
ISMRM British & Irish Chapter 
Annual Meeting 2024

Abstract 
Book

11th - 13th September Monica Partridge Building
University of Nottingham 

United Kingdom

50+ Years of MRI



IntroductionIntroduction

21 BIC-ISMRM 2024 Annual Meeting Nottingham 11th - 13th September 2024

Message from the Organisers
Welcome to the 2024 Annual Meeting of the British and Irish Chapter 
of the ISMRM (BIC-ISMRM) which is being held at the University of 
Nottingham from 11th to 13th September. 

The theme of this year’s BIC-ISMRM meeting is 50+ years of MRI, in part 
recognising Nottingham’s long association with the development and 
application of magnetic resonance imaging and spectroscopy (MRI/S). 
This association began with the publication of Peter Mansfield’s first 
paper on NMR imaging in 1973 and has encompassed the invention 
of slice selection, echo planar imaging and active magnetic shielding, 
as well as the development of the UK’s first 3T and 7T scanners, and 
current plans for establishing a UK national facility for ultra-high field 
(11.7T) human MRI scanning. 

The first day of the meeting comprises a Workshop on Beyond 1H: 
Xing up MRI/S. This will focus on how to implement and exploit 
X-nuclei MRI/S on clinical and pre-clinical systems. There will be 
invited presentations, a poster session and talks from vendors. After 
the workshop there will also be an optional tour of the nearby Sir Peter 
Mansfield Imaging Centre. 

The main BIC-ISMRM meeting takes place on Thursday and Friday and 
will include a mix of presentations of invited and proffered papers, as 
well as poster sessions, and an opportunity to meet with commercial 
exhibitors.  

A fantastic set of speakers, including Nicolas Boulant (University of 
Paris-Saclay), Eleftheria Panagiotaki (UCL), Rhodri Cusack (Trinity 
College Dublin) and Mary McLean (University of Cambridge), have 
agreed to deliver invited lectures at the meeting, and we are delighted 
that past-ISMRM President, Professor Derek Jones (University of 
Cardiff), will deliver this year’s flagship Bill Moore Lecture.  

We were very pleased to receive more than a hundred abstract 
submissions, many from PhD students and other trainees. These 
form the basis of 30 short talks and 83, one-minute power pitch 
presentations (each linked to a subsequent poster presentation) which 
will form the core of the meeting.

The conference dinner will be held in Cavendish Hall on Thursday 
evening from 19.30 and there will be a PubhD public engagement event 
at the Barley Twist in Nottingham City Centre on Wednesday evening. 

We have tried to keep the costs for attending the meeting as low 
as possible to make it accessible and are happy that more than 
170 delegates have registered to attend, including radiographers, 
technologists, scientists and medics from all career stages. We hope 
you all enjoy participating in the conference and hearing about the 
exciting recent developments in our field.  

We would like to thank all our sponsors whose support has made the 
meeting possible.

Richard Bowtell (on behalf of the Local Organising Committee) 
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Wednesday 11th September
Beyond 1H: Xing up MRI/S

12:00 - 12:45 Registration and Lunch

12:45 - 15:00

Invited Lectures
Methods/Applications of Hyperpolarised Gas MRI
Jim Wild (University of Sheffield)

Making Metabolic Measurements with 13C
Damian Tyler (University of Oxford)

Getting the Best Out of 31P
Chris Rodgers (University of Cambridge)

Use of 23Na
Claidoa Gandini Wheeler Kingshott (UCL)

Offbeat Nuclei with Upbeat Uses: 
Multinuclar MR in Clinical Research
Pete Thelwall (Newcastle University)

Chairs: Stephen Bawden and Sue Francis 
(Nottingham)

15:00 - 15:45 Refreshment Break: Posters and Exhibits

15:45 - 17:15

Vendor Presentations and Discussion
Arnaud Comment (GE Healthcare),  
Matthew Clemence (Philips Healthcare),  
Willy Gsell (Bruker Biospin),  
Robin Heidemann (Siemens Healthineers) 

Chairs: Richard Bowtell and Galina Pavlovskaya 
(Nottingham)

17:15 - 18:00 Optional Tour of the SPMIC

19:30 - 21:30 PubhD Public Engagement Event
Barley Twist, Nottingham City Centre, NG1 7FE

Getting Around
University Park Campus

VP

VP

VP

VP

Event space

Cavendish Hall

Orchard Hotel

Monica Partridge 
Building

SPMIC

Google Maps Links
Cavendish Hall
Orchard Hotel
Monica Partridge Building
SPMIC

Monica Partridge Building

Posters

Talks

https://maps.app.goo.gl/AZt34Xuaec7hvm9m7
https://maps.app.goo.gl/qbu4rDtFtAxrjZp46
https://maps.app.goo.gl/9XJGPS1TpMs5jm2q6
https://maps.app.goo.gl/AdeoToKP12HMB1ww9
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Thursday 12th September

09:00 - 09:30 Registration
09:30 - 09:45 Welcome

09:45 - 10:15

Invited Speaker: Nicholas Boulant 
(Neurospin)
The Iseult 11.7T human MRI project: 
from first ideas to first in vivo images

Chair: Richard Bowtell (Nottingham)

10:15 - 10:40 Power Pitch Session 1: Posters 1 - 20
Chair: Olivier Mougin (Nottingham)

10:40 - 11:15 Refreshment Break, Posters 1 - 20 & Exhibits

11:15 - 12:15

Proffered Talks Session 1
High Field MRI

Chair: Sydney Williams (Glasgow) 

T1: Diffusion MRI acquisition methods 
for post mortem imaging at 10.5T
Ben Tendler (University of Oxford)

T2: High resolution diffusion MRI tractography 
at 10.5T in the in-vivo & ex-vivo NHP brain. 
Stam Sotiropoulos (University of Nottingham)

T3: The 7T implant problem:  participant 
exclusion rates in ultra-high field MRI. 
C. John Evans (Cardiff University)

T4: Deuterium Metabolic Imaging (DMI) results 
at 7T following [2H

2
] and [2H

7
] glucose ingestion. 

Daniel Cocking (University of Nottingham)

T5: Investigating Magnetic Field Correlation 
(MFC) sensitivity to demyelination and 
axonal loss using numerical simulations. 
Lewis Kitchingman (Cardiff University)

12:15 - 13:15 Lunch, Posters & Exhibits

13:15 - 13:45

Invited Speaker: Eleftheria (Laura) 
Panagiotaki  (UCL)
Non-invasive prostate microstructure 
estimation with Diffusion MRI

Chair: Steffi Thust (Nottingham)

13:45 - 14:45

Proffered Talks Session 2
Preclinical and Cancer

Chair: Steffi Thust (Nottingham)

T6: Whole-brain imaging in rats using MRI and 3D 
microscopy: A cross-scale, multi-modal approach. 
Jenna Hanmer (University of Nottingham)

T7: 1H MR spectroscopy to evaluate the effects 
of a glycolysis inhibitor and temozolomide 
treatment in a mouse model of glioblastoma. 
Tareq Alrashidi (University of Liverpool)

T8: Multiparametric 1H/23Na MRI for 
analysing the ionic microenvironment within 
preclinical breast tumour models. 
Alina Lavinia Capatina (University of York)

T9: Lipid composition in the breasts of 
BRCA1/2 genetic mutation carriers via 
chemical shift-encoded imaging. 
Sai Man Cheung , (University of Newcastle)
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T10: Investigating prostate cancer 
using QSM in vivo. 
Laxmi Muralidharan (UCL)

14:45 - 15:10 Power Pitch Session 2: Posters 21 - 41
Chair: Charlotte Buchanan (Nottingham)

15:10 - 15:40 Refreshment Break, Posters 21 - 41

15:45 - 16:45

Proffered Talks Session 3
Contrast and Microstructure

Chair: Paul Morgan (Nottingham)

T11: Soma And Neurite Density Imaging (SANDI) 
is sensitive to changes in glial morphology 
induced by systemic inflammation. 
Mara Cercignani (Cardiff University)

T12: Cross-species standardised 
subcortical tractography. 
Stephania Assimopoulos. (University of Not-
tingham)

T13: The effects of maternal iron levels on the 
early development of white matter microstruc-
ture in the superior longitudinal fasciculus. 
Katie Smith (Cardiff University).

T14: Comparison of susceptibility source 
separation methods without R

2
. 

Patrick Fuchs (UCL) 

T15: Constrained model-based relaxa-
tion parameter mapping using balanced 
steady state free precession. 
Zimu Huo (University of Cambridge)

16:45 - 17:30

Bill Moore Lecture: Derek Jones (Cardif 
University)
From Meteorology to Tractology: 
Forecasting a New Path in Neuroscience

Chair: Penny Gowland (Nottingham)

19:30 Conference Dinner: Cavendish Hall
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Friday 13th September 

09:00 - 09:30

Invited Speaker:  Rhodri Cusack (TCD)
Measuring Cognitive Neurodevelopment 
in Infants with Awake fMRI

Chair: Gareth Barker (KCL)

09:30 - 10:30

Proffered Talks Session 4
Quantitative Neuroimaging

Chair: Gareth Barker (KCL)

T16: Associations between Cerebrovascular 
Reactivity Delay and progression of 
Small Vessel Disease Features. 
Keelin N. Ridge, (University of Edinburgh)

T17: Haematocrit-corrected QSM + qBOLD 
reveals globally elevated brain oxygen 
extraction fraction in sickle cell anaemia. 
Mitchel Lee (UCL)

T18: Enhancing brain activity mapping 
through multi-modal data fusion and 
explainable machine learning. 
Jiri Benacek (Cardiff University)

T19: Evidence for direct control of 
neurovascular function by circulating 
platelets in healthy older adults. 
Gabriella Rossetti, (Manchester Metropolitan 
University)

T20: Age-trajectories of higher-order diffusion 
properties of major brain metabolites in cerebral 
and cerebellar gray matter using dMRS. 
Eirini Messaritaki (Cardiff University)

10:30 - 10:55 Power Pitch Sessions 3: Posters 42 - 62
Chair: Nic Blockley (Nottingham)

10:55 - 11:30 Refreshment Break, Posters 42 - 62

11:30 - 12:30

Proffered Talks Session 5
Respiratory and MSK

Chair: Pete Thelwall (Newcastle)

T21: Investigating gravitational influ-
ence on normal lung function using 
PREFUL MRI on an open scanner. 
Arthur Harrison (University of Nottingham)

T22: Quantification of gas trapping in cystic 
fibrosis using residual volume (RV) lung 1H-MRI. 
Amy V Simmons (University of Sheffield)

T23: Dynamic 19F-MRI of pulmonary venti-
lation in lung transplant recipients with and 
without chronic lung allograft dysfunction. 
Mary Neal (Newcastle University)

T24: Unlocking Muscle Fatigue: Insights from 
multi-parametric 1H, 23Na & 31P MRI in exer-
cise-induced muscle damage and inflammation. 
Fabio Zambolin, (Manchester Metropolitan 
University)

T25: Shoulder MRI Arthrograms – Is 
saline an intra-articular option? 
Charlotte Swain (Nottingham University Hos-
pital)

12:30 - 13:15 Lunch, Posters & Exhibits
13:15 - 13:45 BIC ISMRM Annual General Meeting
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13:45 - 14:15

Invited Speaker: Mary Mclean (University of 
Cambridge)
Metabolic Multinuclear MR

Chair: Rob Dineen (Nottingham)

14:15 - 14:55 Gold Sponsor Presentations
Chair: Adam Berrington (Nottingham)

14:55 - 15:20 Power Pitch Session 4: Posters 63 - 83
Chair: Eleanor Cox (Nottingham)

15:20 - 15:55 Refreshment Break, Posters 63 - 83

15:55 - 16:55

Proffered Talks Session 6
Body MRI

Chair: Sue Francis (Nottingham)

T26: Placental contractions in low, high 
and extremely high-risk pregnancies. 
Amy Turnbull (University of Nottingham)

T27: Towards accurate, reproducible 
PDFF quantification using a 3D dual-echo 
Dixon body composition sequence. 
Yifei Jin (Perspectum)

T28: Multiparametric MRI and MRS to study 
changes across the Surgical Journey in Bariatric 
Patients with Type 2 diabetes or Prediabetes. 
Abi Spicer (University of Nottingham)

T29: Rapid 3D gastrointestinal motility 
imaging using a stack-of-spirals sequence 
and compressed sensing reconstruction. 
Rebecca Baker (UCL)

T30: The application of functional renal 
MRI to improve assessment of chronic 
kidney disease (AFiRM) Study. 
Charlotte Buchanan (University of Notting-
ham)

16:55 - 17:00 Awards and Close
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Invited
Speaker 
Biographies

Jim Wild

Methods/Applications of 
Hyperpolarised Gas MRI
Learning Outcomes

•Understanding of the technical chal-
lenges of imaging a hyperpolarised non 
proton signal from a gas 
•Understanding of the aspects of lung 
function and structure that can be 
measured with HP gas MRI 
•Overview of clinical applications 

My research is the physics and engineering and clinical applications of 
hyperpolarised gas (3He and 129Xe) and proton MRI in the lungs and 
pulmonary vasculature. Physics and engineering projects include:
• Rapid acquisition methods for imaging of inhaled 
hyperpolarised gases using compressed sensing, steady 
state free precession and parallel imaging.
• Techniques for simultaneous imaging of 
1H, 3He and 129Xe in the lungs.
• RF coil hardware engineering for 3He and 129Xe lung MRI.
• 3He and 129Xe MRI at different magnetic field strengths.
• Spin exchange optical pumping physics 
for polarisation of 3He and 129Xe.
• Measuring and modelling gas flow and diffusion in the lungs; 
physiological models of alveolar geometry and gas exchange.
• Measuring dissolved phase xenon in the brain and kidneys 
These technical developments have made a clinical impact. Our 
research has demonstrated the role of these pulmonary MRI 
methods in Asthma, COPD, Cystic Fibrosis, Interstitial Lung 
Disease, Lung cancer and Pulmonary Hypertension. We have 
performed the first clinical studies in the UK with hyperpo-
larised 3He and 129Xe gas MRI. Using hyperpolarised gas and 
proton lung MRI as markers we are evaluating novel pulmonary 
therapies in collaboration with pharmaceutical companies.

In order of the talks in the program schedule
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Damian Tyler

Talk Title: Making Metabolic 
Measurements with 13C
Learning Outcomes

•Understand the different approaches 
used to generate hyperpolarized 13C 
tracers for metabolic measurements 
•With a focus on Dissolution Dynamic 
Nuclear Polarisation (d-DNP), understand 
the challenges involved in the generation of 
metabolic tracers for clinical studies 
•Appreciate the different approaches used in the acquisition of hyperpo-
larized 13C metabolic images.

Damian is currently the Director of MR Physics at the Oxford Centre for 
Clinical Magnetic Resonance Research (OCMR) and a Fellow in Medicine at 
Somerville College, Oxford. He has been based in Oxford since 2001 and 
has more than 20 years experience in the development and application of 
Magnetic Resonance Imaging and Spectroscopy (MRI/MRS). Damian gained 
his MSci in Medical Physics in 1998 and his doctorate in 2001, both from 
the University of Nottingham. He is an associate member of the Cardiac 
Metabolism Research Group (CMRG) and leads the Oxford Metabolic 
Imaging Group. Damian’s research in Oxford has been based on the study 
of cardiac structure, function and metabolism in normal and diseased 
hearts using MRI/MRS. This has included developing techniques using high 
spatial and temporal resolution CINE imaging to assess heart function and 
localized phosphorus and carbon spectroscopy to monitor and investigate 
abnormalities of metabolism. He was awarded British Heart Foundation 
Intermediate and Senior Research Fellowships to develop the technique of 
Dynamic Nuclear Polarization (DNP) for application to the study of cardiac 
metabolism in the human heart. A fundamental limitation of magnetic reso-
nance is its low sensitivity, but the recently developed technique of DNP 
provides a practical method to gain up to 10,000-fold increases in sensitivity 
in molecules with an in vivo stability of approximately one minute.  This has 
enabled visualization of 13C-labelled cellular metabolites in vivo and, more 
importantly, their enzymatic transformation into other species. This is an 

important development that could revolutionize spectroscopy using MR.

Chris Rodgers

Talk title: Getting the best of 31P 
Learning Outcomes

•Understand the main application areas 
for human phosphorus-31 MRS. 
•Understand the benefits of ultra-high 
fields and optimised RF coil designs for 
phosphorus-31 MRS. 
•Be aware of a variety of pulse 
sequences that are used to measure 
different aspects of metabolism by phosphorus-31 MRS.

