0.5mm, 1mm, 1.5mm, 2mm, 3mm, 5mm and 7mm, applied to each 

specimen in sequence or until failure occurred. The appearance of a crack on the surface was 

monitored visually and the movement of the movable frame was read from the LVDT.  The 

strain on the overlay (top layer) was measured and recorded every 2 hours. The test was 

stopped when the sample was deemed to have failed completely.  

 

8.4 Test results 

The criterion for failure was the appearance of a crack at the surface of the specimen. The 

surface strain was determined from the demec gauge readings.  

8.4.1 Control specimen (No SAMI) 

The specimen was tested by opening the movable frame for 6 hours and closing it for 6 hours 

at each prescribed travel distance. It failed after crack opening of 1mm.  The surface strains 

for 0.5mm and 1mm crack openings are shown in Figures 8.7 and 8.8, respectively. Figure 

8.7 shows that for 0.5mm crack opening, the strains were almost uniformly distributed with 

peak strain developing at -50mm (50mm to the left of the beam‟s centre) and at the centre, no 

crack was seen on the specimen at this point. Figure 8.8 shows the strain distribution for 

1.0mm crack opening; at this stage, the strain concentration developed at the centre of the 

specimen directly above the centre of the split base and cracks appeared at the surface (centre) 

spanning the whole width of the specimen. The specimen before the test is shown in Figure 

8.9, while the specimen after test is shown in Figure 8.10. 

The reason for early appearance of a crack can be attributed to two major factors. The first is 

the bond between the top layer (overlay) and the base layer, subjected to tensile loading. As 
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can be seen in Figures 4.7 and 4.10, at low temperature, strong bond exists between the 

overlay and the base layer for the control specimen. The strong bond provides restraint for the 

horizontal movement of the base layer, therefore resulting in tensile strain concentration at 

the base of the overlay. The second factor is the lack of any soft interlayer (SAMI) between 

the overlay and the base layer. The horizontal deformation of this layer allows dissipation of 

energy and the slip between the layer and the overlay isolates the overlay from the tensile 

strain concentration because of reduced restraint to the horizontal movement of the base layer, 

therefore reducing the tensile strains in the overlay. In the case of a control specimen with 

strong bond and no SAMI, high tensile strains developed in the overlay leading to rapid 

propagation of a crack when the fracture strength of the overlay is exceeded. Smith (1983) 

pointed out that the thermal strains in the old pavement, especially Portland cement concrete 

(PCC) can be transmitted to the overlay if the interface bond is strong, which is the case for 

the control specimen in this study. 

 

Figure 8.7: Surface strain distribution on control specimen for 0.3mm, 0.4mm and 

maximum of 0.5mm crack openings 
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Figure 8.8: Surface strain distribution on control specimen for 0.1mm, 0.32mm and 

maximum of 1.0mm crack openings 

 

 

Figure 8.9: Control specimen before test 
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Figure 8.10: Control specimen after test 

 

8.4.2 Specimen with proprietary SAMI A 

The specimen with proprietary SAMI A was subjected to thermal cycling and cracks 

appeared after 2.0mm crack opening. The surface strain distribution in the specimen for crack 

openings of 0.5mm, 1.0mm, 1.5mm and 2.0mm are shown in Figures 8.11, 8.12, 8.13 and 

8.14, respectively. The figures show that the strain distribution was uniform at -150mm to -

400mm while strain concentration developed at -100mm to 450mm. Cracks were seen after 

the device was opened by 1.5mm at the part of the beam with high strain concentration, the 

test was stopped after crack opening of 2.0mm when the specimen was deemed to have 

failed .  

The specimen before test is shown in Figure 8.15, while the specimen after test is shown in 

Figures 8.16, 8.17 and 8.18. It can be seen clearly from the figures that cracks developed in 

the area with high strain concentration (see Figures 8.16 and 8.17), while no crack was seen 

in the area with uniform stress concentration (see Figure 8.18).  

Crack 
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Also, as explained for the control specimen, two factors were responsible for the performance 

of proprietary SAMI A, the bond between the overlay, SAMI and the base layer and the crack 

resistance of the SAMI because of its stiffness. Although as seen in Figure 4.7, a strong bond 

exists between proprietary SAMI A and asphalt concrete, the presence of a material of lower 

stiffness than the overlay increased the life of the overlay. The SAMI layer allows the 

dissipation of energy and in turn less tensile strain in the overlay. Cracks appeared after crack 

opening of 2.0mm compared to 1.0mm for the control specimen. 

 

 

Figure 8.11: Surface strain distribution on specimen with proprietary SAMI A for 0.24mm, 

0.34mm and maximum of 0.5mm crack openings 
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Figure 8.12: Surface strain distribution on specimen with proprietary SAMI A for 0.16mm, 

0.52mm and maximum of 1.0mm crack openings 

 

 

Figure 8.13: Surface strain distribution on specimen with proprietary SAMI A for 0.5mm, 

0.96mm and maximum of 1.5mm crack openings 
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Figure 8.14: Surface strain distribution on specimen with proprietary SAMI A for 0.90mm, 

1.42mm and maximum of 2.0mm crack openings 

 

 

Figure 8.15: Specimen with proprietary SAMI A before test 
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Figure 8.16: Specimen with proprietary SAMI A after test (centre) 

 

 

Figure 8.17: Specimen with proprietary SAMI A after test (right) 

 

Cracks 

Cracks 



Chapter eight: Thermal cycling test 

 
 221 

 

Figure 8.18: Specimen with proprietary SAMI A after test (left) 

 

8.4.3 Specimen with proprietary SAMI B 

The same test procedure was carried out for the specimen with proprietary SAMI B. The test 

was stopped after crack opening of 1.5mm as cracked appeared at the surface. The surface 

strain distributions at 0.5mm, 1.0mm and 1.5mm crack openings are shown in Figures 8.19, 

8.20 and 8.21, respectively. It can be seen from the figures that strain concentration 

developed at the centre of the specimen, while the strain distribution was uniform at the right 

and left of the specimen. Cracks appeared after opening the movable frame by 1.5 mm in the 

region of strain concentration. The specimen before test is shown in Figure 8.22, while the 

specimen after test is shown in Figures 8.23. 

