

University of Nottingham UK | CHINA | MALAYSIA

The Analysis of Fault Trees with Dependent Basic Events

John Andrews

Durham University 4 June 2024

Foundation

Fault Tree Analysis

Component failure models

- Limited maintenance process detail
 - No Repair: $Q(t) = 1 e^{-\lambda t}$
 - Revealed:
 - Unrevealed:

$$Q(t) = \frac{\lambda}{\lambda + \nu} \left(1 - e^{-(\lambda + \nu)t}\right)$$
$$Q_{AV} = \lambda \left(\frac{\theta}{2} + \tau\right)$$

• Snap-shot in time

•

PROJECT AIMS

- Incorporate:
 - non-constant failure and repair rates
 - dependent events
 - highly complex maintenance strategies
 - dynamic features

Fault Tree Analysis

System Failure Mode Analysis

Importance Measures

Safety System Analysis - Standby Systems

Standby System

- Pump P1 operational.
- When P1 fails P2 takes over the duty

Warm Standby

Pump P2 is not operational in standby. It becomes operational when P1 fails. It can fail in standby but with a lower rate than when operational.

P1 & P2 Dependent

Cold Standby

Pump P2 is not operational in standby. It becomes operational when P1 fails. It cannot fail in standby.

P1 & P2 Dependent

Туре	Description	
Secondary Failure	When one component fails it increases the load on a second component which then experiences an increased failure rate	
Opportunistic Maintenance	A component fails which causes a system shutdown or requires specialist equipment for the repair. The opportunity is taken to do work on a second component which has not failed but is in a degraded state	
Common Cause	When one characteristic (eg materials, manufacturing, location, operation, installation maintenance) causes the degraded performance in several components	
Queueing	Failed components all needing the same maintenance resource are queued. Then repaired in priority order	

Integration of Fundamental Quantification Methodologies

Fault Tree Analysis => Binary Decision Diagrams (BDD) Petri Nets Markov Methods

Binary Decision Diagrams

University of

Modelling Methodology

Petri-Net model (1939)

Features

- Any distribution of times to transition
- Capable of modelling very complex maintenance strategies
- Concise structure
- Solution by Monte Carlo simulation
- Produces distributions of durations and no of incidences of different states

Markov model (1906)

Assumes:

 The future condition depends only on the current condition and not the history

Features

- Constant rates of transition
- State-space explosion

Dynamic & Dependent Tree Theory (D²T²)

A Fault Tree Analysis Framework

Dependencies

- Model the dependencies and complexities using Petri Nets or Markov models
 - Always use the *simplest dependency model*

Binary Decision Diagrams

- Dependencies are just required to be considered on each path
- Path numbers can be very high so every effort needs to be made to *minimise the size of the BDD*
 - minimise the fault tree size using an effective modularisation
 - effective variable ordering

Basic Structure of the Code

Universitu of

Complex Features

- Non-constant failure / repair rates
 - Motor M Weibull failure time distribution and a lognormal repair time distribution

• Dependencies

- Pumps P1 & P2 if one fails it puts increased load (and increases the failure rate) of the other
 Heat Exchangers Hx1 & Hx2 when one needs replacement needs specialist equipment and both are replaced
- Pump P3 two events P3S and P3R are clearly dependent

Fault Tree Structure and Dependent Events

University of Nottingham

UK | CHINA | MALAYSIA

Complexity and Dependency Models

Universitu of

University of Nottingham UK | CHINA | MALAYSIA

Modularisation

Factorisation Method
Linear-time Algorithm

Contraction

Subsequent gates of the same type are contracted into a single gate

Factorisation

Identifies factors of groups of events that always occur together in the same gate type. The factors can be any number of events if they are all:

- independent and initiators
- independent and enablers.
- a complete dependency group.

Extraction

Restructure:

Modularisation (1)

Modularisation (2)

 $Cf_1 = P1.P2$ (dependency group D1 – initiators) $Cf_2 = S1.S2$ (independent enablers) $Cf_3 = Comp + R1 + Fan + Motor +$ R2 + T2 + V1(independent enablers) $Cf_4 = P3S + P3R$ (dependency group D3 – enablers)

Modularisation (3)

Contraction 2 -- No change

Modularisation (4)

Modularisation (5) - Rauzy & Dutuit

University of

Nottingham

G1 Quantification

University of Nottingham

IK | CHINA | MALAYSIA

j	path _j	Ipath _j	$Dpath_j^1$
1	<i>Cf5</i> ₁ , <i>Cf6</i> ₁	Cf5 ₁ , Cf6 ₁	
2	$Cf5_1, Cf6_0, Hx2_1$	Cf5 ₁ , Cf6 ₀	$Hx2_1$
3	$Cf5_0$, $Hx1_1$, $Cf6_1$	Cf5 ₀ ,Cf6 ₁	$Hx1_1$
4	Cf5 ₀ , Hx1 ₁ , Cf6 ₀ , Hx2 ₁	$Cf5_0, Cf6_0$	$Hx1_1$, $Hx2_1$

 $Q_{G1} = 0.00054898674$

$$P_{G1} = \sum_{j=1}^{npath} \left[P(Ipath_j) \cdot \prod_{k=1}^{ndep} P(Dpath_j^k) \right]$$

 $\begin{aligned} Q_{path1} &= P(Cf5_1). \ P(Cf6_1) = 0.000529778965 \\ Q_{path2} &= P(Cf5_1). \ (1 - P(Cf6_1)). \ P(Hx2_1) = 1.920777884 \times 10^{-6} \\ Q_{path3} &= (1 - P(Cf5_1)). \ P(Cf6_1). \ P(Hx1_1) = 0.0 \\ Q_{path4} &= (1 - P(Cf5_1)). \ (1 - P(Cf6_1)). \ P(Hx1_1, Hx2_1) = 0.0 \end{aligned}$

Q

Top Event BDD Quantification

$$\begin{split} Q_{Cf1} &= 0.00170988 \\ Q_{Cf2} &= 0.034225 \\ Q_{Cf3} &= 0.1446872757001375 \\ Q_{Cf4} &= 0.1184 \\ Q_{Cf5} &= 0.0019494121410861265 \\ Q_{Cf6} &= 0.2717634478124872 \\ Q_{G1} &= 0.0005489867435093285 \end{split}$$

 $Q_{path1} = P(PoW) = 0.000999$ $Q_{path2} = (1.0 - P(PoW)) P(G1)$ = 0.0005484383

 $Q_{SYS} = 0.001547439304205123$

- The Dynamic and Dependent Tree Theory (D²T²) approach has been presented
- The framework removes the need to assume:
 - Basics events are independent
 - Component failure times and repair times are governed by the exponential distribution
 - Simplistic maintenance processes
- D²T² has been formulated to produce efficiency in the quantification performed

University of Nottingham UK | CHINA | MALAYSIA