I studied Chemistry MChem at Oxford and continued for a DPhil 
in Physical Chemistry. My DPhil thesis was entitled “Magnetic 
Field Effects in Chemical Systems”, supervised by Peter Hore and 
Christiane Timmel. This included the first in vitro demonstration of a 
chemical magnetic compass such as is thought to drive the magnetic 
directional sense of migratory birds. I then moved into MRI, working 
on 3T cardiac phosphorus spectroscopy with Stefan Neubauer 
at Oxford. In 2012, I was awarded a Sir Henry Dale Fellowship to 
develop 7T cardiac phosphorus spectroscopy. In 2017, I moved to 
Cambridge to lead the 7T MRI physics program there. I lead the UK 
arm of the MITI EU project imaging metabolism across the whole 
heart using a novel dipole phosphorus coil. My lab have a growing 
interest in parallel transmit neuroimaging: we have introduced new 
algorithms for pulse design, and implemented them for BOLD EPI, 
diffusion and turbo spin echo imaging. In collaboration with Dr 
Thomas Cope, we have shown that parallel transmit 7T MRI changes 
clinical management in more than 50% of patients with drug-resistant 
focal epilepsy whose prior 3T MRI and PET scans were inconclusive.
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Claudia Gandini Wheeler-
Kingshott

Talk title: Use of 23Na 
Learning Outcomes

•Understand the importance of sodium 
homeostasis for brain function and the 
challenges of sodium ions concentration 
quantification using MRI; 
•Understand the pulse-sequence 
requirements for measuring 23Na signal 
using MRI; 
•Understand the future directions for 23Na imaging at 3T and higher 
field strengths. 

Claudia A. M. Gandini Wheeler-Kingshott, PhD is  professor of 
Magnetic resonance physics at UCL (UK) where she works since 
1999. Her main interest is in developing imaging biomarkers 
for assessing brain diseases, and in particular multiple sclerosis. 
Claudia has been working on sodium imaging of the brain for 
more than 15 years, focusing on optimising methods for sodium 
concentration quantification in tissue in vivo, both in the brain 
and in the spinal cord. Claudia also has an appointment at the 
University of Pavia (Italy) where she works in a multidisciplinary 
team developing brain digital twin technology, using MRI to 
personalise computational realistic models of brain dynamics. 

Pete Thelwall

Talk title: Offbeat Nuclei with 
Upbeat Uses: Multinuclear MR in 
Clinical Research 
Learning Outcomes

•Understand that multinuclear MRI 
enables quantitative measurement 
of key physiological and metabolic 
processes 
•Learn that the challenges in multinu-
clear MR are the lower sensitivities and spin densities compared to 
1H nuclei in body tissues 
•Be aware that advanced MR technologies that are well established 
in conventional 1H-MRI (RF coil arrays, scan acceleration) are 
less well integrated for multinuclear MR, but can bring substantial 
advances in scan capabilities. 
•Understand that simple spectroscopic MR methods can bring 
advantages over imaging for key physiological measurements 

Pete Thelwall is Professor of Magnetic Resonance Physics and 
Director of the Centre for In Vivo Imaging at Newcastle University. He 
leads an interdisciplinary research team with a remit to develop novel 
MR methodologies and apply them to clinical research. He studied at 
Nottingham and Cambridge, and was a postdoc at the University of 
Florida before taking an academic post at Newcastle University. His 
current research studies use 7Li, 13C, 23Na, 19F, 31P, and 35Cl magnetic 
resonance in patient studies to quantify function and dysfunction of 
physiological and biochemical processes, and to monitor the distribu-
tion and effects of pharmacological agents and treatment strategies.
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Nicolas Boulant

Talk title: The Iseult 11.7T human 
MRI project: from first ideas to first 
in vivo images 
Learning Outcomes

•What was the most severe obstacle to 
overcome was in the commissioning of 
the 11.7T MRI scanner? 
•What were the main challenges for 
successfully acquiring human in vivo first 
images at 11.7T? 

I got a PhD in nuclear science and engineering in 2005 at MIT, 
Cambridge, USA. The subject of my thesis was the control of 
quantum open systems using liquid state NMR quantum computing. 
I then did a two-year post-doc on solid state quantum computing 
at CEA (Atomic Energy Commission) located in Saclay, France. I 
swicthed to a more applied discipline in 2007 by starting working 
on MRI at ultra-high field at NeuroSpin, still at CEA Saclay. During 
the 2007-2020 period, the main topic of my research was parallel 
transmission for brain imaging at 7T. I became head of the Iseult 
11.7T project in 2018. I have led the scientific, safety, regulatory and 
organisational efforts to test, commission and exploit the CEA unique 
whole-body 11.7T scanner since. I am deputy editor at Magnetic 
Resonance in Medicine (since 2020) and I serve as an external 
scientific advisor for Skope MRT and the Dutch 14T initiative.

Eleftheria (Laura) Panagiotaki

Talk title: Non-invasive prostate 
microstructure estimation with 
Diffusion MRI 
Learning Outcomes

•How can we infer tissue indices with 
diffusion MRI. 
•What are the key differences between 
ADC and VERDICT. 
•How can we validate imaging methods. 

Dr. Eletheria (Laura) Panagiotaki is an Associate Professor at the 
Centre for Medical Image Computing and the Department of 
Computer Science at UCL. She leads the Computational Cancer 
Microstructure Imaging group (Cami). Laura studied Mathematics 
at the University of Crete, and did a Masters in Vision, Imaging, 
and Virtual Environments at UCL. She then pursued a PhD in 
medical imaging at UCL, focusing on developing brain models 
of diffusion MRI. Near the end of her PhD, she successfully 
secured funding from EPSRC’s Doctoral Prize scheme to extend 
her research to cancer pathology, and later received an EPSRC 
Early Career Fellowship. Recently, she has taken on the role 
of training lead for the new CDT tech4health UCL/Ulster.
Laura’s research primarily focuses on the computational modeling of 
quantitative MRI and validation techniques to develop and clinically 
translate new non-invasive biomarkers for cancer (see also EP/
R006032/1). She developed the VERDICT-MRI analysis technique, 
one of the first non-invasive microstructure imaging methods for 
cancer. Together with her UCL colleagues, she is working towards the 
clinical translation of VERDICT, with the first clinical trial (INNOVATE 
PCUK ~ 365 patients; ClinicalTrials.gov identifier NCT0268927114 
- concluded) and an ongoing trial funded by CRUK (~420 patients).
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Derek Jones

Talk title: From Meterology to 
Tractology: Forecasting a New 
Path in Neuroscience 
Learning Outcomes

•To be able to explain the benefits of 
stronger gradients for characterisation 
of tissue microstructure; 
•To be aware of the possibilities for 
microstructural MRI on portable, low 
field MRI systems 

Prof Derek K Jones is an MRI physicist and is Director of the 
Cardiff University Brain Research Imaging Centre (CUBRIC).  
Before moving to Cardiff, he worked at Kings College 
London, and the National Institutes of Health, Maryland. 

He has held various external positions including Programme 
Chair of the International Society for Magnetic Resonance in 
Medicine (ISMRM) annual scientific meeting, Programme Chair 
for the European Society for Magnetic Resonance in Medicine 
and Biology (ESMRMB), Deputy Editor for Magnetic Resonance 
in Medicine, and is immediate Past-President of the ISMRM. 

Derek has 30 years’ experience in microstructural imaging and has 
more than 230 research papers on all aspects of the microstructural 
MRI pipeline. He now divides his time between focusing on micro-
structural imaging with the ultra-strong gradients of the Connectom 
scanner and helping to democratise MRI in LMICs with low field.

But most important of all, is that Derek is a graduate of 
the University of Nottingham where he first encountered 
MRI in the Sir Peter Mansfield Imaging Centre! 

Rhodri Cusack

Talk title: Measuring Cognitive 
Neurodevelopment in Infants with 
Awake fMRI 
Learning Outcomes

•Describe state-of-the-art methods for 
awake infant fMRI 
•Describe application of fMRI and deep 
neural networks to characterise devel-
oping brain  
•Present a new model of the development of visual categories in 
humans 

Rhodri Cusack is the Thomas Mitchell Professor of Cognitive 
Neuroscience at Trinity College Dublin, and Director of the Trinity 
College Institute of Neuroscience. His team studies how the brain 
and mind develop in infants using neuroimaging and online testing. 
The goals are to understand healthy development and to provide 
tools for earlier diagnosis in the neonatal intensive care unit.
 
Rhodri studied physics at Pembroke College, Cambridge, and then 
obtained a PhD in psychology from the University of Birmingham. 
He was then a postdoctoral fellow and subsequently group leader 
at the MRC Cognition and Brain Sciences Unit in Cambridge, and 
then an Associate Professor at the Brain and Mind Institute of the 
University of Western Ontario. He joined Trinity College in 2017.
 
His research has been funded by the ERC, SFI, IRC, 
MRC, Wellcome Trust, BBSRC, EPSRC, CIHR, and 
NSERC. He has 136 peer-reviewed publications.
 
Learn more about our team and its research at www.cusacklab.org

http://www.cusacklab.org


BiographiesBiographies

2827 BIC-ISMRM 2024 Annual Meeting Nottingham 11th - 13th September 2024

Mary Mclean

Talk Title: Metabolic Multinuclear 
MR
Learning Outcomes

•What causes the low sensitivity in 
imaging of carbon and deuterium, and 
how is it addressed differently for the 
two nuclei? 
•What are some metabolic processes 
that can be measured using carbon and 
deuterium? 
•What are some possible clinical applications of these techniques in 
the future?

Mary McLean is a Principal Research Associate in the University of 
Cambridge Department of Radiology and leads their postgraduate 
programme. Her main expertise is in clinical MR spectroscopy, 
following a PhD in Biochemistry with Peter Morris. Most of her career 
has focused on diagnosis and monitoring of cancers and neurological 
conditions. She is on the Governance Board of ISMRM and formerly 
served on the Executive Committee of the British and Irish Chapter, 
where she was founding editor of the newsletter Positive Spin.
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Diffusion MRI acquisition methods for post-mortem imaging at 10.5 T 
Benjamin C. Tendler1, Wenchuan Wu1, Shaun Warrington2, Edward J. Auerbach3, Hamza Farooq3, Steen 

Moeller3, Pramod Pisharady3, Christophe Lenglet3, Sarah Heilbronner3,4, Essa Yacoub3, Kamil Ugurbil3, Saad 
Jbabdi1, Stamatios N. Sotiropoulos2, Karla L. Miller*1, Jan Zimmermann*3,5 (*Equal Contribution) 

1Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, 
University of Oxford, Oxford, UK; 2Sir Peter Mansfield Imaging Centre, School of Medicine, University of 
Nottingham, UK; 3Centre for Magnetic Resonance Research, University of Minnesota-Twin Cities, MN, USA;  
4Baylor College of Medicine, TX, USA, 5Department of Neuroscience, University of Minnesota, MN, USA. 
 
Introduction: Post-mortem imaging on ultra-high field (UHF) MRI scanners aims to leverage the 
benefits of increased signal amplitude and long scan times to acquire exemplary datasets for detailed 
anatomical investigations. When considering a conventional diffusion-weighted spin-echo (DW-SE) 
sequence with an EPI readout, short T2 and increased B0 inhomogeneity at UHF can lead to images 
with (1) reduced SNR, (2) T2*-blurring and (3) geometric distortions. These challenges are exacerbated 
for post-mortem tissue, which has reduced T2 and diffusion coefficient versus in vivo.  
In this work, we investigate sequences for post-mortem diffusion imaging on a 10.5 T wide-bore 
scanner with a conventional gradient set (GMax = 70 mT/m). Specifically, we perform a theoretical SNR 
comparison of the (1) DW-SE, (2) diffusion-weighted stimulated-echo1 (DW-STE) and (3) diffusion-
weighted steady-state free precession2 (DW-SSFP) sequence. Based on our findings, we acquire DW-
SSFP data in a post-mortem macaque brain at 0.4 mm isotropic resolution. We demonstrate that DW-
SSFP achieves distortion-free, high-resolution post-mortem diffusion MRI data at 10.5 T. 
 
Theory: Figure 1 depicts the diffusion-encoding modules of the DW-SE, DW-STE and DW-SSFP 
sequences. The DW-STE1 sequence replaces the 180˚ pulse with two 90˚ pulses separated by a “mixing 
time”, during which the magnetization is stored longitudinally. Long mixing times increase the b-value 
whilst only incurring T1 signal loss, making this an attractive possibility for short T2 tissues. However, 
DW-STE signal-forming mechanisms result in a 2x signal reduction versus DW-SE. Long mixing times 
also necessitate an EPI readout, incurring the same T2

*-blurring and distortion challenges as DW-SE.  
DW-SSFP2 contains only a single diffusion-encoding gradient per TR. By using very short TRs (20 - 40 
ms), transverse magnetization persists over multiple repetitions and forms effective diffusion gradient 
pairs. The resulting signal is a combination of diffusion-weighted spin and stimulated echoes. DW-SSFP 
achieves high-SNR efficiency and strong diffusion-weighting in post-mortem tissue3, with improved 
SNR at 7T versus 3T4. Its short TR is compatible with a single-line readout for distortion-free imaging.  
 
SNR efficiency is a measure as the relative signal per unit time, defined as 𝑆𝑆 ⋅ 𝜌𝜌1/2 (𝑆𝑆 = signal level, 𝜌𝜌 
= fraction of TR spent acquiring signal)3. Based on experimental estimates of T1 & T2 in a post-mortem 
macaque brain at 10.5 T, Figure 2 displays the optimised SNR-efficiency predictions of the DW-SE, DW- 
STE & DW-SSFP sequence. We identify that the DW-SSFP sequence achieves increased or similar levels 

 
 
 
Figure 1: Diffusion encoding of 
the (a) Diffusion-weighted spin-
echo (DW-SE), (b) Diffusion-
weighted stimulated echo (DW-
STE), (c) Diffusion-weighted 
steady-state free precession 
(DW-SSFP) sequence.  
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Figure 2: Optimised SNR efficiency estimates for 
the DW-SE (yellow), DW-STE (red) and DW-SSFP 
(blue) sequence for estimated T1 & T2 values 
(1350 & 28 ms) in a post-mortem macaque brain 
at 10.5 T. DW-SSFP predicts increased SNR 
efficiency across the investigated regime. 
Simulations performed assuming diffusivity = 
210-4 mm2/s, T2

* = 14 ms and Tdead = 5 ms (i.e. time 
dedicated to other pulses3). 

 
of SNR efficiency across the b-value range, whilst also having the benefit of very low image distortion.  
 
Methods: Data were acquired in a fixed post-mortem macaque brain on a Siemens 10.5T scanner 
(CMRR, University of Minnesota) (GMax = 70 mT/m, GSlew = 200 T/m/s). To avoid gradient duty cycle 
limitations, SNR-efficiency optimisations were performed setting Gmax = 52 mT/m. From the 
optimisations, DW-SSFP data were acquired at 0.4 mm (isotropic) with an effective b-value3 of 3040 
s/mm2 & 5430 s/mm2 (alongside b0-equivalent): G = 7.4/34.7/52 mT/m,  = 10.6 ms, q = 3.2/15/22.5 
mm-1, TR = 21 ms, TE = 16 ms,  = 14o, 121 directions, 13.5 minutes/direction, single-line readout. Data 
were reconstructed offline, denoised (NORDIC5), and processed with a Tensor model incorporating 
the DW-SSFP signal equation6.  
 
Results & Discussion: Acquired DW-SSFP data 
displays strong diffusion contrast (Figure 3). 
Principal diffusion direction maps (Figure 4) 
demonstrate high-SNR diffusivity estimates 
across the brain, without geometric distortion. 
DW-SSFP may offer considerable benefits for 
the challenging imaging environment of post-
mortem tissue at 10.5 T, notably when 
restricted to conventional gradient sets. 