Although the specimen with proprietary SAMI B failed at 1.5mm crack opening, the strain 

distribution in the overlay was more uniform than that with proprietary SAMI A. This is 

probably because proprietary SAMI A mixture is coarser, thus having greater stiffness and 

less flexibility than proprietary SAMI B as shown in Table 3.13. Also, Jung and Vinson 

(1994) observed that mixture fracture strength depends on the aggregate type and sizes and 
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the air voids of the mixture. It is clear like the specimen with proprietary SAMI A that the 

crack resistance is influenced by the presence of proprietary SAMI B with lower stiffness 

than the overlay and the base layer. 

 

Figure 8.19: Surface strain distribution on specimen with proprietary SAMI B for 0.14mm, 

0.34mm and maximum of 0.5mm crack openings 

 

 

Figure 8.20: Surface strain distribution on specimen with proprietary SAMI B for 0.16mm, 

0.54mm and maximum of 1.0mm crack openings 
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Figure 8.21: Surface strain distribution on specimen with proprietary SAMI B for 0.36mm, 

0.92mm and maximum of 1.5mm crack openings 

 

 

Figure 8.22: Specimen with proprietary SAMI B before test 
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Figure 8.23: Specimen with proprietary SAMI B after test 

 

8.4.4 Specimen with proprietary SAMI C 

The specimen with proprietary SAMI C was tested as previously explained. The test was 

stopped after 5mm when cracks appeared at the surface. The surface strain distributions on 

the specimen for 0.5mm, 1.0mm, 1.5mm, 2mm, 3mm and 5mm crack openings are shown in 

Figures 8.24, 8.25, 8.26, 8.27, 8.28 and 8.29 respectively. It can be seen from the figures that 

strain distribution was uniform throughout the whole length of the specimen, with a slight 

peak strain concentration developing at the right of the specimen. Also, it can be seen in 

Figures 8.28 and 8.29 that there is small difference in the strains during crack opening, 

because of the failure of the bond between the end of the specimen and the end plates. The 

reason for the increased life of the specimen was the weak bond between the SAMI and the 

overlay, therefore allowing the movement of the underlying layer without strain 

concentration in the overlay. This phenomenon is similar to the slip plane theory reported by 

Smith (1981) for fabrics which states that a fabric interlayer will fail in shear (in the plane of 

the fabric) before transferring any significant amount of stress from the old pavement (under 

Cracks 
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layer) to the overlay. Figures 8.28 and 8.29 show that at 3mm and 5mm crack openings, 

respectively, a slight strain concentration developed at 150mm, 200mm and 350mm. The test 

was stopped after a crack opening of 5 mm as cracks appeared at the surface. The specimen 

before is shown in Figure 8.30, while the specimen after test is shown in Figures 8.31 and 

8.32. Figure 8.31 show that the cracks appeared in the region of strain concentration. 

 

Figure 8.24: Surface strain distribution on specimen with proprietary SAMI C for 0.14mm, 

0.34mm and maximum of 0.5mm crack openings 

 

 

Figure 8.25: Surface strain distribution on specimen with proprietary SAMI C for 0.14mm, 

0.44mm and maximum of 1.0mm crack openings 

 

0 

100 

200 

300 

400 

500 

600 

700 

-600 -400 -200 0 200 400 600 

M
ic

ro
st

ra
in

 

Distance from specimen's centre (mm) 

0.14mm 0.34mm 0.5mm 

0 

200 

400 

600 

800 

1000 

1200 

-600 -400 -200 0 200 400 600 

M
ic

ro
st

ra
in

 

Distance from specimens centre (mm) 

0.14mm 0.44mm 1mm 



Chapter eight: Thermal cycling test 

 
 226 

 

Figure 8.26: Surface strain distribution on specimen with proprietary SAMI C for 0.36mm, 

0.92mm and maximum of 1.5mm crack openings 

 

 

Figure 8.27: Surface strain distribution on specimen with proprietary SAMI C for 0.68mm, 

1.84mm and maximum of 2.0mm crack openings 
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Figure 8.28: Surface strain distribution on specimen with proprietary SAMI C for 0.94mm, 

1.96mm, 2.52mm and maximum of 3.0mm crack openings 

 

 

Figure 8.29: Surface strain distribution on specimen with proprietary SAMI C for 0.8mm, 

1.82mm, 2.92mm, 3.92mm and maximum of 5.0mm crack openings 
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Figure 8.30: Specimen with proprietary SAMI C before test 

 

 

Figure 8.31: Specimen with proprietary SAMI C after test ( right) t 
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(b) 

Figure 8.32: Specimen with proprietary SAMI C after test (left) 

 

8.4.5 Specimen with proprietary SAMI D 

The specimen with proprietary SAMI D was subjected to the same test procedure. The test 

was concluded after 5mm crack opening when cracks appeared at the surface. The surface 

strain distributions at 0.5mm, 1mm, 1.5mm, 2mm, 3mm and 5mm crack openings are shown 

in Figures 8.33 to 8.38. The figures show that the strain distribution is uniform throughout the 

whole length of the specimen. Also, this demonstrates the importance of the slip between the 

overlay and SAMI and the introduction of SAMI when temperature variation is the principal 

cause of reflective cracking. The slip isolates the overlay from the horizontal movement of 

the underlying layer, therefore reducing the strain concentration in the overlay. Debondt 

(1999) observed in his study that the presence of a stress relieving layer in a pavement 

subjected to temperature variation enables the slip of the overlay and the old surface without 

creating large shear stresses. Also he pointed out that the axial force in the existing pavement 

increases with increasing interface stiffness, therefore generating more tensile stresses when 



Chapter eight: Thermal cycling test 

 
 230 

it tends to contract due to temperature variation. As observed from the test, the strain 

distribution in the specimen with proprietary SAMI D like proprietary SAMI C was more 

uniform than in other specimens. The specimen before test is shown in Figure 8.39, while 

photographs of the specimen after test are shown in Figures 8.40 and 8.41. As seen in Figures 

8.40 and 8.41 cracks appeared after 5.0mm crack opening. 

