

University of Nottingham UK | CHINA | MALAYSIA

The Analysis of Fault Trees with Dependent Basic Events

John Andrews

Durham University 4 June 2024

Foundation

Fault Tree Analysis

Component failure models

- Limited maintenance process detail
	- No Repair: $Q(t) = 1 e^{-\lambda t}$
	- Revealed:
	- Unrevealed:

$$
Q(t) = \frac{\lambda}{\lambda + \nu} \left(1 - e^{-(\lambda + \nu)t} \right)
$$

$$
Q_{AV} = \lambda \left(\frac{\theta}{2} + \tau \right)
$$

• Snap-shot in time

PROJECT AIMS

- Incorporate:
	- non-constant failure and repair rates
	- dependent events
	- highly complex maintenance strategies
	- dynamic features

Fault Tree Analysis

System Failure Mode Analysis

Importance Measures

Safety System Analysis - Standby Systems

Standby System

- Pump P1 operational.
- When P1 fails P2 takes over the duty

Warm Standby

Pump P2 is not operational in standby. It becomes operational when P1 fails. It can fail in standby but with a lower rate than when operational.

P1 & P2 Dependent

Cold Standby

Pump P2 is not operational in standby. It becomes operational when P1 fails. It cannot fail in standby.

P1 & P2 Dependent

Integration of Fundamental Quantification Methodologies

Fault Tree Analysis => Binary Decision Diagrams (BDD) Petri Nets Markov Methods

Binary Decision Diagrams

University of Nottingham UK | CHINA | MALAYSIA

Modelling Methodology

Petri-Net model (1939) Markov model (1906)

Features

- Any distribution of times to transition
- Capable of modelling very complex maintenance strategies
- Concise structure
- Solution by Monte Carlo simulation
- Produces distributions of durations and no of incidences of different states

Assumes:

The future condition depends only on the current condition and not the history

Features

- Constant rates of transition
- State-space explosion

Dynamic & Dependent Tree Theory (D²T²)

A Fault Tree Analysis Framework

Dependencies

- Model the dependencies and complexities using Petri Nets or Markov models
	- Always use the *simplest dependency model*

Binary Decision Diagrams

- Dependencies are just required to be considered on each path
- Path numbers can be very high so every effort needs to be made to *minimise the size of the BDD*
	- minimise the fault tree size using an effective modularisation
	- effective variable ordering

Basic Structure of the Code

University of Nottingham IK | CHINA | MAI AYSIA

Complex Features

- Non-constant failure / repair rates
	- Motor M Weibull failure time distribution and a lognormal repair time distribution

Dependencies

- Pumps P1 & P2 if one fails it puts increased load (and increases the failure rate) of the other • Heat Exchangers Hx1 & Hx2 - when one needs replacement – needs specialist equipment and both are replaced
- Pump P3 two events P3S and P3R are clearly dependent

Fault Tree Structure and Dependent Events

University of Nottingham UK | CHINA | MALAYSIA

Complexity and Dependency Models

University of Nottingham LIK | CHINA | MAI AYSIA

University of
Nottingham UK | CHINA | MALAYSIA

Modularisation

- Factorisation Method - Linear-time Algorithm

• **Contraction**

University of

Subsequent gates of the same type are contracted into a single gate

• **Factorisation**

 Identifies factors of groups of events that always occur together in the same gate type. The factors can be any number of events if they are all:

- independent and initiators
- independent and enablers.
- a complete dependency group.

• **Extraction**

Restructure:

Modularisation (1)

Modularisation (2)

 $Cf_1 = P1. P2$ (dependency group D1 – initiators) $Cf_2 = S1.S2$ (independent enablers) $Cf_3 = Comp + R1 + Fan + Motor +$ $R2 + T2 + V1$ (independent enablers) $Cf_4 = P3S + P3R$ (dependency group D3 – enablers)

Modularisation (3)

Contraction 2 -- No change

Modularisation (4)

Modularisation (5) - Rauzy & Dutuit

University of Nottingham UK | CHINA | MALAYSIA

G1 Quantification

University of Nottingham IK | CHINA | MAI AYSIA

$$
Q_{G1} = \sum_{j=1}^{npath} \left[P(path_j) \prod_{k=1}^{ndep} P(Dpath_j^k) \right]
$$

 $Q_{path1} = P(Cf5_1)$. $P(Cf6_1) = 0.000529778965$ $Q_{path2} = P(Cf5_1)$. (1 – $P(Cf6_1)$) $P(Hx2_1) = 1.920777884 \times 10^{-6}$ $Q_{paths} = (1 - P(Cf5_1))$. $P(Cf6_1)$. $P(Hx1_1) = 0.0$ $Q_{path4} = (1 - P(Cf5_1)) (1 - P(Cf6_1)) P(Hx1_1, Hx2_1) = 0.0$

Top Event BDD Quantification

 $Q_{Cf1} = 0.00170988$ $Q_{Cf2} = 0.034225$ $Q_{Cf3} = 0.1446872757001375$ $Q_{Cf4} = 0.1184$ $Q_{Cf5} = 0.0019494121410861265$ $Q_{C_f6} = 0.2717634478124872$ $Q_{G1} = 0.0005489867435093285$

 $Q_{path1} = P(PoW) = 0.000999$ $Q_{path2} = (1.0 - P(PoW)) P(G1)$ $= 0.0005484383$

 $Q_{SVS} = 0.001547439304205123$

- The Dynamic and Dependent Tree Theory (D²T²) approach has been presented
- The framework removes the need to assume:
	- Basics events are independent
	- Component failure times and repair times are governed by the exponential distribution
	- Simplistic maintenance processes
- D²T² has been formulated to produce efficiency in the quantification performed

University of
Nottingham