 
 
Figure 4: Principal 
diffusion direction 
(modulated by FA) 
in a post-mortem 
macaque brain (0.4 
mm isotropic 
resolution).  
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Figure 3: Image contrast of two b = 5430 s/mm2 
volumes. Arrows highlight some key differences. 
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Introduction: A key challenge in diffusion MRI (dMRI) is resolving complex white matter (WM) fibre 
architecture and WM bundles through relatively low spatial resolution data. To push the limits of spatial 
resolution, one approach is to take advantage of the greater baseline signal available when scanning at high 
and ultra-high field1,2. However, high-field MRI has its own set of challenges3. In this work, we present a high 
resolution dMRI dataset for the non-human primate (macaque) brain 
obtained using an ultra-high field 10.5T whole-body human MRI scanner. 
We propose in-vivo and ex-vivo acquisition protocols for pushing 
resolution towards the mesoscale using an ultra-high field scanner and 
showcase exemplar tractography reconstructions.  
Methods: We acquired dMRI data of the macaque in-vivo and ex-vivo 
using the MAGNETOM (Siemens, Erlangen) 10.5T scanner at the CMRR, 
University of Minnesota, fitted with SC72D gradients (70 mT/m, 200 
T/m/s slew rate). Data were acquired using custom-made coils for in-vivo 
and ex-vivo scans (32-channels receive). In-vivo acquisitions from an 
anesthetized macaque used a PGSE-EPI sequence at an isotropic resolution of 0.75mm (TE=67ms, TR=6.55s) 
with two shells (b=1000, 2000 s/mm2), with 4 repeats of 116 volumes (464 volumes in total), including 36 
b=0 volumes (scan time=50 mins). Ex-vivo data were acquired using a diffusion-weighted steady-state free 
precession (DW-SSFP) protocol4,5 (TE=16ms, TR=21ms, flip angle=14o, single-line readout) with an isotropic 
spatial resolution of 0.4mm, two q values (150 & 225 cm-1 equivalent6 to b=3,040 & 5,430 s/mm2) and 121 
volumes, including 6 b=0 equivalent volumes (scan time=~28hrs). Data were reconstructed offline, denoised 
in the complex domain using NORDIC7 and preprocessed using the following steps: Susceptibility-induced off-
resonance fieldmap estimation; Eddy-current, motion and susceptibility artifact correction8; QC metric 
estimation9 (SNR, angular CNR, outliers); Tensor estimation using the lower shell; Fiber orientation 
estimation (up to 3) using parametric spherical deconvolution and a stick response kernel10; Non-linear 
registration to standard NMT11 macaque space12; Standardised tractography using landmark-based protocols 
in NMT space (XTRACT)13,14. For the DW-SSFP data, the first two distortion correction steps were skipped, as 
data were distortion-free. A rigid-body transform of all volumes to the first was instead used to account for 
drifting. 

Figure 2 – A) Example pre-processed dMRI data from the in-vivo (left) and ex-vivo (right) acquisitions. Top rows: the average 
across all volumes for each diffusion-weighted shell. Bottom row: the RGB color-coded principle diffusion direction map derived 
from DTI, modulated by FA. B) A higher magnification version of the ex-vivo RGB-color coded FA map. 

Figure 1 – Angular contrast-to-noise 
ratio (CNR) maps for highest b-shell of 
in-vivo and ex-vivo data. 
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Results and Discussion: Figure 1 presents angular CNR maps for the highest acquired shells, indicating high 
diffusion and uniform contrast, both in-vivo and ex-vivo. Figure 2 examples the preprocessed diffusion data 
from the in-vivo and ex-vivo scans. Top and middle rows show averaged volumes across respective b-shells, 
while bottom row shows DTI RGB-color coded maps. The reported spatial resolutions demonstrate feasibility 
to scan are amongst the highest reported to date for the macaque brain, both in-vivo and ex-vivo, and are 

achieved at high b-values with a conventional gradient insert. Figure 3 
shows estimated crossing-fibres in the centrum semiovale, revealing 
sensitivity to detect 3-way crossings at very high resolution. WM tracts using 
XTRACT were reconstructed in each case. Figure 4 shows a set of tracts used 

to assess overall tractography performance, revealing high overall 
correspondence between in-vivo and ex-vivo data. XTRACT was also used to 
reconstruct the superior longitudinal fasciculi (SLFs I/II/III) that mediate 
fronto-parietal connections. Figure 4 (right) shows a coronal slice through 
the SLFs and a comparison to SLFs in the human brain (HCP tract atlas, 1k 
subjects, 1.25mm isotropic resolution). Finally, we constructed a whole-
brain tract density image (TDI) using the ex-vivo data and probabilistic tractography. This is shown in Figure 
5, where the spatial distribution of streamlines has been RGB colour-coded by principal fibre orientation and 
binned into 0.2mm isotropic voxels. 
Acknowledgements:  This work is supported by NIH (Grant UM1NS132207) and the Center for Mesoscale 
Connectomics. SW and SNS are supported by ERC (101000969). BCT is supported by a Sir Henry Wellcome 
Postdoctoral Fellowship (Wellcome Trust) [222829/Z/21/Z]. 

Figure 4 - Major WM fibre bundles reconstructed with XTRACT. Left: comparisons of in-
vivo and ex-vivo tracts used to assess overall performance. Right: coronal slices of the SLFs 
for the in-vivo and ex-vivo data, with an average tract HCP atlas shown for reference. 

Figure 3 – Estimated fibre orientations (up to 3 fibres per voxel), overlaid on FA maps for in-vivo (left) and ex-vivo (right). 

Figure 5 – Coronal views of 
probabilistic TDI at 0.2mm. 
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The 7T Implant Problem:  Participant Exclusion Rates in Ultra-High Field MRI 
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Introduction: The enhanced signal-to-noise of ultra-high field MRI systems has afforded numerous 
benefits for clinical imaging and research [1]. However, access to these methods is limited for 
individuals with medical implants, as only around 300 implants have been tested at 7T, compared to 
approximately 6000 at 3T or lower [2], particularly impacting clinical and older populations.  The UK7T 
Safety Process Group, was formed from representatives of all member sites of the UK7T network  
(Cambridge, Cardiff, Glasgow, KCL, Nottingham, Oxford, UCL) to develop common practice and share 
information to widen the pool of individuals who could safety be scanned at 7T. 
Methods: To evaluate current screening practice, questionnaires consisting of 73 common surgeries, 
medical and cosmetic procedures were sent to the UK7T sites.  Sites’ responses were categorised 
according to whether such participants would be ‘Included’, ‘Uncertain’ (additional information would 
be necessary) or ‘Excluded’ from imaging at 7T. 
The 73 procedures were classified into fifteen implant classes. For example, the ’bone fixation’ class 
contained twelve separate procedures/implants (cranial fixation plates, screws, sternal wiring, etc). 
Responses were combined to evaluate the proportion of procedures which would be excluded across 
all UK7T sites.  The implant classes (and number of procedures) were:  surgical clips (17), bone fixation 
(12), dental implants (9), other implants (9), surgery without implant (5), active implants (AIMD) (4), 
contraceptive implants (4), stents & filters (3), tattoos (3), breast implants (2), heart valves (1), joint 
replacement (1), ocular implants (1), shunts (1), surgical mesh (1).  Note that, for example, all types of 
joint replacement were treated as a single procedure in the original questionnaire. 
To evaluate the impact of these screening decisions, implant prevalence data were obtained from a 
study of the general population of Hungary [3], and from the source data of an investigation of 
inpatients at Johns Hopkins Hospital, USA [4].  The implant classes above had been chosen to match 
the available population data from these two sources. Population exclusion rates could thus be 
estimated for both patient and general populations by applying the proportion of the implant 
exclusions for a given implant class to the prevalence of that implant class within the general/patient 
populations. 
Results:  
The implant exclusion rates are shown in Fig. 1A.  The highest implant exclusion rates were for shunts, 
active implants, heart valves and stents/filters which were all excluded in more than 75% of all 
procedures of these classes. The only implants which were excluded in fewer than 25% of all 
procedures were ocular implants and surgical mesh.  
Data from combining the questionnaire data with the population implant prevalence data are shown 
in Fig 1B.  Within the general population, the most common implants were bone fixation devices, 
ocular, contraceptive and dental implants [3].  Each of these has an implant exclusion rate <50%, 
resulting to a maximum population exclusion rate of 5.9% for bone fixation devices.  For the patient 
populations [4], more than 5% of the population is excluded for each of active implants, bone fixation 
and stents/filters.  

 

 

 

 
Fig. 1. (A) Proportion of decisions, across UK7T sites, which resulted in exclusion of a class of implant 
(‘Excluded’), or a situation where additional information would be required to evaluate MR 
conditionality (‘Uncertain’). (B) Implant exclusions expressed as a proportion of the general population 
(left) and the patient population (right). 
The overall exclusion rates, across all implant classes, are tabulated in Table 1.  For the general 
population, an estimated 19.4% of the population would be absolutely contraindicated, with a 
further 23.4% requiring further information to confirm MR conditionality.  Thus, the remaining 
57.2% would be cleared for scanning at 7T without any further information required.    

Excluded Uncertain 

General Population 19.4% 23.4% 

Patient Population 39.5% 30.9% 

Table 1. The overall implant exclusion rate for all implant classes shown in Fig 1.  
Discussion: The estimated exclusion rate for a patient cohort is twice that of the general population, 
highlighting the potential challenges in scanning these cohorts.  However, as we do not have 
equivalent data from other field strengths, we cannot draw inferences about the relative difficulty of 
screening at ultra-high field compared with 3T.   This work assumes an equal distribution of procedures 
within the implant classes, which may not be accurate.  In our experience, the potential for surgical 
clips results in a larger number of exclusions than this analysis indicates, perhaps due to the difference 
between the reported and potential presence of unreported clips. These data relate to research 
scanning, which will influence the risk-benefit decision making of the sites. Finally, the population data 
are sourced from two different countries (USA and Hungary) – the distribution of implants is likely to 
vary between countries. 
Conclusions: This work has estimated the exclusion rates for participants and patients being scanned 
at the UK7T sites.  It has highlighted the classes of implants for which an enhanced risk assessment 
framework would have most impact to increase the number of individuals with implants who have 
access to 7T. Safety testing of bone fixation implants, stents and filters could significantly reduce 
patient attrition rates at 7T. 
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Deuterium Metabolic Imaging (DMI) results at 7T following [2H2] and [2H7] glucose 
ingestion 
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Introduction 
Deuterium (2H) metabolic imaging (DMI) using labelled glucose is a potentially advantageous method 
for mapping glucose metabolism in the human body [1,2].  Most DMI studies have employed doubly 
labelled glucose (glucose-D2) [1-3], but fully labelled glucose (glucose-D7) can also be used, providing 
higher deuterium concentrations in downstream metabolites. This yields a higher signal-to-noise 
ratio. Here we present a detailed comparison of 7T DMI measurements in the brain in 15 participants 
who ingested either glucose-D7 or glucose-D2.   
Methods 
Data was acquired on a 7T Philips Achieva  
scanner with a dual-tuned 2H/1H birdcage 
coil (Rapid Biomedical). Baseline scanning 
at natural abundance (NA) included a 1H 
MPRAGE scan and a 3D 2H chemical shift 
image (CSI) (NSA=6, Tscan=670 s, 
FOV=180x180x120 mm3, TR=230 ms, 
TE=2.4 ms, 15 mm isotropic voxels). 
Participants then drank an aqueous 
solution of 0.75g/kg (body-weight) of 
glucose-D2 or D7. Followed by 4-5 repeats of 
the 2H CSI scans. Eight participants ingested 
glucose-D2 while seven ingested glucose-D7. 
 
Each CSI dataset was denoised using a 
Tucker decomposition [4] with a core matrix 
size of [64 6 6 4] (1 spectral and 3 spatial 
dimensions). Spectra were then fitted using 
OXSA-AMARES [5] to model signals from 
water (HDO), glucose (Glc), glutamate and 
glutamine (Glx) and lactate (Lac). Each 
glucose label for each anomer [6] was fitted 
with a different Lorentzian peak 
(four/fourteen for glucose-d2/-d7). MPRAGE 
images were registered to the MNI-152 
image using the FSL toolbox [7-9] masks 
were then created for the occipital and 
frontal lobes, and whole-brain. Complex 
amplitude maps were then averaged over the different masks to obtain metabolite signal values at 
each timepoint.  
Results 
Metabolite amplitude maps from CSI data of  two subjects who ingested glucose-d2 or glucose-d7 
(averaged over all CSI datasets acquired more than 50 minutes after ingestion) can be seen in Fig. 1. 

Figure 1. 3D CSI data from two participants after 
ingestion of D2 glucose (left) and D7 glucose 
(right). Spectra were fitted and then averaged over 
all scans acquired > 50 mins after ingestion, and 
overlaid on the MPRAGE image. Experimental data 
(purple) and fits (yellow) from highlighted voxels 
are shown along with amplitude metabolite maps. 
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The signal (normalised to NA HDO) averaged over all subjects who ingested glucose-d2 (blue) or 
glucose-d7 (pink) is shown in Fig. 2 for the different brain regions. The error-bars show the standard 
deviation over subjects. 
Discussion  
Figure 1 shows generally increased metabolite amplitudes in images and spectra arising from 
glucose-D7 compared with glucose-D2. These increased signal amplitudes for glucose-D7 are more 
evident in the participant-averaged time-course plots (Fig. 2). At late time-points, the D7/D2 ratios 
for Glc, Glx and Lac are similar to values predicted using the ratio of the number of relevant 2H labels: 
7/2 for glucose, 3/2 for Glx, and Lac (corresponding to number of labels at the C1 and C6 sites of 
glucose) [10].  
Conclusion 
Glucose-D7 ingestion 
produces significantly 
larger HDO and Glx signals 
compared to glucose-D2. 
This allows more accurate 
spectral fitting and hence 
improved mapping of the 
signals from labelled 
metabolites. It was 
possible to track 
concentration changes in 
different regions in a 
reasonable scan time 
using DMI. This lays the 
ground for future studies 
that aim to use glucose-
D7 ingestion followed by 
DMI to investigate in vivo 
metabolism in brain 
tumour patients. Thus far, 
data has been acquired 
successfully from one brain tumour patient.  
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Figure 2. Time-courses of metabolite signals for occipital lobe, frontal 
lobe, and the whole brain, averaged over participants who ingested 
D2-glucose (blue) or D7-glucose (pink). Values have been normalised 
by scaling with NA HDO signals. A running average was performed 
over data from all participants. Error bars represent the standard 
deviation over subjects. 
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Introduction: Myelin is a fundamental component of human nervous system function that facilitates 
saltatory conduction, increases action potential velocity, physically anchors axons and reduces 
crosstalk [1]. When myelin is compromised the consequences are severe, as for example in multiple 
sclerosis (MS), a chronic neurodegenerative disease involving central nervous system inflammation 
which causes demyelination and axonal loss [2,3]. While MRI is a valuable tool for diagnosing MS [4], 
conventional MRI techniques lack specificity to accurately quantify myelin changes [5,6], thus the 
development of more specific MRI techniques is needed [7]. Here, we focus on asymmetric spin echo 
(ASE) MRI acquisitions to encode susceptibility-induced contrast [8]. In particular, one technique that 
utilises ASE is magnetic field correlation (MFC) imaging, which quantifies the microscopic magnetic 
field inhomogeneities (MFIs), i.e. occurring on a length scale comparable to that of water diffusion. 
MFC has previously been used to quantify iron content within tissue [9,10], which is associated with 
oxidative stress [11], but has not been applied to myelin. Here, we use numerical simulations to assess 
the sensitivity of MFC to demyelination and axonal loss, and whether and to what extent it can 
characterize myelin status.  
Methods: Using MATLAB, we constructed a 200 μm x 200 μm substrate model comprising 
approximately 7500 infinitely long axons (modelled as hollow cylinders) arranged orthogonally to an 
external magnetic field (B0), along the x-axis with a strength of 7 Tesla (Fig. 1A). The focal coordinates 
for the fibres were placed using rejection sampling. Each cylinder's outer radius ranged from 0.5 μm 
to 3 μm, and was assigned a g-ratio value, randomly chosen from a Gaussian distribution, with a mean 
of 0.65 and standard deviation of 0.05, from which the corresponding axon radii, and hence myelin 
thickness, was derived. Axon density was controlled by changing the intra-axonal area fractions 
ranging from 1% to 25%. To simulate demyelination within the substrate, a subset of fibres was 
randomly selected to have their g-ratios set to 1 before recalculating the axon radii. This resulted in 3 
compartments: axonal, myelin, and extracellular. The areas corresponding to the myelin compartment 
was allocated a magnetic susceptibility χ value of -0.08 ppm. The myelin-induced MFIs were calculated 
using Eqs. 1-3 in [12] to produce a spatial map of the Larmor frequency Φ (Fig. 1B). Using Monte Carlo 
methods, we simulated random walks of 20,000 particles diffusing for 100 ms within the extracellular 
compartment of the substrates. Each walk had a diffusion coefficient D0 of 2 μm2/ms, a time step of 
0.1 ms and reflected on collision with myelin boundaries. For each trajectory, the frequencies Φ(r(t)) 
at the location r of each step position were recorded and used to calculate the MFC as γ2K(t), where 
the temporal correlation function 𝐾𝐾(|𝑡𝑡|) =< 𝐵𝐵(0) 𝐵𝐵(𝑡𝑡) >  [9,10] was computed as 𝐾𝐾(|𝑡𝑡|) =
<𝜙𝜙(𝑟𝑟(0))𝜙𝜙(𝑟𝑟(𝑡𝑡))>

𝛾𝛾2 , with <...> indicating the average over all the particle trajectories and 𝛾𝛾 indicating the 

proton gyro-magnetic ratio. The approximation 𝑀𝑀𝑀𝑀𝑀𝑀(𝑡𝑡)  =  𝑀𝑀𝑀𝑀𝑀𝑀(0) ቀ1 + 4𝐷𝐷0𝑡𝑡
𝐿𝐿2 ቁ

−3/2
, Eq. 18 in [9], 

was used to characterise 𝑀𝑀𝑀𝑀𝑀𝑀(𝑡𝑡) (Fig. 1C), and gave insight into the MFC’s characteristic length (L) 
and temporal (𝜏𝜏 =  𝐿𝐿2/4𝐷𝐷0) scales.  
Results: By increasing demyelination within the substrate, we observed that the characteristic time τ 
decreased. This effect was mediated by axon density, suggesting both demyelination and axon density 
affect MFC (Fig. 2). We estimate τ ≈ 0.175 ms at 7T in myelinated substrates (axon area fraction ≈ 
25.6%, demyelination = 0%). A 33% increase in demyelination in a substrate with the same axon 
density had a τ of   0̴.437 ms. In substrates with an axon area fraction of 15.74%, a 33% increase in 
demyelination induced an increase in τ ≈ 0.333 ms, therefore this effect may be used as a novel marker 
for myelin status.  