 

Figure 8.33: Surface strain distribution on specimen with proprietary SAMI D for 0.16mm, 

0.36mm and maximum of 0.5mm crack openings 

 

 

Figure 8.34: Surface strain distribution on specimen with proprietary SAMI D for 0.18mm, 

0.54mm and maximum of 1mm crack openings 
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Figure 8.35: Surface strain distribution on specimen with proprietary SAMI D for 0.42mm, 

1.02mm and maximum of 1.5mm crack openings 

 

 

Figure 8.36: Surface strain distribution on specimen with proprietary SAMI D for 0.48mm, 

1.38mm and maximum of 2mm crack openings 
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Figure 8.37: Surface strain distribution on specimen with proprietary SAMI D for 0.48mm, 

1.38mm, 2.38mm, and maximum of 3mm crack openings 

 

 

Figure 8.38: Surface strain distribution on specimen with proprietary SAMI D for 0.38mm, 

1.32mm, 2.30mm, 3.22mm, 4.26mm and maximum of 5mm crack openings 

 

0 

200 

400 

600 

800 

1000 

1200 

1400 

1600 

1800 

-600 -400 -200 0 200 400 600 

M
ic

ro
st

ra
in

 

Distance from the specimen's centre (mm) 

0.48mm 1.38mm 2.38mm 3mm 

0 

500 

1000 

1500 

2000 

-600 -400 -200 0 200 400 600 

M
ic

ro
st

ra
in

 

Distance from specimen's centre (mm) 

0.38mm 1.32mm 2.3mm 

3.22mm 4.26mm 5mm 



Chapter eight: Thermal cycling test 

 
 233 

 

Figure 8.39: Specimen with proprietary SAMI D at the start of test 

 

 

Figure 8.40: Specimen with proprietary SAMI D at the end of test (left) 
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Figure 8.41: Specimen with proprietary SAMI D at the end of test (right) 

 

8.4.6 Specimen with sand asphalt  

The test for the specimen with sand asphalt as the SAMI layer was carried out like the other 

specimens. At 0.5mm and 1mm crack openings as shown in Figures 8.42 and 8.43, 

respectively, the strain distribution was uniform at the two ends with peak concentration 

developing around the centre of the specimen (crack region). Also, Figures 8.44 and 8.45 

show that at 1.5mm and 2.0mm crack openings, the stress at this stage was concentrated at 

the centre and the test was concluded after 2.0mm when a full width crack developed at the 

centre. Dave et al (2007) found in their study that sections with highly modified sand asphalt 

placed under the overlay under thermo-mechanical loading cycle showed no crack, but that 

the bottom of the binder course (overlay-interlayer interface) was at the threshold of complete 

softening and separation. This shows the importance of the interface bond to the resistance of 

the SAMIs to crack developing at the surface of the overlay under thermal loading. 

Cracks 
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Also, in this case, the specimen benefits from the slip between the overlay and the SAMI 

allowing relative movement of the base layer and isolating the overlay from stress 

concentration in the crack region. The specimen at the start and after test is shown in Figures 

8.46 and 8.47. However, the ineffectiveness of the sand asphalt against reflective cracking 

under traffic loading has to be taken into consideration. 

 

Figure 8.42: Surface strain distribution on specimen with sand asphalt for 0.14mm, 

0.28mm and maximum of 0.5mm crack openings 

 

 

Figure 8.43: Surface strain distribution on specimen with sand asphalt for 0.16mm, 

0.54mm and maximum of 1mm crack openings 
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Figure 8.44: Surface strain distribution on specimen with sand asphalt for 0.28mm, 

1.06mm and maximum of 1.5mm crack openings 

 

 

Figure 8.45: Surface strain distribution on specimen with sand asphalt for 0.82mm, 

1.44mm and maximum of 2.0mm crack openings 
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Figure 8.46: Specimen with sand asphalt at the start of test 

 

 

Figure 8.47: Specimen with sand asphalt at the end of test 

 

8.5 Conclusion 

The following conclusions can be drawn from this study: 

 It can be seen from the tests that all the specimens with SAMIs (proprietary SAMIs A, 

B, C and D and sand asphalt) performed better than the control specimen with no 

SAMI.  
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 The strain distribution was more uniform in all the specimens with SAMIs than the 

control specimen and they sustained greater crack opening than the control specimen.  

 Also, the tests show that the performance of the specimens incorporating SAMIs 

varies with the SAMIs used. The specimens with proprietary SAMIs C and D gave 

better results than those with proprietary SAMIs A and B and sand asphalt as the 

crack only appeared at the surface of the overlay after 5 mm compared to 2 mm, 1.5 

mm and 1.5 mm for the specimens with proprietary SAMIs A and B and sand asphalt, 

respectively.  