 

Conclusions: Our results indicate for the first time that MFC is sensitive to myelin in a measurable way 

at high field (B0 = 7T), suggesting MFC as a novel approach to characterise myelin status in 
neurodegenerative diseases, e.g. MS.  
Acknowledgements: This work was funded by UKRI BBSRC grant BB/X005089/1. MP, MJ and KS are funded by 
UKRI FLF MR/T020296/2. 
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Fig. 1. (A) Schematic layout of a fully-myelinated substrate (aspect ratio is exaggerated for viewing purposes). 
Axons in red (n = 7601) are surrounded by myelin (blue), with a cellular area fraction (axons & myelin) of 60.35%. 
(B) . Larmor frequency shift map of the substrate, showing positive shifts (red) and negative shifts (blue) due to 
myelin. An example of a particle trajectory in the extracellular compartment is shown (black). (C) Temporal 
correlation decay as a function of time (black) for two substrates of same axon density ( ̴21%) with two different 
levels of demyelination (0 and 33%), across a time scale of 100 ms. The approximation used to characterise MFC 
decay is fitted to the data (red and green). For demyelination = 0%: fitted MFC(t=0) = 577 s-2, and τ = 0.35 ms ; 
for demyelination = 33%: fitted MFC(t=0) = 322 s-2, and τ = 0.77 ms. 
 

Fig. 2. Colour map showing the MFC (s-2) (left) and the time constants (ms) (right) for varying percentages of 
demyelination and axon density. 
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Whole-brain imaging in rats using MRI and 3D microscopy: A cross-scale, multi-modal 
approach 
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P.S. Morgan1, T.D. Farr4, S.N. Sotiropoulos1  

1Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, UK. 2Institute of 
Cardiovascular Sciences, University of Birmingham, UK. 3Wellcome Centre for Integrative Neuroimaging (WIN), 

University of Oxford, UK. 4School of Life Sciences, University of Nottingham, UK. 
 
Introduction: Diffusion MRI (dMRI) is a powerful tool 
for non-invasive mapping of brain connectivity and 
microstructure. However, dMRI measures are indirect, 
noisy, and of low spatial resolution. In contrast, optical 
imaging of post-mortem brain tissue serves as a 
microstructural gold standard, which can be used to 
evaluate, interpret, and validate MRI contrasts [1]. Yet, 
mapping 2D microscopy onto 3D MRI poses many 
challenges. Fortunately, advances in tissue clearing [2] 
and light-sheet microscopy [3] enable optical imaging 
of intact rodent brains, thereby facilitating optimal 
MRI-microscopy comparisons in 3D. Whilst previous 
studies combined MRI and light-sheet microscopy in 
mice [4-6], our approach (Fig. 1) allows for MRI, whole-
brain tissue clearing, white matter staining, and 3D 
microscopy of the much larger rat brain.  

Methods: To optimise ex-vivo MRI acquisition 
protocols for the rat brain, we perfused 5 male 
Sprague-Dawley rats (Charles River, UK), with (n=3) 
and without (n=2) gadolinium-based contrast agent 
(2mM Multihance). High-resolution MRI was 
performed on all samples using two preclinical 
scanners (7T Bruker BioSpec 70/30 or 70/20 USR) 
with differing hardware (transmit/receive volume 
coil or surface cryo-coil) and software (PV6 or 
PV360). We optimised acquisition protocols for 
multi-shell (200 µm isotropic, b=4000, 6000s/mm2) 
90-direction dMRI, using 2D- and 3D-EPI. A T2-
weighted 3D-RARE structural scan (100µm) was also 
acquired. This dataset ensured that the pre-
processing MRI pipeline (Fig. 2), which we developed, 
was generalisable to different acquisitions, data 
qualities, and large multi-site studies. 

Rat brain hemispheres were optically cleared using a passive or active approach, with the AdipoClear+ 
[7] protocol and SmartBatch+ device [8-9] respectively. White matter was then stained using 
antibodies targeting myelin (CST #62596, Encor MCA-7G7) and neurofilament (Sigma AB1991, Encor 
MCA-9B12). Once the brain hemispheres were optically transparent, high resolution (5μm) 
volumetric imaging of sample autofluorescence (561nm) and antibody signal (640nm) was conducted 
using an UltraMicroscope II (LaVision Biotec) or BLAZE (Miltenyi Biotec) with ImspectorPro software 
(LaVision BioTec). As the rat brain is larger than the field of view for 3D microscopy, multiple tiles with 
~30% overlap were required. The resulting image stacks were stitched together using FIJI and 
converted to nifti format to produce a high-resolution 3D image (10µm) of brain microstructure.  

Fig. 1. A cross-scale, multi-modal approach 
for whole brain imaging in rats 

 

Fig. 2. Automated pre-processing pipeline for 
structural and diffusion MRI of the rat brain 
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Results and Discussion: White matter staining, 
which is challenging to combine with tissue clearing, 
was achieved in the much larger rat brain (Fig. 3) 
using both passive and active approaches. The 
passive approach is simple but slow and results in 
shrinkage. In contrast, the active approach preserves 
sample size and is faster, but requires an 
electrophoretic device and expensive reagents.  
Additionally, we found both approaches to be 
compatible with gadolinium, which allows for 
shorter MRI acquisitions with improved SNR. 

3D microscopy allowed us to observe specific 
microstructural features across the whole brain 
hemisphere and simplified registration to MRI. 
We found that even a simple affine 
transformation aligns MRI with 3D microscopy 
well (Fig. 4). Only marginal improvement was 
observed with a standard non-linear registration 
(ANTs) using the default parameters. This 
outcome contrasts with the complex framework 
required to align histology with MRI [10].  

Structure tensor analysis (which is being expanded to 
3D) was used to estimate features, like fibre 
orientation, from microscopy (Fig. 5). These 
estimates will be compared with measures obtained 
non-invasively using dMRI. 
Conclusion: By providing an end-to-end pipeline for 
integrating whole-brain 3D microscopy, white 
matter staining, and MRI in the same rat, this work 
paves the way for bridging microscopic information 
to a macroscopic resolution in larger brains, thereby 
improving our understanding of dMRI contrasts and 
the microstructural features they capture.  

Acknowledgements: JH is supported by an MRC-funded studentship (grant MR/N013913/1). Special 
thanks to Kurt Schilling (Vanderbilt University) for his advice and support, and to Cristiana Tisca and 
Aurea Martins-Bach (University of Oxford) for their role in developing the acquisition protocols for ex 
vivo rodent MRI. 

Fig. 3. Active transport of detergent and 
antibodies with the SmartBatch+ device 
accelerates clearing and labelling, whilst also 
preserving sample size 

Fig. 4. Aligning autofluorescence signal, after 
AdipoClear+, with the corresponding T2-weighted 
scan is relatively straightforward.   
 

Fig. 5. Myelin staining with the SmartBatch+ 
provides a ground-truth measure of neuronal 
fibre organisation at a microscopic sale. 
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1H MR spectroscopy to evaluate the effects of a glycolysis inhibitor and temozolomide treatment 
in a mouse model of glioblastoma 
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Enhanced glycolysis is the most distinctive hallmark of cancer (Warburg effect)1.  Lonidamine (LND) is 
a mitochondrial inhibitor that has a modest antineoplastic impact when used as a single agent2. 
However, when combined with temozolomide (TMZ), it results in a dramatic effect in melanomas3. 
TMZ is the standard of care chemotherapy and has increased the median overall survival in patients 
with Glioblastoma (GBM)4. Lonidamine results in selective tumour intracellular acidification, lactate 
accumulation and depletion of ATP production by inhibiting various metabolic pathways related to 
lactate production such as mitochondrial-bound hexokinase II, monocarboxylate transporters (MCTs) 
and the mitochondrial carrier pyruvate (MCP)3,5,6. A previous study reported the effect of LND and 
TMZ in a human melanoma xenograft grown subcutaneously using 31P MRS and 1H MRS with a 
selective Multiple Quantum Coherence pulse sequence (SelMQC)7. However, the combination of 
these drugs has not been tested in glioblastomas. The current study was thus performed to evaluate 
the synergistic effect of LND and TMZ using longitudinal MRS.  

Methods: C57BL6 mice were injected intracranially with 2.5x105 GL261 GBM cells in the right cortex. 
Once the tumours were observed on T2 weighted MRI (>2 mm in diameter), animals were treated for 
five consecutive days with a combination of intraperitoneal injection (i.p. 100mg/kg) of Lonidamine 
and 50mg/kg TMZ via oral gavage (n=5), while sham control animals received saline for the same 
period (n=15, i.p. injections). Imaging was performed on days 0 (baseline), 3 (during treatment), and 
6 (end of treatment). Single voxel (2x2x2 mm3) MR spectra were acquired from the tumour region 
using a PRESS sequence: TR = 2000 ms, TE1 = 9.13 ms and TE2= 7.37 ms, number of averages= 200, 
complex points = 2048 and spectral width =4401 Hz. Metabolite amplitude ratios (tCho/tCr, tCho/NAA 
and mI/tCr) were calculated using QUEST algorithm in jMRUI software. Lactate-edited spectroscopy 
was conducted using an ISIS-SelMQC8. The voxel position and dimensions were the same as for the 
PRESS spectrum. Sequence parameters were: TR=2000 ms, 16 averages (128 FIDs), 2048 points, 8012 
Hz spectral width. 

Results: A representative T2-weighted image of a mouse bearing the GL261 tumour with the MRS 
voxel placement displayed as an inset in Figure 1. A. Representative in vivo

 
1H PRESS spectra from the 

tumour region of mice treated with saline (Fig. 1 B) and a combination of LND+TMZ (Fig. 1 C). 
Representative 1H ISIS-SelMQC spectra are shown in Fig 1. D (day 0) and E (day 6) for the same mouse 
treated with LND+TMZ. No significant change in tumour volume (Fig. 2A) between the two animal 
groups was observed. However, there was a steady decrease in the tCho/NAA ratio in the treated 
animals while the saline controls demonstrated an increase in the tCho/NAA ratio in comparison to 
baseline. This resulted in a significant difference in the percentage change of tCho/NAA between the 
two groups at the end of treatment (p=0.04, Fig. 2B). The LND+TMZ group also demonstrated a 
significant decrease in Lip+Lac/tCr (p=0.01, Fig. 2C) and mI/tCr ratio (p=0.03, Fig. 2D) on day 6 
compared to saline control. Lactate signal was clearly visible using 1H ISIS-SelMQC before the initiation 
of treatment, however, it could not be detected at the end of the treatment (Fig. 1 D and E).  

Discussion and Conclusion: In this preliminary study, we demonstrated a significant metabolic shift in 
tumours treated with LND+TMZ even though there were no differences in the tumour growth 
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between treated and control animals. However, this could be due to the limited sample size since we 
only had two usable spectra from this group at the end of the treatment. A significant reduction in 
tCho/NAA suggests an arrest in cellular proliferation, as well as DNA damage-induced apoptosis by 
TMZ, triggered in cancer cells3. A significant reduction of Lip+Lac/tCr is probably due to a significant 
decrease in tumour lactate as evidenced by the 1H ISIS-SelMQC. The disappearance of lactate signal 
indicates inhibition of lactic acid production and subsequent depletion of ATP, resulting in reduced 
tumor cell proliferation due to the synergistic effects of LND and TMZ 7. However, as the tumours kept 
growing at a similar rate to controls, further studies are needed in a larger cohort as well as longer 
study points to evaluate whether the metabolic changes are only acute in nature or whether the 
therapeutic effect (reduction in volume) of the combined treatment with LND+TMZ happen much 
later, which would further indicate that metabolic changes are earlier marker of treatment response. 
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Fig. 2. A-D. Box plots comparing 
percentage change (with respect to 
baseline) in tumour volume and three 
amplitude ratios (tCho/NAA, 
Lip+Lac/tCr and mI/tCr) between 
saline and LND+TMZ groups. Asterisk 
indicate that the difference between 
groups reached a significance level of ≤ 
0.05. n denotes the number of samples 
used for quantification. 
  

Fig. 1. A_E. 
1H PRESS spectra (B and C), 

voxel overlaid on T2 weighted image 
(A) comparing treatment response on 
day 6 in two different groups with 
GBM (Saline and LND+TMZ, 
respectively), showing Lip +Lac, NAA, 
Glx, tCr, tCho and mI peaks from the 
tumour. D, E, 1H ISIS-SelMQC spectra 
of tumor region showing the effect of 
LND+TMZ on Lactate on day 6 (E) 
compared with baseline (D). 
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Multiparametric 1H/23Na MRI for analysing the ionic 
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Background: 

Breast cancer is the most common cancer in UK females, accounting for almost a third (30%) of all 
female cases. Around 11 500 patients die per year from breast cancer [1-3]. Studies have correlatd the 
more agressive, highly hypoxic subtypes, such as tripple negative breast cancer (TNBC), with increased 
intratuoral Na+ levels thought to promote survival and methastasis [4-7]. This highlights an urgent need 
for new treatments that target ionic transporters within the breast tumour tissue. 23Na MRI can be 
used to assess the efficacy of repurposed sodium-transport targeted drugs and conventional 
chemotherapies in limiting disease progression, by interfering with the local hypoxic 
microenvironment and metabolic adaptations required for cancer survival. 

In this study, we describe the optimisation of  multiparametric 1H/23Na MRI for analysing the breast 
cancer microenvironment in a preclinical orthotopic TNBC tumour model. We present data on Na+ 
dynamics, tumour oxygenation and metabolic changes, and correlate those with disease progression. 
By investigating changes in Na+ content and distribution within the tumour, as well as by evaluating 
changes in glucose content and tumour oxygenation, this study aims to research a potential correlation 
between the hypoxia-mediated tumour progression (via metabolic adaptation and oxygen deprivation) 
and Na+ dynamics. 

Methods: 

We used an in vivo longitudinal (3 week) xenograft mouse model to  investigate the breast tumour 
microenvironment and disease progression  in response to Na+ transport targeted drugs or 
chemotherapy. Ethical approval was granted by University of York Animal Welfare and Ethical Review 
Body, under the authority of the UK Home Office. 

Data acquisition was perforemd using a 7T Bruker Biospec 70/30 USR AVANCE III, with a 12 channel 
RT-shim system (B-S30) and a preinstalled 660mT/m imaging gradient set (BGA12S). Imaging was 
carried out using a dual-tuned linear 1H/23Na transceiver coil (ID 35 mm, RAPID Biomedical GmbH).  

Intratuomural Na+ in female Rag2-/- γc-/- Balb/c and Rag2 -/- IL2rg -/- C57BL/6 and129 mix mice 
bearing orthotopic TNBC tumours (MDA-MB-231s) was imaged using a 2D gradient echo spiral out 
sequence.  

The distribution of Na+ between the intra and extracellular compartments was assessed using the Tm-
DOTP exogenous paramagnetic polyanionic contrast agent injected i.p. 45 min prior to data acquistion, 
using a Chemical Shift Imaging (CSI) apparoach [8].  

Variations in glucose levels within tumours were explored using a   Chemical Exchange Saturation 
Transfer (CEST) MRI imaging sequence. Tumour oxygenation was evaluated using oxygen enhanced 
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MRI following 3 cycles of consecutive exposure to medical grade air and 100% medical grade oxygen 
compressed gas.  