 The test results established the importance of the slip between the overlay and SAMIs 

to the crack resistance of SAMIs used as interlayer between overlay and existing 

pavement.  
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9     DESIGN GUIDE 

9.0 Design guidelines 

This section gives guidelines for the use of SAMIs against reflective cracking. The guidelines 

are based on the study carried out under this project. This consists of tests to determine the 

interface properties of the overlay-SAMI interface, a laboratory wheel tracking test to 

evaluate the crack resistance potential of SAMIs, a finite element analysis to determine 

deflection and stress/strain distribution in a cracked pavement with and without a SAMI, a 

large scale wheel tracking test (pavement test facility) to evaluate the crack resistance 

potential of SAMIs under loading conditions close to the field situation and lastly, a thermal 

cycling test to determine the crack resistance of SAMIs under thermal loading.  

The findings of the tests have been used to draw up the guidelines for effective use of SAMIs 

to retard reflective cracking. Also, the OLCRACK software developed by Thom (2000) was 

adopted to demonstrate the crack resistance potential of the SAMIs. 

 

9.1 Site Investigation/survey 

This involves visiting the site to evaluate the condition of the existing pavement in order to be 

able to select a suitable remedial measure to restore the pavement to good condition. The site 

investigation should involve checking the type of cracks predominant on the existing 

pavement, as this could help in identifying the principal cause of the cracking. Also the extent 

of damage of the pavement should be checked. Other data that should be collected on the site 

visits include: the crack width; crack spacing; and the type of existing pavement. Photographs 

of the pavement may also be taken for further analysis in the office. 
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After the field inspection and the measurements have been done, it is important to analyse the 

data collected to identify the principal cause of the cracks and conditions that the overlay will 

be subjected to. Based on this study, conclusions can be drawn on the data collected. For 

instance, in a situation where transverse cracks are predominant in the field, the principal 

cause of the cracks and the main factor that may cause reflective cracking may be 

temperature variation (daily/seasonal). This can be confirmed from the data available on the 

weather experienced at that location, from the time of construction to when cracks appeared 

on the surface.  

Also, if the type of crack that is predominant in the field is longitudinal cracking, this may 

suggest that the principal cause of the cracks and the main factor that may cause reflective 

cracking may be the action of traffic loads. Again, when the cracks predominant in the field 

are alligator cracks, this may suggest a fatigue related problem. This is not to say that traffic 

loading does not contribute to transverse cracks or that the causes of cracks in a pavement are 

exclusively due to either traffic loads or temperature variations. Other factors could also be 

responsible for the cracks; as highlighted in section 1.3, factors such as consolidation of 

subgrade, moisture change in an existing pavement, frost heave, expansive soils etc could be 

responsible for the cracks. Also, when ruts are noticed it is important to identify the cause, 

which may be due to poor subgrade or low permanent deformation resistance of the asphalt. 

 

9.2 Evaluation of the existing pavement properties 

The properties of the existing pavement are important because it must be able to withstand 

the traffic loading that will be imposed through the design life of the overlay. Also, the 

existing pavement properties are required as input for the design of the overlay thickness. The 

properties that are required include: the thickness and stiffness of the existing asphalt layer; 

the thickness and stiffness of the subbase; and the stiffness of the subgrade. The properties of 
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the pavement indicate whether a structural rehabilitation is required or not. When structural 

rehabilitation is not required, appropriate measure is carried out to extend the life of the 

pavement. 

Methods available to measure these properties include the dynamic cone penetrometer testing 

for the assessment of unbound foundation layer and subgrade, Benkelman beam - the oldest 

and simplest form of deflection test, Lacroix deflectograph - an extension of Benkelman 

beam with different frame that allows vehicle to travel continuously along the road and 

deflection measurement taken every 3-4m, and falling weight deflectometer that gives a very 

precise value of absolute deflection (accuracies of ±2 µm commonly quoted) and able to 

distinguish between two pavements with the same deflection under load but with quite 

different individual layer stiffnesses, etc. Also, cores can be taken from the pavement to 

determine the asphalt stiffness using the indirect tensile stiffness modulus method and the 

thickness of the pavement could be determined from the cores and ground penetrating radar 

survey. Cores from the cracked sections could also reveal the origin of the crack (top down or 

bottom up) provided it has not grown through the entire depth of the pavement. When rutting 

is noticed, the rut depth should be measured and the cause(s) should be identified to prevent 

the overlay from having similar problem.  

Also, it is important to determine the remaining life of the existing pavement. The remaining 

life approach requires that the pavement history be looked into - the construction history, past 

traffic and environmental conditions. Khweir (2011) stated that the fatigue profile is the most 

important parameter in calculating pavement life. He stated further that the residual life of an 

existing pavement and the calculation of the required overlay thickness are based on the 

criteria of limiting the tensile strain at the underside of the lower base layer. He highlighted 

three approaches for calculating the life of a pavement with an existing base layer. This 

include calculation of the percentage of the past traffic compared to the original design, 
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testing of the lower layers in a laboratory and adjusting with a shift factor to take into account 

the difference between road traffic loading and dynamic loading of the laboratory and 

calculation of the fatigue life of an existing pavement by introducing a new factor to the 

standard fatigue formula. 

 

9.3 selection of suitable remedial measures  

Treatment options are then selected based on the observations from site investigation, 

evaluation of the existing pavement properties and the residual life. The treatment options 

might include reactive maintenance, thick overlay, introduction of stress relieving or a 

reinforcing interlayer or reconstruction. The focus of the present study is on the use of stress 

absorbing membrane interlayers. 

9.3.1 Choosing an appropriate interlayer to delay reflective cracking  

After the causes of the cracks and factor(s) that may cause reflective cracking have been 

established and the residual life of the pavement indicate that it will sustain the load the will 

be imposed through the design life of the overlay, then the type of interlayer that can be used 

to retard reflective cracking can be proposed. From this study, the factors that influence the 

performance of a SAMI include: the stiffness of the SAMI; the thickness of the SAMI; the 

interlayer bond between the SAMI and both the overlay and the existing pavement, the 

stiffness and fatigue characteristics of the overlay, and the temperature. 