Results: 

We confirm elevation in the Na+ concentration in xenograft breast tumours [5]. Our novel high 
resolution 23Na imaging data highlights a heterogenous Na+ distribution across the tumour. CEST 
confirms increased glucose concentration within tumour tissue. We observe  limited response to gas 
challenges in the in tumour compared to counter-lateral muscle tissue (Figure 1). Additionally, we 
present the results of our CSI analysis to compartmentalise the 23Na signals and elaborate on the 
limitations of Tm-DOTP i.p. administration for the purpose of mapping Na+ distribution within the extra 
and intracellular spaces of the breast tumour. 

Conclusion & Discussion: 

Our data points towards an ionically dysregulated microenvironment characterised by Na+ elevations, 
with limited oxygen delivery and subsequent glycolytic preference. Data suggest a hypoxic tumour 
microenvironment in control animals and variations in multiparametric measures are explored in 
response to different Na+ channel inhibiting drugs and chemotherapy.  We describe our approach on 
using MRI to evaluate multiple aspects of the tumour microenvironment and understand the 
connections between them. Future studies will use the developed methodology to explore response 
to metabolic regulators and hypoxia inhibitors/ stabilisers. Data will also be combined with post-
mortem benchtop biology such as gene and protein expression studies, and immunohistochemistry.  

 

 

 

 

Figure 1. 23Na and CEST MRI in preclinical breast tumours. A. Representative scans and 23Na signal 
overlay at imaging week 1 and 3, regions of interest correspond to the phantom (red), tumour (blue) 
and reference tissue (green); B. Changes in maximum 23Na signal in tumour Vs control tissue over time, 
* p<0.05; C. Tumour dimensions at each imaging date; D. CEST results, the CEST z-spectra shows the 
intensity of glucose chemical shift (area between 3 and 4 ppm) in each region of interest [9]. 
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Lipid composition in the breasts of BRCA1/2 genetic mutation carriers via chemical shift-
encoded imaging 

Sai Man Cheung1,2, Kwok Shing Chan2,3, Yazan Masannat4, Senthil Ragupathy5, Zosia Miedzybrodzka2,  
Jiabao He1,2  
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5Department of Radiology, Aberdeen Royal Infirmary 
 
Introduction: Breast cancer is a major and expanding health challenge, despite significant 
improvement in survival rate [1]. Genetic mutation carriers of BRCA1/2 have over 30% increased risk 
of developing breast cancer and receive annual DCE-MRI surveillance [2]. DCE-MRI contrast is sensitive 
to tumour angiogenesis, however detects malignancies that are well under development. 
Deregulation of lipid composition, including monounsaturated, polyunsaturated and saturated fatty 
acids (MUFA, PUFA and SFA), has been shown in the breast of BRCA1/2 carriers using single voxel 
spectral edited MR spectroscopy [3], and in the peri-tumoural region of the breast [4]. Novel chemical 
shift-encoded imaging (CSEI) allows rapid lipid composition mapping of the whole breast, and the 
spatial distribution may further distinguish the disease state. We therefore hypothesise that lipid 
composition in the breast of BRCA1/2 carriers show no difference from patients with breast cancer 
and healthy controls, and determine the repeatability of CSEI. 
Methods: Twenty-one patients with invasive ductal carcinoma (age 31 – 55 years), 22 BRCA1/2 genetic 
mutation carriers (age 32 – 51 years) and 15 healthy controls (age 24 – 49 years) participated in the 
study. Patients with a tumour size larger than 1 cm on mammography and have not had hormonal 
therapy or chemotherapy were eligible. Participants with 
diabetes or on long-term medications that might alter lipid 
metabolism were excluded. The study was approved by the 
North West – Greater Manchester West Research Ethics 
Committee (ID: 19/NW/0225), and written informed consents 
were obtained from all the participants (Figure 1). 
CSEI All images were acquired on a 3 T whole-body clinical MRI 
scanner (Ingenia dStream, Philips Healthcare, Best, Netherlands). 
Lipid composition images were acquired from all participants 
using a 2D fast field echo sequence [5,6] with 16 echoes, initial 
echo time of 1.14 ms, echo spacing of 1.29 ms, repetition time of 
60 ms, reconstruction pixel size of 2.0 × 2.0 mm2 and slice 
thickness of 3.0 mm, with subsequent repeated acquisition.       Figure 1. Study design. 
Data Processing Image analysis was conducted in MATLAB (R2020a, MathWorks Inc., Natick, MA, 
USA). The maps of the number of double bonds in triglycerides were computed from raw data, before 
subsequent quantification of MUFA, PUFA and SFA as a fraction of the total lipids [5,6]. The delineation 
of tumour was conducted on the first echo of magnitude image, with reference to DCE-MRI images. 
The whole breast in BRCA1/2, patients and healthy controls, and the peri-tumoural region in patients 
were the four regions-of-interest. The whole breast was defined to contain only adipose and 
fibroglandular tissue in BRCA1/2 and healthy controls, and excluding the tumour in patients. The peri-
tumoural region was defined as an annular ring of 16 mm (8 voxels) around the tumour. Adipose voxels 
with lipid signal below 60% of total signal were excluded from further analysis. The mean lipid 
composition from the regions-of-interest was subsequently computed. 
Statistical Analysis All statistical analysis was performed in the R software (v4.3.1, R Foundation for 
Statistical Computing, Vienna, Austria). Wilcoxon signed rank paired tests were performed for 
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Investigating Prostate Cancer Using QSM In Vivo 
Laxmi Muralidharan1, Manju Mathew2, Adam Retter2, Joey Clemente2, Lucy Caselton2, Sumandeep 

Kaur2, Julia Markus2 , Shonit Punwani2, Karin Shmueli1 
1Department of Medical Physics and Biomedical Engineering, University College London, UK 

2Centre for Medical Imaging, University College London, UK 
 
Introduction: Previous QSM studies in prostate cancer (PCa) have investigated the potential to detect 
intraprostatic calcifications to use as fiducial markers for radiotherapy[1] and post biopsy[2] but none 
have assessed subtle tissue susceptibility changes. Blood’s susceptibility is directly proportional to its 
deoxygenation[3], and low oxygenation (hypoxia) is thought to occur early in the evolution of PCa and 
is linked to an aggressive phenotype[4]. All this underpins our aim to investigate whether QSM can 
help detect and classify cancerous lesions in the prostate. 
Methods: 27 subjects undergoing PCa screening were recruited as part of a clinical study [5] and 
scanned on a 3T Philips Ingenia using a 4x4 channel receive coil array on the front with a 4x4 array in 

the table. All subjects were given Buscopan to reduce 
rectal gas and bowel motion. 7 patients had lesions and 
underwent prostatectomy (surgical group), 8 patients 
had malignant lesions on biopsy and underwent other 
treatment (non-surgical group) and 12 patients had 
radiologically negative MR results for prostate cancer 
(control group). 
Optimised 3D GRE parameters [6] included: FOV 420 x 
320 x 128 mm, 1 mm isotropic resolution, 5 in-phase 
echoes: TE1 4.6 ms, ΔTE 6.9 ms, and SENSE factor 3. A 
QSM pipeline was optimized in 9 control subjects and 
applied to all subjects: The complex signal was de-noised 
using  Marchenko-Pastur Principal Component Analysis 

(MP-PCA)[7]. Fig.1 demonstrates 
effective denoising in the susceptibility 
maps. Total field maps from a non-
linear fit of the denoised complex data 
[8] underwent Laplacian 
unwrapping[9]. Background field 
removal was performed using VSHARP 
[10, 11] with a maximum kernel width 
of 25 mm and a whole prostate mask 
contoured (MIM software[12]) on the 
T2-weighted images acquired in the 
same session/different session (FOV 
180x180x96.6 mm, reconstructed voxel 
size 0.375x0.375x3 mm) by an 
experienced radiologist and 
transformed into the QSM space using the global registration of T2w and echo-combined [13] 
magnitude GRE images (NiftyReg[14, 15]). Susceptibility calculation was performed using iterative 
Tikhonov regularization[16] with the default regularization parameter α=0.05. Cancerous Lesion ROIs 
in the surgical (9) and non-surgical (10) groups, and negative MRI ROIs in the control (14) and non-
surgical (3) groups were obtained in a similar manner to the whole prostate contour. To minimize 
partial volume effects, ROI masks were eroded by 1 voxel using a spherical kernel. A t -test was 
performed to compare the ROI mean susceptibility values between lesions and negative MRI ROIs. 

Fig.1: Susceptibility maps and ROI contours 
(red) with and without the MP-PCA 

denoising in noisy datasets in the different 
cohorts  

 

         
       
    

      
         

            
              

              
               

                  
      

Fig.2: Susceptibility maps and lesion ROI contours (red) in the 
surgical cohort. The Gleason grade of the lesions for each 

subject is included. There are no salient lesion susceptibility 
differences on visual inspection. 

 

          
         

           
        
         

          
           
           
        
         

          
          

           
        
         

        

       

     

          
         

           
        
         

          
           

          
          

           

          
           

 

 

 

 

 

 

 

 

comparison of lipid composition in the whole breast and the peri-tumoural region in patients, with 
Wilcoxon rank sum tests performed between the whole breast of BRCA1/2, patients and healthy 
controls. The within-subject coefficient of variance (%wCoV) was calculated as: [standard deviation / 
mean] × 100%. A p-value < 0.01 was considered a statistically significant difference for 4-group 
comparisons, after Bonferroni correction. 
Results: The participant demographics of the entire cohort are shown in Table 1.  
BRCA1/2 and Patients There was no significant difference in mean 
MUFA, PUFA and SFA in the whole breast of BRCA1/2 against the 
whole breast nor the peri-tumoural region of patients (Figure 2). 
BRCA1/2 and Controls There was a significantly higher mean MUFA 
(p<0.01) and lower mean SFA (p<0.01) in the whole breast of BRCA1/2 
against the whole breast of healthy controls, although there was no 
significant difference in mean PUFA (Figure 2). 
Patients There was a significantly lower MUFA (p<0.01) and higher SFA 
(p<0.01) in the peri-tumoural region compared to the whole breast, 
although no significant difference in PUFA (Figure 2).                          Table 1. Cohort demographics. 
Within-subject CoV The %wCoV in all the four regions-of-interest were below 10.0% (Figure 3).  

   Figure 2. Difference in lipid composition.    Figure 3. Repeatability in lipid composition. 
Discussion: Deregulation of lipid composition in the breast of BRCA1/2 genetic mutation carriers 
resembled the diseased group, serving as potential precursor of breast cancer. There was a decrease 
in MUFA in the peri-tumoural region to support accelerated membrane synthesis for tumour growth 
[7], while an increase in SFA in the peri-tumoural region to avoid lipotoxicity and enhance 
chemoresistance [7]. CSEI has excellent repeatability in lipid composition mapping of the breast critical 
for effective disease monitoring.  
Conclusions: Lipid composition in BRCA1/2 showed similarity to positive control, and lipid composition 
in the peri-tumoural region was altered due to tumour growth. CSEI has excellent repeatability for 
accurate measurement of lipid composition in the breast.  
Acknowledgements: The authors would like to thank Dr Matthew Clemence (Philips Healthcare Clinical 
Science, UK) for clinical scientist support. The project was funded by Cancer Research UK (CRUK) and 
Friends of Aberdeen and North Centre for Haematology, Oncology and Radiotherapy (ANCHOR). 
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Soma And Neurite Density Imaging (SANDI) is sensitive to changes in glial morphology 
induced by systemic inflammation 
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Introduction: Effects of systemic inflammation on the brain have been implicated in the etiology of 
mental illnesses and neurodegenerative diseases [1] and are thought to be mediated by actions on 
glial cells [2]. As inflammation-induced changes in glial function are coupled with changes in cell 
morphology (increase in cell body (soma) volume and retraction of processes) [3], it is plausible that 
diffusion-weighted (DW) MR techniques could be sensitive to these alterations. In line with this 
hypothesis, we have previously shown that the apparent diffusion coefficient (ADC) of choline, 
measured by DW MR spectroscopy, is increased after injection with low-dose lipopolysaccharide (LPS), 
a well-known method for inducing systemic inflammation [4]. DW MRI offers the advantage of 
providing whole-brain coverage and better spatial resolution than spectroscopy, albeit with less 
cellular specificity. Here, we investigate whether advanced multi-compartmental models of DW MRI, 
like Soma And Neurite Density Imaging (SANDI, [5]), may overcome this lack of specificity to provide a 
useful biomarker of neuroinflammation. We test this hypothesis by scanning healthy participants 
twice, once after administering intravenous LPS and once after placebo. 
Methods: Thirteen healthy participants (M/F=7/6, mean age [range] = 28.8 [21-41] years) have been 
included to date. All were screened to exclude underlying neurological, immunological, cardiovascular 
or psychiatric condition, including substance misuse. All participants received an intravenous injection 
of either LPS (1 ng/Kg) prepared from Escherichia coli O:113 (U.S. Standard Reference Endotoxin, 
manufactured for the Clinical Center, NIH) or normal saline (placebo control) in random order in two 
separate study sessions. After injection, participants were kept under observation, with blood 
pressure and body temperature regularly monitored, and blood samples taken at baseline, 3½ and 6 
hours post injection. After 4-hours, participants underwent an MRI scan on a 3T Siemens Connectom 
scanner including MPRAGE, DW-MRI and MRS (not presented here). The total duration was ~75 
minutes, with a break in the middle. The DW sequence used to fit SANDI had: TE=65ms, =10ms, 
=22ms, maximum b value=7500 smm-2, 5-shells, 3-mm isotropic voxels. Data preprocessing included 
correction for Gibbs ringing, drift, motion, susceptibility and eddy-currents effects. SANDI was fitted 
using the SANDI Matlab Toolbox publicly available at: https://github.com/palombom/SANDI-Matlab-
Toolbox-Latest-Release, yielding maps of soma and neurite density, soma radius, extra-cellular 
fraction (estimated as 1 minus soma and neurite signal fractions) and extra-cellular diffusivity. The b=0 
images were affine registered to each participant’s MPRAGE, which was then segmented and warped 
to MNI space. The 48 cortical regions of interest (ROIs) from the Harvard-Oxford Atlas were then 
mapped back to the native space of SANDI maps. Every ROI was masked with each participant’s grey 
matter segment to minimize partial volume with CSF. The mean SANDI parameters were extracted for 
each ROI and compared within-subject using a paired sample t-test. False discovery rate (FDR, [6]) was 
used to control for multiple comparisons. We hypothesized that LPS would induce an increase in soma 
radius, and possibly soma density. 
Results: SANDI maps were of good quality for all participants (Fig 1A). The only parameters to show 
an effect of LPS (p<0.05) were the extracellular diffusivity (De, decreased) and soma radius (Rsoma, 
increased) in several ROIs. After FDR, De remained significantly reduced in the post-central gyrus 
(original p value 0.0001) and the superior parietal lobule (original p value 0.002), while Rsoma remained 
significantly increased (original p value 0.0002; Cohen’s d=1.01) in the anterior insula (Fig 1B). 