If it has been established that one factor that may cause reflective cracking is temperature 

variation. As observed in this study the most important property of the SAMIs that influences 

its crack resistance in this situation is the reduced shear stiffness of the interface achieved by 

introducing a SAMI. This is because the introduction of the SAMIs allows a slip (debonding) 

between the SAMI and the overlay, therefore giving room for the horizontal movement 
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(contraction/expansion) of the underlying cracked layer without causing large tensile stresses 

at the top of the overlay. In this respect, SAMIs with low SAMI-overlay interface stiffness 

will be most beneficial. It can be seen in the thermal cycling test reported in chapter eight of 

this thesis that the SAMIs in this category are proprietary SAMIs C and D. However, in this 

case, it has to be stated that the SAMIs must also have good resistance against rutting and 

must be able to withstand the traffic loads that will be imposed throughout the design life of 

the overlay. Both proprietary SAMIs C and D have been found to provide good performance 

against reflective cracking under traffic loading in the wheel tracking test reported in chapter 

five and the pavement facility test reported in chapter seven. 

In cases where it has been established that the factor that may be responsible for reflective 

cracking is traffic loading, the factors that should be considered in choosing the SAMIs 

include their stiffness, the interface shear stiffness between the SAMIs and overlay and 

climatic factors such as temperature. As observed in the wheel tracking test reported in 

chapter five, an optimum stiffness exists at which SAMIs are able to delay reflective crack. 

The optimum stiffness may be between 1000MPa and 3000MPa, depending on test 

temperature. Stiffnesses below and above this range may yield undesirable results. Therefore, 

in the context of this study proprietary SAMIs C and D should be considered when the 

temperature of the location is expected to be 10
o
C or lower. When a temperature greater than 

10
o
C is expected, then all the SAMIs tested would perform well except the sand asphalt. 

Generally in this case the factors mentioned earlier must be considered in selecting the 

SAMIs. The thickness of the SAMI and the overlay are equally important. The OLCRACK 

software allows the optimization of thickness of the SAMIs and overlay to achieve the best 

result. 
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9.4 OLCRACK Software 

OLCRACK was mentioned in section 2.2.3 and is adopted in this study for the design of 

overlays with and without SAMIs. The software gives two options - the first one considers 

two layers of asphalt over the existing pavement, while the second considers one layer of 

asphalt with grid reinforcement over existing pavement. The OLCRACK two-layer system 

was chosen for this study. This design method was chosen because it takes into account some 

of the factors that influence the crack resistance potential of SAMIs. These factors are the 

thickness of SAMI, stiffness, temperature, fatigue characteristics of the SAMI, stiffness of the 

existing asphalt pavement, crack spacing, crack width factor - which considers whether the 

crack is fully open or closed, crack shear modulus - which accounts for the crack activity 

under loading, stiffness and fatigue characteristics of the overlay, thickness and stiffness of 

subbase and the subgrade stiffness. The software is designed such that the designer can 

optimise the thickness of the layers to obtain a desirable design life for the overlay in terms of 

the number of load applications to failure.  

The OLCRACK software was used to predict the number of load applications to failure for 

the SAMIs examined in the pavement test facility. The design parameters for the sections 

with 6mm proprietary SAMI A, 15 mm proprietary SAMI A, proprietary SAMIs C and D and 

control are shown in Tables 9.1, 9.2, 9.3, 9.4 and 9.5. The stiffness modulus and the fatigue 

parameters used in the design were obtained from the indirect tensile stiffness modulus test 

and indirect tensile fatigue test, respectively.  It was considered appropriate to use the 

stiffness directly for the design because the load pulse durations in the NAT and the PTF are 

quite similar. The air temperature increased slightly during the test.   

Plots of the crack development for sections with 6mm proprietary SAMI A, 15 mm 

proprietary SAMI A, proprietary SAMIs C and D and control are shown in Figure 9.1, 9.2, 

9.3, 9.4 and 9.5. A summary of the PTF results and the OLCRACK predictions is shown in 
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Table 9.6. This shows that OLCRACK software is able to predict the life of pavement 

incorporating SAMIs reasonably well. 

Furthermore, OLCRACK was used to predict the life of some of the other combinations 

studied in the wheel tracking test. The parameters considered are shown in Tables 9.7 and 9.8. 

The results shown in Table 9.9 indicate that the specimens with SAMIs have a larger number 

of load applications to failure than the specimens without SAMIs.  

OLCRACK was used to predict the life to failure of pavements incorporating 20mm 

proprietary SAMIs A and B with 50 mm overlay and a pavement having 70 mm overlay with 

no SAMI under full scale loading. The loading parameters, base, subbase and subgrade 

properties and thicknesses considered are shown in Table 9.10. The overlay and SAMIs 

properties are shown in Table 9.11. The design results shown in Table 9.12 show that 

pavement with proprietary SAMIs A and B have lives 2.73 and 9.73 times that of the 

pavement with 70 mm overlay (no SAMI), respectively. 

Table 9.1: Design parameters for cracked pavement with 6 mm proprietary SAMI A 
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Figure 9.1: Graph of crack development for cracked pavement with 6 mm proprietary 

SAMI A 

 

Table 9.2: Design parameters for cracked pavement with 15 mm proprietary SAMI A 
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Figure 9.2: Graph of crack development for cracked pavement with 15 mm proprietary 

SAMI A 

 

Table 9.3: Design parameters for cracked pavement with proprietary SAMI C 
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Figure 9.3: Graph of crack development for pavement with proprietary SAMI C 

 

Table 9.4: Design parameters for cracked with pavement proprietary SAMI D 
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Figure 9.4: Graph of crack development for pavement with proprietary SAMI D 

 

Table 9.5: Design parameters for cracked pavement with no SAMI (Control) 
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Figure 9.5: Graph of crack development for pavement with no SAMI (Control)  

 

Table 9.6: Pavement test facility and OLCRACK number of load applications to failure in 

cracked section with SAMIs and without SAMIs 

SAMIs  Pavement Test Facility OLCRACK 

6mm proprietary SAMI A 63828 44577 

15mm proprietary SAMI A 31880 31789 

proprietary SAMI C 58995 58944 

proprietary SAMI D 39052 39173 

Control 20185 20187 

 

Table 9.7: Loading parameters, base, subbase and subgrade properties and thicknesses  

Loading 

Load 9.6kN 

Radius of tyre contact 65mm 

Standard deviation of tyre contact 0 

Base 

Thickness 60mm 

Stiffness 9591MPa 

Crack spacing 0.635m 

Crack width factor 0 

Crack shear modulus 100MN/m
3
 

Subbase 
Thickness 400 

Stiffness 144.3MPa 

Subgrade Stiffness 10MPa 
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Table 9.8: Overlay and proprietary SAMIs A and B properties  

Properties Overlay SAMI A SAMI B Sand 

asphalt  

Stiffness (MPa) 3899 2725 2444 209 

Strain at N = 1 

(microstrain) 

3447 4242.6 3697.2 18694 

Slope of fatigue 

characteristics 

0.345 0.325 0.284 0.527 

Poisson‟s ratio 0.35 

 

Table 9.9: OLCRACK design of some combinations evaluated using wheel tracking test 

Specimens References 

load 

applications 

to failure 

Life (ratio 

of control) 

60 mm Overlay (Control) O60 10843 1 

20 mm thick sand asphalt with 40 mm overlay SA20O40 6751 0.62 

20 mm thick SAMI A with 40 mm overlay PA20O40 28658 2.64 

20 mm thick SAMI B with 40 mm overlay PB20O40 51759 4.77 

70 mm Overlay (Control) O70 17134 1 

30 mm thick sand asphalt with 40 mm overlay SA30O40 6477 0.39 

30 mm thick SAMI A with 40 mm overlay PA30O40 45413 2.65 

30 mm thick SAMI B with 40 mm overlay PB30O40 80231 4.68 

10 mm thick sand asphalt with 60 mm overlay SA10O60 12401 0.72 

10 mm thick SAMI A with 60 mm overlay PA10O60 48869 2.85 

10 mm thick SAMI B with 60 mm overlay PB10O60 91615 5.35 

80 mm Overlay (Control) O80 27355 1 

20 mm thick sand asphalt with 60 mm overlay SA20O60 13272 0.49 

20 mm thick SAMI A with 60 mm overlay PA20O60 83139 3.04 

20 mm thick SAMI B with 60 mm overlay PB20O60 163436 5.97 

 

Table 9.10: Loading parameters, base, subbase and subgrade properties and thicknesses  

Loading 

Load 40kN 

Radius of tyre contact 150mm 

Standard deviation of tyre contact 0.15 

Base 

Thickness 250mm 

Stiffness 3000MPa 

Crack spacing 2m 

Crack width factor 0.5 

Crack shear modulus 1000MN/m
3
 

Subbase 
Thickness 400 

Stiffness 150MPa 

Subgrade Stiffness 50MPa 
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Table 9.11: Overlay and proprietary SAMIs A and B properties  

Properties Overlay SAMI A SAMI B 

Stiffness (MPa) 3899 2725 2444 

Strain at N = 1 (microstrain) 3447 4242.6 3697.2 

Slope of fatigue characteristics 0.345 0.325 0.284 

Poisson‟s ratio 0.35 

 

Table 9.12: Life to failure under full scale loading  

 Number of load 

applications to failure 

Load applications to failure 

as ratio of control 

70 mm overlay with no SAMI 154380 1 

20 mm proprietary SAMI A 

with 50 mm overlay 

434340 2.81 

20 mm proprietary SAMI B 

with 50 mm overlay 

1614570 10.46 

 

 

9.5 Design against reflective cracking under thermal loading  

It has been established in the thermal cycling tests that the principal factor that aids the crack 

resistance of a SAMI under thermal loading (temperature variation) is the slip between the 

overlay and the SAMI. An attempt has been made in this section to predict the life of a 

cracked pavement incorporating SAMIs compared to those without SAMIs. 

In the thermal cycling tests, it was found that the specimen without SAMI (control) failed at 

crack opening of 1.0 mm, while the specimens with proprietary SAMIs A, B, C, and D and 

sand asphalt failed at crack openings of 2.0mm, 1.5mm, 5.0mm, 5.0mm, and 2.0mm, 

respectively. This showed the specimens with proprietary SAMIs A, B, C, and D and sand 

asphalt withstood crack openings twice, 1.5 times, 5 times, 5 times and twice that of the 

control, respectively. It is reasoned that the tensile strains within the overlay for the 

specimens with proprietary SAMIs A, B, C, and D and sand asphalt at the same crack 

opening as the control might have been 0.5 times, 0.7 times, 0.2 times, 0.2 times and 0.5 

times that of the control, respectively. 
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Therefore, knowing that the slope of the fatigue characteristic of the overlay is 0.345, the 

lives to failure of the specimens with proprietary SAMIs A and sand asphalt might be 

approximately 7.46 times that of the control, while that of the specimen with proprietary 

SAMI B might be around 3.2 times that of control. Lastly, the lives to failure of the 

specimens with proprietary SAMIs C and D might be around 106 times that of the control. 

This suggests that proprietary SAMIs C and D are much the best of the tested when an 

overlay over a cracked pavement is expected to be subjected to daily/seasonal temperature 

variations. 

 

9.6 Conclusions 

The following conclusions can be drawn from this study: 

 Guidelines for the successful use of SAMIs against reflective cracking have been 

prepared from the results of tests and modelling.  