 
 

 

 

Results and Discussion: Diamagnetic regions (blue arrows), 
likely to be calcium-rich secretion residues, were observed in 
the prostates of several subjects (Fig. 2). Visually, there were no 
clear susceptibility differences in ROI susceptibilities between 
the groups. We found no significant difference in the mean 
susceptibility values (t(32)= -1.4620, p=0.16). Although we 
would hypothesize that hypoxia in cancerous lesions would lead 
to increased susceptibility, there seems to be a general trend of 
lower mean susceptibility values in the lesions compared to 
negative MR. These results could be attributed to prostate 
cancers’ poor vasculature compared to other tumours such as 
renal carcinomas [17, 18].  
Conclusions: An optimized high-resolution sequence and 
processing pipeline were used to obtain prostate susceptibility 

maps. We found no difference in the mean susceptibility values in the cancerous lesions compared to 
the negative MRI non-cancerous tissue. More data are being acquired to improve the statistical power 
of this preliminary study.  
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Fig. 3: Box plot of mean 
susceptibility values in cancerous 

lesion ROIs (surgical  and non-
surgical groups) and negative MRI 

ROIs (control and non-surgical 
groups). 
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Introduction: White matter (WM) bundles connecting cortical areas with subcortical nuclei are crucial 
for relaying and modulating cortical function (1,2). Their disruption is linked to abnormal function and 
pathology in neurodegenerative and mental health disorders (3,4). Diffusion MRI (dMRI) and 
tractography enable exploration and reconstruction of WM bundles (5,6), but their relative size, the 
complexity and associated bottlenecks, make their estimation challenging and sensitive to anatomical 
priors (7,8). Standardised tractography approaches (9,10) provide a way to overcome these challenges 
enabling reproducible and consistent bundle delineation. Previous efforts involved cortico-cortical 
connecting bundles, or tract reconstruction using subject-specific protocols (11). Here we build upon 
our previous work (9,12,13) introducing tractography protocols for delineating cortico-subcortical 
connections, between cortex and the amygdala, hippocampus, striatum and thalamus. Guided by 
chemical tracer literature in the macaque, we devised protocols for the macaque, and then extended 
to the human. We incorporated these protocols into a common space framework (13,14) and assessed 
their efficacy in predicting subcortical nuclei across species based on their connectivity patterns. 
Methods: Tractography protocols for 7 subcortical bundles were defined using a standardised 
approach (9). They were first defined for the macaque brain and then transferred to the human using 
correspondingly defined landmarks. Each protocol included a unique combination of anatomically-
defined masks, delineated in standard macaque space (F99), chosen based on literature descriptions 
of the tracts (eg. macaque tract-tracer studies). Protocols included the amygdalofugal tract (AMF), 
anterior commissure, sensorimotor and frontal cortico-striatal bundle (STB) / extreme capsule (EC), 
sensorimotor and frontal Muratoff Bundle (MB)/Subcallosal Fasciculus. Even if not a cortico-
subcortical bundle, we included the extreme capsule (EmC) that runs close to the putamen connecting 
the insula and frontal cortices. 
These protocols were added to our 
standardised set of cross-species 
XTRACT protocols of mainly 
cortico-cortical bundles (9,12). 
Using dMRI data from 6 ex-vivo 
rhesus macaque brains (13) 
(available through PRIME-DE) and 
50 unrelated HCP subjects (15) we 
performed tractography in human 
and macaque. We evaluated the 
new protocols in 2 ways. First, we 
assessed if the addition of 
subcortical bundles allowed 
identification of cross-species 
similarities of subcortical nuclei, 
based on their connectivity 
patterns to respective landmark 
bundles. KL-divergence was used as a measure of divergence as in (13,14). Then, we explored if 
including subcortical tracts increases predictability of cortical areas and translation of cortical maps 
across species. We used measured T1/T2 (myelin) maps for human and macaques and assessed if 
subcortical connections improve predictability of one from the other (12,13). 

Figure 1 Tractography and tracer results. MB: Muratoff bundle/Subcallosal 
fasciculus; StB/EC: Striatal bundle/external capsule; EmC: extreme 
capsule. Tracer image adapted from Schmahmann & Pandya, 2009. 

 

 

A     B  
 

Fig. 1. A: SANDI maps obtained for one participant, De is measured in m2/ms, Rsoma in m; B: mean anterior insula soma 
radius (in m) for every participant after placebo and LPS injection. The inset shows the location of the ROI (red) on the 

MNI template. 
 
Discussion: These preliminary results support the hypothesis that DW MRI is sensitive to changes in 
glial cell morphology induced by systemic inflammation, when an advanced (SANDI) model of the 
signal is used. The finding of increased soma radius in the anterior insula is consistent with cell body 
swelling, and with the previous literature highlighting the central role of the insula in immune-brain 
communication [2]. Limitations of this work include the small sample size, and the coarse image 
resolution, which could result in partial volume effects. We are currently exploring approaches to 
mitigate this problem [7]. Further analyses of the associations between soma radius changes and 
immunological responses are currently on-going. 
Conclusions: SANDI could provide a valuable non-invasive tool to measure the effects of systemic 
inflammation on the brain. 
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Results/Discussion: Fig.1 shows 
examples of tractography 
reconstructions relative to 
bundles identified by chemical 
tracing, and how their relative 
positions are preserved across 
macaques and humans (e.g. EmC 
is more lateral than the EC, MB is 
at the dorsal tip of the caudate). 
Fig.2 shows maximum intensity 
projections of the reconstructed 
tracts. Using the similarity of 
connectivity patterns of 
subcortical nuclei to WM tracts, 
we identified corresponding 
nuclei between humans and 
macaques (Fig.3) when 
considering subcortical tracts 
(blue dashed line, Fig.3A), 
compared to not using them (red 
dashed line). For instance, human 
putamen has more similar 
connectivity (lower divergence) to 
macaque putamen, with STBs contributing to their connectivity profile, compared e.g. to macaque 
hippocampus or thalamus that connect to other bundles. Similarly, we used the cross-species similarity 
of connectivity patterns throughout the cortex to translate cortical myelin maps. Our myelin map 
prediction was improved in both species when considering subcortical tracts (Fig. 4, r=0.8 vs 0.74).  

Acknowledgements: SA, SW and SNS are supported by an ERC Consolidator grant (101000969). 

Figure 2. Maximum intensity projections of the new subcortical bundles for 
macaques and humans. Averages of 6 animals and 50 human subjects. 

Figure 3. KL divergence between corresponding human and macaque 
subcortical ROIs. (A) KL-Divergence values of macaque to human sub-
cortical nuclei, when new subcortical tracts are included (blue dashed 
line) vs not (red dashed line). (B) KLD maps in the macaque for human 
nuclei (each row for a different human nucleus – left hemisphere). 

Figure 4. Predicted macaque myelin maps 
from human ones, based on similarity of 
connectivitity patterns to WM tracts. 
Prediction is better with the addition of 
subcortical tracts. 



Proffered Talks Session 3Proffered Talks Session 3

6059 BIC-ISMRM 2024 Annual Meeting Nottingham 11th - 13th September 2024

 2 

small group. These preliminary findings provide initial insights into the effects of maternal iron 
deficiency on white matter microstructure in the SLF, laying the foundation for examining longitudinal 
progression throughout early childhood, across additional timepoints and brain regions.  
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The effects of maternal iron levels on the early development of white matter microstructure 
in the superior longitudinal fasciculus 
 
Katie Smith, Simone R. Williams, Jessica E. Ringshaw, Michal R. Zieff, Chloë A. Jacobs, Layla Bradford, Khula South 
Africa Data Collection Team, Derek K. Jones, Kirsty Donald*, Carolyn B. McNabb  
  
*Corresponding author: kirsty.donald@uct.ac.za   
 
Introduction: Iron deficiency is the most common nutritional deficiency worldwide (World Health 
Organisation, 2020; https://www.who.int/health-topics/anaemia), and is prevalent amongst pregnant 
women, posing significant risks to optimal brain development in their children. This micronutrient 
deficiency may cause effects on child neurodevelopment, leading to negative consequences on 
learning and performance in school. Even with the use of standard dietary management, iron 
deficiency may persist, with long-term impacts on brain development and behavioral 
outcomes. Research has identified poor cognitive and neurodevelopmental outcomes in children 
exposed to low maternal iron levels [1], with iron deficiency in early childhood associated with 
neurocognitive deficits in late adolescence [2]. 
 
A recent study investigating the effects of iron deficiency across childhood and adolescence revealed 
that lower haemaglobin concentration (an indicator for iron levels) was associated with worse 
cognitive performance and lower fractional anisotropy (an indicator of white matter integrity) in the 
superior longitudinal fasciculus (SLF) and uncinate fasciculus [3]. The SLF develops slowly throughout 
the first 2 years of life [4] and could be particularly susceptible to the impacts of low maternal iron 
levels. Evidence of the SLF’s role in executive functioning [5], and its susceptibility to maternal iron 
deficiency suggests the SLF could provide a link between maternal iron deficiency and poor cognitive 
outcomes in children.  
  
Methods: In this study, we explore a unique dataset comprising diffusion-weighted imaging (DWI) MRI 
scans from children in South Africa, where nutritional risk is high. Scans were collected in children at 
3-months of age (N=17) and combined with exposure measures of maternal haemoglobin (Hb) and 
ferritin, as indicators of maternal iron levels. DWI acquisition parameters include a voxel size of 
1.5mm³, phase encoding directions (A>P and P>A), 104 diffusion directions per phase, repetition time 
(TR) of 3272ms, echo time (TE) of 101.2ms, and b-values ranging from 0 to 2000 s/mm².  
  
The imaging data were preprocessed using multi-parametric principal component analysis (MPPCA 
[6]) for denoising and slice-wise outlier detection (SOLID [7]) on un-merged DWI data, susceptibility-
induced distortion correction, eddy current, and motion correction [8], followed by multi-shell multi-
tissue constrained spherical deconvolution [9]. Subsequent diffusion tensor imaging, tract 
segmentation and tractometry, including fractional anisotropy (FA), mean diffusivity (MD), and radial 
diffusivity (RD) analyses, were conducted. We used linear regression analysis in R to examine the 
relationship between iron deficiency (measured using maternal haemaglobin [Hb] and ferritin levels) 
and white matter microstructure (fractional anisotropy [FA], mean diffusivity [MD] and radial 
diffusivity [RD]).  
  
Results: Results suggest that there is no significant correlation between maternal Hb levels and any 
mean DTI measures in the SLF at 3 months of age (FA: F(1, 11) = 1.429, p = 0.257, MD: F(1, 11) 
= 0.182, p = 0.678 and RD: F(1, 11) = 0.250, p = 0.628. Similarly, we show no significant correlation 
between maternal ferritin levels and all mean SLF DTI measures (FA: F(1, 11) = 0.067, p = 0.801, 
MD: F(1, 11) = 0.008, p = 0.932, RD: F(1, 11) = 0.016, p = 0.902).  
 
Discussion: These findings suggest that, at 3-months, maternal iron (as measured by Hb and ferritin) 
does not have a measurable impact on the microstructure of white matter in the SLF of infants in this 

T13



Proffered Talks Session 3Proffered Talks Session 3

6261 BIC-ISMRM 2024 Annual Meeting Nottingham 11th - 13th September 2024

 

 

Results: Figure 1 shows a visual comparison of the outputs from the various methods. Figure 2 shows 
ROI comparisons for four primarily paramagnetic and two primarily diamagnetic regions of interest. 
Discussion and Conclusions: Figure 1 shows that the MEDI based χ-separation algorithm suffers from 
artefacts (highlighted with red dashed circles), originating near the nasal cavity. Further, in the frontal 
lobe the separated maps look like thresholded bulk susceptibility maps (not shown). This results in no 
clear delineation of the substantia nigra which is corroborated in Figure 2 where the variance in the 
substantia nigra is much larger than the variance of any of the other approaches. 
The other approaches yield similar visual results, with DECOMPOSE and χ-sepnet appearing least 
noisy, and χ-sepnet having a notably higher contrast in the diamagnetic component compared to 
DECOMPOSE. This contrast difference is not reflected in the ROI statistics in Figure 2 which suggest 
that χ-separation (especially the χ-separation iLSQR based method) yields better apparent separation, 
that is higher paramagnetic and more strongly diamagnetic (lower) mean values, when compared to 
the other approaches and the QSM. χ-separation does come with an increased variance, which 
corroborates the lower visual quality of these maps. 
Without a ground truth it is not possible to compare the accuracy of the models. In terms of precision, 
χ-sepnet generally provides the lowest variance within these ROIs, likely due to its powerful machine-
learning-based denoising. DECOMPOSE shows the lowest sensitivity to the number of echoes but 
takes much longer to compute (multiple hours) χ-sepnet is computationally the fastest, with χ-
separation in between those. 
Acknowledgements: PSF and KS are funded by European Research Council Consolidator Grant DiSCo 
MRI SFN 770939, MTC was supported by Cancer Research UK Multidisciplinary Award 24348. 
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Figure 3 Box plots comparing model outputs for four paramagnetic and two diamagnetic deep brain structures. QSM denotes the input QSMNet 
reconstruction used in the χ-separation iLSQR and MEDI approaches. DCS: diamagnetic component susceptibility and PCS: paramagnetic component 
susceptibility. 

 

 

Comparison of Susceptibility Source Separation Methods without R2 
Patrick S. Fuchs, Matthew T. Cherukara, Karin Shmueli 

Department of Medical Physics and Biomedical Engineering, University College London 
Introduction: Susceptibility source separation methods allow separation of diamagnetic (negative) 
and paramagnetic (positive) magnetic susceptibility sources co-located in a voxel. This is possible 
due to the distinct effects of susceptibility on the tissue relaxation rate (𝑅𝑅2

′ ) and on the magnetic 
field (Δ𝐵𝐵). Sources of opposing sign cancel each other out in their contribution to the magnetic field 
inhomogeneity, but their contributions sum in shortening the relaxation rate. 
The relationship between susceptibility and relaxation rate however is not straightforward. This 
means that, unless the transverse relaxation rate 𝑅𝑅2 is mapped separately, to allow direct estimation 
of 𝑅𝑅2

′  from the 𝑅𝑅2
∗ relaxation rate, assumptions need to be made about the contribution of the 

susceptibility to 𝑅𝑅2
∗. In many clinical applications there may not be matched 𝑅𝑅2 or spin-echo 

acquisitions. In these cases, there are currently four published algorithms that allow for an 
approximate separation of paramagnetic and diamagnetic sources. These are: the DECOMPOSE 
algorithm from Chen et al.[1], χ-separation and χ-sepnet by Shin et al.[2], and QSM-ARCS by Kan et 
al.[3]. Of these, all except for the most recently published QSM-ARCS are publicly available. In this 
abstract, we compared the available algorithms on a 12-echo and a 5-echo dataset to investigate how 
well their different approaches relate and highlight some potential caveats of the respective methods. 
Methods: The methods were compared using two acquisitions with a different number of echoes. We 
acquired 3D-GRE using both 12 echoes and 5 echoes on a 3T Prisma system (Siemens AG, Erlangen, 
Germany) in a healthy volunteer with prior approval from our local ethics committee during a single 
scan session. The acquisition parameters were: 1 mm3 isotropic resolution, 15o flip angle, 3-fold 
parallel imaging acceleration, with a 192×256×176 mm field of view. Echo times were 
(TEfirst/ΔTE/TElast) 2.03/1.59/30 and 5/7/38 ms with a bandwidth of 890 Hz/pix and 280 Hz/pix for the 
12 and 5-echo acquisitions, respectively. For anatomical segmentation a T1 weighted MPRAGE 
acquisition with 1 mm3 isotropic resolution was acquired. Since χ-sepnet essentially incorporates a 
QSMnet[4]-like reconstruction in the separation algorithm and it has been shown that DECOMPOSE is 
sensitive to the dipole inversion algorithm choice[5] all data were processed using the pipeline 
provided with χ-sepnet: Laplacian based phase unwrapping[6], V-SHARP background field removal[7] 
using a mask generated with FMRIB’s brain extraction tool[8] (BET), and QSMnet to compute input 
susceptibility maps. As χ-separation and χ-sepnet use a combined local field map input (as opposed to 
separate echoes for DECOMPOSE) the 
multi-echo phase was combined using non-
linear fitting[9] from the MEDI Toolbox prior 
to the processing described above. To 
generate the proxy 𝑅𝑅2

’  maps used in χ-
separation and χ-sepnet, 𝑅𝑅2

∗ maps were 
computed using ARLO[10]. Both algorithmic 
variations of χ-separation are included 
separately (“MEDI+0”, and “iLSQR” based 
regularisation, these are not the input QSM 
methods). All algorithms were run with 
their default parameters. 
To compare the maps several brain regions 
of interest were segmented. The thalamus, 
putamen, caudate, globus pallidus and 
substantia nigra were segmented using 
MRICloud[11], and the corpus callosum was 
segmented using FreeSurfer[12] on the T1 
image as it is optimal for white matter. 
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Figure 1 Axial and sagittal slices of the four different source separation 
algorithms (columns). Paramagnetic (positive) sources at the top, and 
diamagnetic (negative) sources at the bottom. Data are shown for the 5-echo 
acquisition. Red circles denote artifacts. 
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worst-case scenario for banding 
artifacts. We simulated various 
datasets of 6-10 phase cycles with 
an increment of 2. The Monte Carlo 
simulation is repeated 5000 times for 
each combination of SNR and phase 
cycles. In the second simulation, we 
apply total variation as the 
regularization term on the T1 and T2 
maps to investigate its effects on a 
simulated uniform phantom. The 
optimization is implemented in 
MATLAB. 
Results:  In Figure 1, the 
constrained method consistently 
shows lower mean errors in T1 and 
T2 estimations across all SNR levels, 
outperforming the gold standard 
PLANET method.  Figure 2 shows 
the effect of the total variation. This 
simulation serves as a proof of 
concept, illustrating that these 
regularization techniques can 
effectively guide the reconstruction 
process similar to what is observed 
in image optimization tasks. 
Discussion: The proposed method 
can be extended to multiple coils for 
parallel imaging. A key advantage is 
its ability to jointly solve for 
parameter maps by leveraging 
information across phase cycles and 
coils, effectively utilizing data 

redundancy. One limitation is the 
assumption of an ideal single-
component relaxation model. Factors 

like diffusion, multi-compartment, and magnetization transfer can cause deviation and the 
steady state equation used in this work cannot fully capture this complexity2. It is possible, at 
least partially, to include these secondary effects into the model. Future work will include 
phantom and in vivo acquisitions to validate the results. 
Conclusions: The proposed constrained model-based fitting approach demonstrates 
robustness to noise across various phase cycles and SNR levels and outperforms the gold 
standard PLANET method. This is due to 1) jointly solving parameter maps over an image, 
2) constraining the search space, and 3) allowing additional regularizations.  
References [1] Y. Shcherbakova. MRM, vol. 81, no. 3, pp. 1534–1552, Oct. 2018 [2] K. 
Miller. MRM, vol. 63, no. 2, pp. 385–395, Jan. 2010 

 

Figure 1. Noise Sensitivity Analysis. The conventional approach fits each pixel 
individually across the phase cycle dimension (e.g., fitting through 6 complex data 
points for 6 phase cycles). In contrast, our method simultaneously fits the entire 
image by utilizing the entire k-space data across all phase cycles. 

Figure 2. Ef fect of  Total Variation. In this simulation, total 
variation leverages neighboring pixels to better inform the f itting 
process, further reducing noise sensitivity. 
 

 

Constrained Model-based Relaxation Parameter Mapping using Balanced 
Steady State Free Precession  

 
Zimu Huo1, Minghao Zhang2, Yiyun Dong3, Joshua Kaggie1, Pete Lally4, Neal Bangerter5, 
Michael Hoff6, Martin Graves1 
1. Department of Radiology, University of Cambridge. 2. Wolfson Brain Imaging Centre, University of Cambridge. 3. 
Department of Physics, University of Washington. 4. Department of Bioengineering, Imperial College London. 5. Department of 
Electrical and Computer Engineering, Boise State University. 6. Radiology and Biomedical Imaging, University of California, 
San Francisco.  
Introduction: In balanced steady state free precession (bSSFP), the real and imaginary 
components of the steady-state transverse magnetization form an ellipse across phase 
cycles on the complex plane. Quantitative parameters may be derived using analytical 
expressions based on the geometric properties of this ellipse using a method referred to as 
PLANET1. However, voxel-wise fitting is sensitive to additive noise, leading to inaccuracies.  
We propose estimating relaxation parameters as a constrained nonlinear least square 
problem subject to data consistency costs in k-space to improve its noise robustness. Unlike 
traditional methods that extract quantitative relaxation parameters pixel by pixel, our 
approach leverages global information by jointly estimating T1 and T2 across the entire 
image and assessing reconstruction errors in k-space. Additionally, it supports flexible 
regularization options, such as total variation, which further mitigates noise sensitivity. 
Theory: In this work, we aim to cast the parameter mapping as a constrained nonlinear 
optimization problem of the standard form:  
    minimize C(T1, T2, M0, B) = (F · M(T1, T2, M0, B0) - y)2 + λR(T1, T2, M0, B0) st: pi = 0, qi < 0 
Here, y signifies the collected data, F denotes the linear Fourier transform operator, and M is 
a nonlinear operator denoting the bSSFP steady state magnetization at TE. The goal is to 
jointly estimate the T1, T2, M0, and B0 maps that best align with the acquired k-space 
measurement y. p is an equality constraint and q is an inequality constraint on the parameter 
range. For example, T1 and T2 values should be non-negative, and T1 is always greater than 
or equal to T2 in biological tissues. R is an optional regularization function and λ is the 
regularization parameter. To accelerate the optimization, the analytical gradient and Hessian 
is provided to the optimization algorithm:  
    ∂ C  = ( Φ  · ∂ M )ᴴ · (F · M - y) = ( Φ  · J )ᴴ (F · M - y)  

∂2C  = (Φ · J)H · (Φ · J)  +   (Φ · ∇ J) H · (F · M - y)   

J is the Jacobian matrix of the bSSFP steady state equation. Φ i,j is the Fourier basis function 
and defined as Φi,j = Fδi,j. The δ symbol denotes a 2D Kronecker delta function, resulting in a 
matrix with a 1 at position (i,j) and 0 elsewhere. Our approach is different by performing the 
parametric fitting in k-space, where voxel information is correlated through Fourier basis 
functions. Intuitively, If there exists an overestimated T1 due to noise for a given voxel, this will 
propagate to k-space via the Fourier basis function and have a strong penalty in the data 
consistency cost.  
Methods: To evaluate noise sensitivity, we perform a Monte Carlo simulation by randomly 
generating T1, T2, and M0 on a 16 by 16 image patch. T1 is generated from 100 ms to 3000 
ms, T2 ranges from 1 ms and is upper bounded by the generated T1 value, and M0 values 
range from 0 to 2. B0 map is generated based on low frequency noise in k-space to create 
smooth and slowly varying modulations in the image domain. We used a flip angle of 30 
degrees, TR of 10 ms, TE of 5 ms. We used conservatively high values of TR to yield a 
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and SGM delay (WMH volume ~ NAWM delay [log10(%ICV)/s×10-4]: B=4.27, 95%CI=[-4.73, 13.3], 
p=0.35). Patients with new MRI or clinical ischaemic events (n=34) generally had longer baseline CVR 
delay (new ischaemic event ~ NAWM delay: OR=2.26, 95CI%=[1.45, 3.71], p=0.00059).  
Discussion: Longer baseline CVR delays in WMH precede lower PVS burden after one -year, while 
longer NAWM and SGM delays are associated with stroke/TIA recurrence and new MRI lesions, 
mirroring CVR magnitude findings [10]. Our study is the first to explore longitudinal associations 
between CVR delay and SVD features in mild stroke, utilising highly-phenotyped patients and 
reproducible CVR protocol. Limitations include that the least-squares linear regression method 
systematically overestimates delay when input contrast-to-noise ratio is low [12], typical of WMH 
BOLD data. Moreover, WMH delays may be influenced by partial volume effects when ROI volume is 
small. Since our region-wise approach assumes tissue-wide delay homogeneity, pathologically 
significant variations in delay may not be captured. Finally, about 20% of patients had new clinical/MRI 
ischaemic events, which may have limited statistical power. 
Conclusions: We found some links between baseline regional CVR delay in mild stroke and one -year 
PVS burden, and new clinical/MRI ischaemic events. However, delay values used in this analysis may 
be biased by processing method, particularly WMH delays. More robust computation strategies 
optimised for patient data are needed to better understand the role of CVR delay in SVD progression.   
References
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Fig. 1. β (dots) and 95%CI (horizontal lines) from multivariable linear regression between imaging 

markers and regional CVR delay. The vertical black line is at β = 0 (no association).  
 

 
Fig. 2. OR (dots) and 95%CI (horizontal lines) from multivariable binomial logistic regression between 

new event variables and regional CVR delay. The vertical black line is at OR = 1 (no association).  

 

 

Associations between Cerebrovascular Reactivity Delay and progression of Small Vessel Disease 
Features 
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4CIBM Centre d'Imagerie Biomedicale, Geneva, Switzerland 
 
Introduction: Small vessel disease (SVD) is a brain microvasculature disorder that causes many strokes 
plus cognitive decline, gait problems and depression [1]. It is characterised by brain structural 
alterations visible on magnetic resonance imaging (MRI), including lacunes, microbleeds, perivascular 
spaces (PVS) and white matter hyperintensities (WMH) [2,3]. Advanced MRI techniques also highlight 
functional abnormalities in SVD [4], including impaired brain blood vessel response (cerebrovascular 
reactivity, CVR) [5–7] to a vasodilatory stimulus. CVR can be measured using blood-oxygen-level-
dependent (BOLD) MRI during hypercapnic gas administration [6,8]. CVR magnitude, the vasodilation 
extent, predicts WMH and PVS burden [9,10], but few studies have assessed how CVR delay, the 
latency of response, relates to SVD progression [11]. This study aimed to investigate the one -year 
longitudinal relationships between tissue-specific CVR delay, SVD-related imaging features and stroke 
recurrence in mild stroke. 
Methods: We recruited individuals presenting with lacunar or cortical mild ischaemic stroke in Mild 
Stroke Study 3 (MSS-3) [12]. Within three months of index stroke, we performed 3T BOLD-MRI 
(TR/TE=1550/30ms; isotropic resolution=2.5mm3) with 6% carbon dioxide (CO2)-enriched gas 
challenge, monitoring end-tidal CO2 (EtCO2) throughout, as previously described [6]. In the same visit, 
and at one-year follow-up, we acquired structural MRI data to determine PVS volumes in the basal 
ganglia (BG) and centrum semiovale (CSO), brain and WMH volumes, lacune and microbleed count 
according to STRIVE-1 criteria [2,3]. We also recorded new MRI lesions and stroke/transient ischaemic 
attack (TIA) recurrence between visits. We performed least-squares linear regression [6,12] with 
variable delay between the mean BOLD signal in regions-of-interest (ROI) and EtCO2 to assess CVR 
delay in subcortical grey matter (SGM), normal appearing white matter (NAWM) and white matter 
hyperintensity (WMH) using established processing methods [6,12]. We calculated total PVS volume 
by summing BG and CSO PVS volumes. We normalised volumes to intracranial volume (ICV) or ROI 
volume (PVS only) and log-transformed to base-10 to ensure normality of residuals. Finally, we defined 
a new ischaemic event variable by combining new focal MRI ischaemic lesion and stroke/TIA 
recurrence. 
We performed univariable and multivariable statistical analyses in R. For the imaging variables, we 
implemented linear regression between the follow-up imaging feature (outcome) and regional CVR 
delay (independent). We corrected univariable analyses for baseline imaging feature, and additionally 
corrected multivariable analyses for baseline age, sex, mean arterial pressure (MAP), smoking status 
(current vs. ever vs. never), normalised WMH volume and hypertension, hypercholesterolaemia and 
diabetes diagnoses. For new MRI lesion, stroke/TIA and ischaemic event, we performed binomial 
logistic regression. Univariable models were corrected for normalised baseline WMH volume and 
multivariable models were additionally corrected for age, sex, MAP and, to avoid overf itting, a score 
combining smoking, hypertension, hypercholesterolaemia and diabetes status.  
Results: We recruited 208 participants for CVR-MRI: 180 were included in this analysis (15/11/2: no 
CVR/poor data quality/no follow-up). We show the standardised regression coefficients/odds ratios 
(β/OR) and 95% confidence intervals (95%CI) from the multivariable  analyses in forest plots (Figs. 1-
2). Patients with longer baseline WMH delays had lower one-year BG, CSO and total PVS burden (total 
PVS volume ~ WMH delay [log10(%ROI)/s×10-4]: regression coefficient (B)=-7.46, 95%CI=[-14.3, -
0.0631], p=0.032), but no significant change in WMH volume. SVD burden differed little with NAWM 
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(PDF) background 
field removal and 
CSF-referenced 
MEDI+0 dipole 
inversion [10]. The 
combined QSM and 
qBOLD cost function 
was then minimized 
to estimate venous 
blood oxygenation 
(Yv), transverse 
relaxation rate (R2), 
non-blood 
susceptibility (χnb), 
venous blood volume 
fraction (v) and initial signal intensity (S0). OEF was estimated from Yv as OEF = 1-Yv/Ya, assuming 
arterial blood oxygenation (Ya) to be 0.98 for both groups.  
For the SCA patients, venous haematocrit (Hctv) was obtained from the closest blood test to the MRI 
scan. Measurements of Hctv were not available for the controls in this study, so reference values were 
obtained from the literature [11]. Capillary haematocrit (Hct) was estimated as a constant fraction of 
Hctv, taken to be Hct = 0.759 * Hctv for both SCA patients and controls. We investigated the 
relationship between Hctv and mean whole-brain OEF by linear regression and compared OEF values 
between patients and controls. Given OEF’s expected inverse variation with Hct (OEF ∝ 1/Hct), a 
power law model was also fitted. 
Results: SCA patients had significantly lower haemocrit (26.6±4.9%) than controls (40.4±2.5%). 
Example SCA and control OEF maps and QSMs are shown in Figure 1. An SCA OEF map with and 
without haematocrit correction is shown in Figure 2, showing increased OEF throughout the brain 
when Hct is considered. Figure 3 shows the relationship between mean whole-brain OEF and Hct, with 
fitted linear and power law curves and parameters. Both models identified a significant negative 
relationship between OEF and Hct, with the power law exponent estimated at -0.69±0.05. Whole-
brain OEF in SCA (40.9±7.9%) was significantly higher than in controls (30.9±4.9%), as depicted in 
Figure 3. 
Discussion and Conclusions: We found significantly elevated OEF throughout the brain in SCA, with 
whole brain OEF measures agreeing with previous results from ASE OEF mapping studies [ 12,13]. The 
inclusion of measured haematocrit in the QQ model resulted in large increases in OEF in the SCA 
patients (Fig. 2) compared to our previous work [9]. The deviation of the exponent of the fitted power 
law model (Fig. 3) from -1 suggests that other QQ parameter changes in SCA may influence the OEF-
Hct relationship. Future research will further investigate these relationships and apply this method to 
a separate SCA study with control haematocrit measurements, addressing the current study's 
limitation of estimated control Hct. 
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Figure 2: Left: Whole-brain OEF as a function of Hct with fitted linear (blue) 
and power law (red) curves and 95% confidence intervals. Right: Box plot of 
whole brain OEF in SCA patients and controls, with (***) indicating 
statistical significance at p<0.001. 

 

 

 

Haematocrit-Corrected QSM + qBOLD Reveals Globally Elevated Brain Oxygen Extraction 
Fraction in Sickle Cell Anaemia  
Mitchel Lee1*, Isabelle Hawley2*, Fenella Kirkham2, Karin Shmueli1 
1Medical Physics and Biomedical Engineering, University College London, London, UK; 2Developmental 
Neurosciences, Institute of Child Health, University College London, London, UK; *Joint First Authors  
Introduction: Sickle cell anaemia (SCA) is a genetic blood disorder characterized by abnormal sickle 
haemoglobin, which polymerizes in the deoxygenated state. Brain complications, such as stroke and 

cognitive deficits, occur secondary to microcirculatory 
obstruction, ischaemia, and inflammation [1]. A key 
marker of brain health is the cerebral metabolic rate 
of oxygen consumption (CMRO2), determined by the 
product of cerebral blood flow (CBF), arterial oxygen 
content (CaO2) and tissue oxygen extraction fraction 
(OEF) [2]. Autoregulatory mechanisms can lead to 
increases in CBF and/or OEF to maintain sufficient 
CMRO2 levels for brain function in situations of 
reduced CaO2 due to anaemia [3]. CBF increases are 
well documented in SCA [4], but studies of OEF in SCA 
show diverse results, primarily due to differences in 
calibration models used in T2-relaxation-under-spin-
tagging (TRUST) methods [5,6].  
QSM + qBOLD (QQ), a novel MRI technique for oxygen 
extraction fraction (OEF) mapping, models the 
contribution of paramagnetic deoxyhaemoglobin to 
both the phase (quantitative susceptibility mapping - 
QSM) and magnitude (quantitative blood-oxygen-
level-dependent - qBOLD) information obtained from 
multi-echo gradient-echo (ME-GRE) sequences to 

estimate voxel-wise tissue OEF. This technique has been found to perform comparably to the gold 
standard [7]. An extension to the QQ method, QQ-CCTV [8], integrates temporal and tissue-type 
clustering with total variation regularization to enhance the signal-to-noise ratio (SNR). 
This study used QQ-CCTV to investigate OEF changes in the brain in SCA, building on previous work 
with the paediatric subset of our cohort [9], and accounting for reduced haematocrit in SCA patients. 
Methods: 90 SCA patients (18.0±9.9 years, 44 
male) and 33 healthy age and race matched 
controls (18.9±10 years, 16 male) were imaged 
on a 3T Siemens Magnetom Prisma system 
with a 64-channel head RF coil. 3D ME-GRE 
images were acquired with parameters: TE1 = 
3ms, ΔTE = 4ms, 7 echoes, TR = 38ms, flip angle 
= 15°, resolution = 1.15 x 1.15 x 1.15 mm3. T1-
weighted MP-RAGE images were also acquired 
at 1 mm3 resolution.  
The QQ-CCTV algorithm was applied to 
estimate OEF maps and QSMs from the ME-
GRE magnitude and phase data. QSMs were 
obtained using a MEDI toolbox pipeline, 
consisting of linear phase gradient correction, 
nonlinear field fitting, region-growing phase 
unwrapping, projection onto dipole fields 

Figure 1: Left: OEF map and QSM (ppb) in a 
representative control subject. Right: OEF 
map and QSM in a representative SCA patient 