 It has been pointed out that it is important that the factors responsible for the existing 

cracks on the pavement and those that may cause reflective cracking of the overlay be 

established in order to propose a suitable SAMI that may help reduce reflective 

cracking. 

 It was also mentioned that the type of cracks predominant on site and the information 

about the site/region may help in establishing the cause(s) of the cracking on the 

existing pavement and the factor(s) that may cause reflective cracking of the overlay. 

 Also, it was stated that when temperature variation is responsible for the crack on the 

existing pavement, that the most important factor of the SAMIs that should be 

considered is the reduced shear stiffness provided by the introduction of SAMIs.  
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 It was reported that when traffic loading is expected to be the principal cause of 

reflective cracking, the most important factor among others to be considered is the 

stiffness and thickness of the SAMIs. 

 OLCRACK software has been used to demonstrate the crack resistance of SAMIs 

under laboratory and full scale loading. 
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10 CONCLUSIONS AND RECOMMENDATIONS 

10.1 Conclusions 

This study has investigated the crack resistance potential of some selected stress absorbing 

membrane interlayers (SAMIs). It was achieved by carrying out laboratory tests which 

include Leutner shear tests, pull off tests, wheel tracking tests (supported by finite element 

analysis), a large scale pavement test facility test, and thermal cycling tests. The following 

conclusions can be drawn from the study: 

  

Leutner shear test and the pull off test 

 It was found that there is reduced stiffness at the overlay-SAMI interface compared to 

the control interface (no SAMI).  

 The test showed that, of the SAMIs investigated; proprietary SAMIs C and D have the 

lowest stiffness at the overlay-SAMI interface followed by sand asphalt and 

proprietary SAMIs A and B. 

 

Wheel tracking test 

 It was discovered that proprietary SAMIs A and B are not effective at 10
o
C due to 

increased stiffness of the SAMIs and increased interface stiffness, while they have 

good resistance to reflective cracking at 20
o
C and 30

o
C. They had lives in the range of 

1.10-4.64 and 1.12-2.64 times those of the control (no SAMI) at 20
o
C and 30

o
C, 

respectively under a load 2.4kN (1.1MPa) and 1.58-4.03 times those of the control 

under a load 1.35kN (0.6MPa). 
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 The test showed that proprietary SAMIs C and D were able to retard reflective 

cracking at 10
o
C, 20

o
C and 30

o
C with lives to failure in the range 3.65-5.50 times 

those of control (no SAMI) at 20
o
C. 

 The study showed that sand asphalt is not able to retard reflective cracking. This 

indicated that while SAMIs are required to have lower stiffness than the overlay, a 

SAMI of extreme low stiffness is not beneficial for crack resistance.  

 The test showed that lower SAMI thickness is more effective against reflective 

cracking. It indicates that a thickness of between 10 and 20 mm would probably be 

most appropriate when SAMIs are considered for rehabilitation of a cracked 

pavement.  

 The test showed that SAMIs performed better against reflective cracking at the lower 

load level of 1.35kN (0.6MPa) than at the greater load level of 2.4kN (1.1MPa), thus 

making them probably more suitable for highways than, for example, airfields.  

 It can be seen from the study that using SAMIs with a thin overlay (40mm) is more 

beneficial in relative terms than with a thicker overlay (60mm).  

 It was demonstrated that when SAMIs are introduced beneath an overlay to a cracked 

pavement, increased deflections are expected; therefore the overlay must be well 

designed against fatigue related problems. 

 

Finite element modelling 

 The finite element modelling, like the wheel tracking test, shows that when SAMIs 

are introduced into a pavement, increased deflection is expected because of the lower 

stiffness of the SAMIs.  
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 The lower strains/stresses predicted in the overlay of the specimens with SAMIs 

imply increased life of the overlay. This showed that SAMIs are able to isolate the 

overlay from strain/stress concentration at the crack region.  

 Also, it can be seen from the finite element modelling that increasing the SAMI‟s 

thickness leads to increased deflection of the pavement. This is reflected by the results 

of the wheel tracking test, in that lower SAMI thickness gives better performance 

against reflective cracking. 

 It was discovered that when slip was introduced at the SAMI-existing pavement 

interface, predicted deflections, strains and stresses were relatively closer to those 

measured in the tests. They were also increased relative to the no-slip case, which 

may imply less life to failure. However, this cannot be said to be the case with 

confidence because crack propagation was not modelled, so the effect of the slip on a 

SAMI‟s crack resistance could not be fully quantified. 

 

Pavement test facility 

 The pavement test facility test, like the wheel tracking test and finite element analysis, 

showed that the use of SAMIs results in greater deflection in the pavement.  

 It showed that all the sections with SAMIs had greater life to failure in the range 1.93-

4.53 times those of the control sections (no SAMI).  

 The test showed that the thickness of the SAMI influences its performance with better 

performance observed when lower thickness is used. It was observed that a section 

with 5 mm (10 mm in full-scale) proprietary SAMI A had life to failure twice that of 

the section with 10 mm (20 mm in full-scale) thickness of same SAMI.  
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 The test demonstrated that when SAMIs are introduced into a cracked pavement, 

more permanent deformation occurs, hence the need for an overlay with good 

resistance to permanent deformation.  

 Lastly the test showed that the SAMI‟s composition, stiffness and the interface shear 

stiffness influence its performance. 

 

 

Thermal cycling test 

 The test showed that the introduction of the SAMIs allows more uniform strain 

distribution on the overlay.  

 It can be seen from the test that the main factor that influences the performance of 

SAMIs introduced into a cracked pavement subjected to thermal loading is the slip 

between the overlay and SAMI, which is achieved by the reduced stiffness of the 

overlay-SAMI interface.  

 The test showed that all the specimens with the SAMIs performed better than the 

control specimen (no SAMI).  

 The test indicated that the specimens with proprietary SAMIs C and D are the most 

appropriate under thermal loading. They withstood a crack opening 5 times that of the 

control (no SAMI).  

 

Design Guidelines 

 The findings from all the tests have been used to prepare guidelines for effective use 

of SAMIs against reflective cracking. 

 OLCRACK software has been used to demonstrate the benefits of SAMIs in a 

cracked pavement under laboratory and full-scale loadings. 
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10.2 Recommendations 

The following recommendations are made for further studies: 

 Further combinations of different overlay materials with maximum nominal aggregate 

size greater than 10 mm, SAMI compositions and thicknesses should be studied in the 

pavement test facility or in the field to evaluate further the better performance of the 

SAMIs at large scale.  

 Crack propagation should be modelled in the finite element model to evaluate the 

effect of debonding on the crack resistance of the SAMIs. 

 In the study, only asphalt concrete was considered; further study should be carried out 

using cement concrete as the existing pavement. 

 The thermal cracking test should be carried out at other temperatures as this study 

only considered a temperature of -3
o
C. This is because temperature has a great effect 

on the interface stiffness – the main factor that influences the performance of SAMIs 

under thermal loading. 

 The SAMI and the overlay layers were compacted on the thermal cycling rig. Thus 

poor compaction was achieved which resulted in high voids in the SAMIs and overlay. 

The equipment should be further designed such that the specimen can be compacted 

in the laboratory and transferred to the thermal cycling rig. 

 More combinations should be tested to evaluate the effects of different factors such as 

SAMI thickness, overlay thickness and cycling rate on crack resistance of SAMIs 

under thermal loading (temperature variation).  

 The OLCRACK design software should be upgraded to account for the effect of 

interface shear stiffness on a SAMI‟s crack resistance potential. 
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APPENDIX A 

A.1 Leutner shear test at 10
o
C 

 

Figure A.1: Stress versus displacement graph for overlay-proprietary SAMI A interface 

at 10
o
C 

 

Figure A.2: Stress versus displacement graph for overlay-proprietary SAMI B interface 

at 10
o
C 

     

    

Figure A.3: Stress versus displacement graph for overlay-proprietary SAMI C interface 

at 10
o
C 
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Figure A.4: Stress versus displacement graph for overlay-proprietary SAMI D interface 

at 10
o
C 

 

 
Figure A.5: Stress versus displacement graph for overlay-proprietary sand asphalt 

interface at 10
o
C 

 

 

Figure A.6: Stress versus displacement graph for control (10 AC 40/60-10AC 10/20) 

interface at 10
o
C 
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A.2 Leutner shear test at 20
o
C 

 

 

Figure A.7: Stress versus displacement graph for overlay-proprietary SAMI A interface 

at 20
o
C 

 

 

Figure A.8: Stress versus displacement graph for overlay-proprietary SAMI B interface 

at 20
o
C 

 

 

Figure A.9: Stress versus displacement graph for overlay- proprietary SAMI C 

interface at 20
o
C 
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Figure A.10: Stress versus displacement graph for overlay-proprietary SAMI D 

interface at 20
o
C 

 

 
Figure A.11: Stress versus displacement graph for overlay-proprietary sand asphalt 

interface at 20
o
C 

 

 

Figure A.12: Stress versus displacement graph for control (10 AC 40/60 -10AC 10/20) 

interface at 20
o
C 
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A.3 Leutner shear test at 30
o
C 

Figure A.13: Stress versus displacement graph for overlay-proprietary SAMI A 

interface at 30
o
C 

 

 
Figure A.14: Stress versus displacement graph for overlay-proprietary SAMI B 

interface at 30
o
C 

 

 

Figure A.15: Stress versus displacement graph for overlay-proprietary SAMI C 

interface at 30
o
C 
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Figure A.16: Stress versus displacement graph for overlay-proprietary SAMI D 

interface at 30
o
C 

 

 

Figure A.17: Stress versus displacement graph for overlay-proprietary sand asphalt 

interface at 30
o
C 

 

 

Figure A.18: Stress versus displacement graph for control (10 AC 40/60 -10AC 10/20) 

interface at 30
o
C 
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APPENDIX B 

B.1 Cores and holes to show crack paths 

 

 

 

Figure B-1: Section 1 (10 mm SAMI A) 

 

 

 

Figure B-2: Section 2 (Control) 
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Figure B-3: Section 3 (5 mm SAMI A) 

 

 

 

 

Figure B-4: Section 4 (SAMI C) 
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Figure B-5: Section 5 (Control) 

 

 
 

Figure B-6: Section 6 (SAMI D) 
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B.2 Leutner shear test results on PTF cores 

 

 

Figure B-7: Shear stress versus displacement for section 1 with 10 mm proprietary 

SAMI A before trafficking at 20
o
C 

 

 

 

 

Figure B-8: Shear stress versus displacement for section 1 with 10 mm proprietary 

SAMI A after trafficking at 20
o
C 
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Figure B-9: Shear stress versus displacement for section 3 with 5 mm proprietary SAMI 

A before trafficking at 20
o
C 

 

 

 

 

 

Figure B-10: Shear stress against displacement for section 3 with 5 mm proprietary 

SAMI A after trafficking at 20
o
C 
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Figure B-11: Shear stress against displacement for section 2 with no SAMI (Control) 

before trafficking at 20
o
C 

 

 

 

 

 

Figure B-12: Shear stress against displacement for section 2 with no SAMI (Control) 

after trafficking at 20
o
C 
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Figure B-13: Shear stress versus displacement for section 5 with no SAMI (Control) 

before trafficking at 20
o
C 

 

 

 

Figure B-14: Shear stress against displacement for section 5 with no SAMI (Control) 

after trafficking at 20
o
C 
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