Figure 1: Left: OEF map calculated in a 15-year-old 
female SCA patient using default haematocrit value 
(47%).  Right: OEF map calculated in the same 
patient using measured venous haematocrit of 26%. 
The mean whole-brain OEFs (mean±sd) are shown 
beside each map. 
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Discussion: The map upsampled using our 
model had high similarity to the interpolated 
image, and visual inspection showed higher 
specificity, as informed by fMRI. This data-
guided approach provides an evidence-based 
alternative to purely algorithmic super-
resolution of functional images. Additionally, the 
enhanced explainability of the models provided 
by SHAP values offers data-driven means of 
informing the electro-haemodynamic coupling 
discussion. However, the inter-modal 
relationships need to be interpreted with 
caution as predictivity alone does not 
necessarily reflect biological validity. Future 
efforts should focus not only on the overlapping 
relationships, but also on more thorough 
integration of their unique contributions by analysing all data streams in parallel, as well as targeted confirmatory 
evaluation of the formulated cross-modal functional relationships.  
Conclusions: Our proof-of-concept model was able to exploit electro-neurovascular coupling between fMRI and MEG, 
with moderate inter-modal predictability. Using eML, we showed that it is possible to predict high-SR MEG signals using 
fMRI, with trained models providing additional data-driven insights into the strength and directionality of this 
relationship. 
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Fig. 2. (a): Visualisation of component 18 
from low-γ band (40-60Hz). From top: 
Original 6mm3 image, 6mm3 image 
predicted using fMRI input, Mean squared 
error map between original and predicted 
images, interpolated 2mm3 image, image 
resulting from fMRI-guided upsampling to 
2mm, MSE between interpolated 2mm3 
and predicted 2mm3. (b): Shapley feature 
importances, quantifying the predictive 
power of the values used for modelling. (c) 
top 4 predictors for low-γ 18 

 

 

Enhancing brain activity mapping through multi-modal data fusion and explainable machine learning. 
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Introduction: Functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) each have unique 
strengths and limitations. MEG provides neuronal activation measurements of milli-second precision and closely 
reflects neuronal activation but it has low spatial resolution (SR) and insensitivity to subcortical signals [1]. fMRI 
provides finer SR and can map activation in subcortical areas, but does so indirectly through blood-oxygen-level-
dependent signal (BOLD) [2,3]. Combining fMRI and MEG data can leverage their complementary traits, but disparities 
in their signals present challenges [4,5,2]. This work aims to provide a first step towards a more comprehensive 
understanding of the interplay of the two functional imaging approaches. We used multimodal data to determine 
whether MEG recordings can be predicted and spatially upsampled by fMRI data, utilizing explainable machine learning 
(eML). 
Methods: 16 volunteers underwent both MEG and fMRI scans, watching a 20-minute movie sequence [6] edited to 
feature a broad range of stimuli. BOLD responses were acquired with a 3T scanner using echo-planar imaging with SR 
(3mm3) and images were registered to common space at 2mm3 and 6mm3. High resolution anatomical scans were 
collected for each participant (1mm3), using a fast-spoiled gradient echo sequence. MEG recordings were taken using 
a 275-channel MEG system and filtered into functionally-specific frequency bands: delta (δ; 1-4Hz), theta (θ; 4-8Hz), 
alpha (α; 8-13Hz), beta (β; 13-30Hz), low-gamma (low-γ; 40-60Hz), and various high-γ bands ranging from 60-149Hz. 
Data at each frequency band were source-localized using synthetic-aperture magnetometry, with SR to match that of 
the fMRI data. MEG time-series were de-spiked, high-pass filtered, and convolved with the canonical haemodynamic 
response function to match the BOLD response. Group-level Tensorial Independent Component Analysis (TICA) [7] was 
used to decompose a multivariate signal into 25 (MEG) and 30 (fMRI) independent spatial maps to capture granular, 
yet specific networks. A series of Extreme Gradient Boosted tree regressors [8] were trained to predict MEG 
components from downsampled fMRI signals, and the best-performing models were subsequently used for upsampling 
MEG’s SR at voxel-level by inputting higher-resolution fMRI components.  Results were evaluated in terms of explained 
variance (R2), mean squared error (MSE), and structure similarity index (SSI) [9] against spatial maps upsampled using 
trilinear interpolation from FSL’s ’applywarp’ [10], and trained models were explained with SHapley Additive 
exPlanations (SHAP) [11]. 
Results: Correlations of all fMRI-MEG pairings showed large amount of significant inter-modal linear relationships (Tab. 
1), with 77.41% interactions remaining significant after Bonferroni correction (Fig. 1) .  

 
Then, we pre-trained a model on 6mm3 data, using fMRI signals to predict each of the MEG components. This way, we 
modelled a component from low-γ (40-60Hz) band, positively (r=.43) correlated with early visual areas [12], here 
represented mainly by fMRI Component 7. After training, we inputted 2mm3 fMRI data and predicted MEG components 
in the upsampled 2mm3 SR. Figure 2a shows spatial maps and deviations between the maps at 6mm3 (MSE=.069; 
SSI=.87), and interpolated 2mm (MSE=.13; SSI=.80). Subfigures 2b and 2c show related SHAP feature importances, and 
top 4 predictors. The final model achieved R2=.93 at 6mm, and R2=.8 at 2mm. 

Tab. 1. Pearson correlation coefficients (cutoff 
r=0.4) for inter-modal pairs of components from 

different MEG bands, and fMRI 

Fig. 1. Histogram of correlation coefficients for all 
fMRI-MEG component pairings across bands 
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Fig 2. Platelet reactivity and neurovascular function relationships are mechanistically distinct. 
Different platelet signaling mechanisms (ADP, Collagen-Related Peptide, TRAP-6) were linked to 
various haemodynamic response components (FWHM, TTP, AUC) to visual stimulation. (A -F) show 
relationships between platelet reactivity measures (e.g., sensitivity  to ADP, TRAP-6) and HRF 
parameters. Correlations accounting for age, sex, and BMI (partial R) were similar to the total 
correlations, indicating demographic variables did not affect the associations. 

 
Fig 3. Systemic vascular function does not explain the platelet-neurovascular relationship: Serial 
mediation analyses. Eighteen models tested whether the association between platelet sensitivity to 
ADP and HRF FWHM, surviving FDR correction, was mediated by peripheral (M1) and cerebrovascular 
(M2) effects. No M1 and M2 combinations significantly explained the relationship between platelet 
sensitivity (ADP) and neurovascular response duration (HRF FWHM). 

Discussion: This study is the first to directly link platelet reactivity with neurovascular function in 
humans. Individuals with higher platelet reactivity showed reduced haemodynamic responses to 
visual cortex activation, suggesting issues with vascular response matching energy demand in active 
brain regions, potentially contributing to neurodegeneration [4]. These findings align with previous 
research on altered neurovascular coupling in aging [5] and subjective cognitive decline [6]. 

Conclusions: This study challenges the belief that systemic vascular health alone determines 
neurovascular function, highlighting the role of circulating platelets. Understanding this link could 
advance our knowledge of early dementia pathophysiology and inform new therapeutic approaches. 
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Evidence for direct control of neurovascular function by circulating platelets in healthy 
older adults 

Gabriella MK Rossetti*1,2, Joanne L Dunster3, Aamir Sohail1, Brendan Williams1, Kiera M Cox3 
Suzannah Rawlings3, Elysia Jewett1, Eleanor Benford1, Julie A Lovegrove3, Jonathan M Gibbins3, 
Anastasia Christakou1 
1.Centre for Integrative Neuroscience and Neurodynamics (CINN), University of Reading, UK  
2.Department of Sport and Exercise Sciences, Manchester Metropolitan University, UK 
3.Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, UK 

Introduction: Platelets play a vital role in preventing haemorrhage through haemostasis, but 
complications arise when platelets become overly reactive, leading to pathophysiology such as athero-
thrombosis. Elevated haemostatic markers are linked to dementia [1] and predict its onset in long-
term studies [2]. Despite epidemiological evidence, the mechanism linking haemostasis with early 
brain pathophysiology remains unclear. Here, we aimed to determine whether a mechanistic 
association exists between platelet function and neurovascular function in healthy older adults.  

Methods: Fifty-one healthy middle-aged and older adults (50-80 years) completed this cross-sectional 
study. We used a high throughput plate-based aggregation (PBA) assay and the Phenomic Analysis 
data analysis platform [3] to investigate the association between platelet reactivity and neurovascular 
function assessed by haemodynamic responses (HRF) to a visual stimulus.  We incorporated 
experimental manipulations that targeted peripheral vascular reactivity (laser doppler imaging with 
iontophoresis of vasoactive agents) and cerebrovascular reactivity (hypercapnia, hypocapnia, resting 
cerebral blood flow) to determine whether any association could be attributed to systemic vascular 
effects, or direct interactions between platelets and the neurovascular unit.  

Results: We show a direct association between platelet reactivity and neurovascular function that is 
independent of vascular reactivity and mechanistically specific. PBA differentiated neurovascular 
function in this general population sample (F=5.032, p=0.01). Higher platelet reactivity was associated 
with a shorter cerebral blood flow response to neural activity (HRF FWHM) in the visual cortex (r=-
0.45, p=0.006, Fig. 1).  

 
Fig 1. Platelet reactivity multiparameter 
phenotyping revealed associations with 
neurovascular function. Median haemodynamic 
response function (HRF) in the primary visual 
cortex (V1) for each platelet phenotype. Higher 
platelet reactivity (Group 1) was linked to 
shorter HRF full-width half maximum (FWHM) 
and smaller area under the curve (AUC). 
 

Distinct platelet signalling mechanisms (Adenosine 5'-diphosphate [ADP], Collagen-Related Peptide 
[CRP], Thrombin Receptor Activator Peptide 6 [TRAP-6]) were directly associated with different 
physiological components of the haemodynamic response to neural (visual) stimulation (full-width 
half-maximum [FWHM], time to peak [TTP], area under the curve [AUC]). Platelet reactivity to ADP 
was selectively associated with HRF FWHM, while platelet reactivity to the collagen receptor agonist 
CRP was selectively associated with HRF TTP (Fig. 2). The association between platelet reactivity and 
neurovascular function was independent of systemic vascular function (mediating effect range -0.01-
0.02; p≥0.39), suggesting platelet reactivity may directly affect neurovascular function (direct effect -
0.44[-0.66;-0.22], p<0.001) (Fig. 3). 
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cells and density packed granule cells 27. Higher 𝐾𝐾and 
𝐾𝐾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 values for tCho in cerebellum are possibly due to 
the presence of highly-arborized Bergmann glia28.  
Overall, estimated apparent diffusivities do not present 
any significant changes with aging, in contrast to 
estimated mono-exponential ADCs in the literature15, 
which might originate from different diffusion times 
and encoding scheme. The normative age-trajectories 
of metabolite diffusion properties reported here for 
the first time showing only significant increase in 𝐾𝐾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  
of tCho in PCC agree with literature29, (which is not 
confounded by changes in the tissue composition).  
This study offers previously unavailable normative age-
trajectories of major brain 
metabolites diffusion properties 
in PCC and cerebellar GM. These 
provide benchmarks for 
identifying anomalies in the 
diffusion properties of major brain 
metabolites.  
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Fig.2: Estimated model parameters are shown in box-
whiskers plot for all metabolites in both ROIs. 

  

Fig.3: Age dependences of the estimated model parameters for kurtosis (ADC & K) 
in (A) and modified astro-stick model (Dintra & Kintra) in (B), obtained from studied 
metabolite signals, are depicted in the figure. For each brain region, a linear 
regression and an independent T-test are performed between two groups [age < 50 
and age ≥ 50] to analyze statistical significance  (p*<0.00833) in the age-related 
variations of estimated parameters. 

Age-trajectories of higher-order diffusion properties of major brain metabolites in cerebral 
and cerebellar gray matter using dMRS  
Kadir Şimşek1,2, Cécile Gallea3,4, Guglielmo Genovese6, Stephane Lehéricy3,4, Francesca Branzoli4,5, 
Marco Palombo1,2 - 1Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, 
Cardiff University, Cardiff, United Kingdom; 2School of Computer Science and Informatics, Cardiff 
University, Cardiff, United Kingdom; 3Brain and Spine Institute - ICM, Team "Movement Investigations and 
Therapeutics", Paris, France; 4INSERM U 1127, CNRS UMR 7225, Sorbonne University, Paris, France 5Paris 
Brain  Institute - ICM, Centre for Neuroimaging Research - CENIR, Paris, France; 6Center for Magnetic 
Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA 
Introduction: Healthy brain aging involves 
numerous functional and structural changes in the 
brain1-5.  
Diffusion-weighted MRS (dMRS) provides higher 
cell-type specificity6–12, offering the opportunity to 
quantify alteration of both the cellular composition 
and microstructure with age. However, besides only 
a few works investigating brain metabolites changes 
in concentration13,14 and apparent diffusion 
coefficient15 in healthy aging, it is still unknown how 
other informative diffusion properties (e.g. apparent 
diffusional kurtosis) of brain metabolites change 
with aging. This work aims to provide the first 
normative age-trajectories of higher-order diffusion 
properties of major metabolites in the cerebral and 
cerebellar gray matter (GM) using dMRS. 
Methods: Data acquisition/processing: 25 healthy participants (age-range 25-80) were scanned on a 3T 
Siemens Prisma with 64-channel head coil, using a DW-semi-LASER (TE|TR = 125 ms |3 cardiac cycles)16 
in two region of interests (ROIs): cerebellum and posterior cingulate cortex (PCC). Metabolite DW-spectra 
(24 transients per b-value) were recorded with 6 b-values up to 24 ms/µm2 (Δ=62.5 ms; 𝛿𝛿=26.4 ms) using 
tetrahedral encoding.  Post-processed spectra averaged16 and then quantified using LCModel17. Signals at 
each b were direction-averaged and analyzed. Data analysis:  We estimated kurtosis 𝐾𝐾 by fitting the 
kurtosis representation12,18 to the data up to 𝑏𝑏≤9 ms/µm2 and the apparent intra-neurite axial diffusivity 
𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 by fitting the astro-sticks model12,19 to the data. In addition, we estimated intra-neurite apparent 
axial diffusivity 𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 and kurtosis 𝐾𝐾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 by fitting to the data at all b-values a modified astro-sticks model 
that incorporates an effective intra-stick axial diffusivity defined as: 𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒(𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝐾𝐾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑏𝑏, 𝜃𝜃) =
𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(1− 𝐾𝐾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃)11,20–22, where 𝜃𝜃 is the angle between the main axis of a given stick and 
the applied diffusion gradient. Here, 𝐾𝐾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 quantifies non-Gaussian diffusion stemming from the spines 
and/or other hindering structures20,21. The numerical integration yields direction-averaged diffusion 
signal: 𝑆𝑆/𝑆𝑆0 = ∫ 𝑒𝑒−𝑏𝑏𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃𝑑𝑑(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)1

0  
Results: Fig.1 illustrates diffusion signals for both ROIs. Fig.2 reports that results of estimated model 
parameters for both ROIs. Fig.3 depicts the normative age-trajectories of diffusion kurtosis and modified 
astro-stick model.  
Discussion & Conclusion: Estimated metabolite 𝐾𝐾 values in the PCC agree with literature23–26. Overall 
higher 𝐾𝐾 and 𝐾𝐾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 for tNAA agree with the expected higher spine density  in cerebellum due to   Purkinje 

Fig.1:(Top) Exemplary DW-spectra after post processing, 
showing high spectral quality and SNR. (Bottom) diffusion 
signals obtained from LCModel fitting for all subjects (light) 
and cohort average signal (dark). 
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using a gaussian kernel (σ=0.05π). Changes in lung voxel intensity were used to attain local ventilation, 
perfusion, and respective time-to-peak information. Normalised variation along the vertical axes was fitted 
via weighted linear model to attain the rate of change, apex to base. 

Results: 

Fractional Ventilation  

Whilst sitting, an increasing gradient of ventilation from the lung’s apex to base was apparent. This 
gradient increased when the subjects took deep breaths. A similar effect, albeit to a lesser magnitude 
was observed when supine. However, when positioned upside-down, the gradient decreased 
substantially to near zero and was further reduced when breathing deeply.  

Perfusion 

When sitting, the base of the lung exhibited greater perfusion than the apex. This effect persisted whilst 
supine, though to a lesser degree. When upside-down this effect reversed, albeit with a reduced 
magnitude compared to the other postures. 

Discussion: 

The variation in fractional ventilation indicates that it depends both on gravity and physiological factors. 
If gravity were the sole mechanism, an inverse effect would be anticipated when participants were 
upside-down compared to seated. Instead, gravitational forces on inverted lungs appears to counter 
physiological effects to nullify most vertical variation. Furthermore, when the subjects were supine, the 
base of the lung continued to exhibit greater ventilation than the apex. As neither region experienced 
greater compressive forces than the other, this is likely attributed to physiology.  

The observed variation in perfusion mirrored that of ventilation. Greater magnitude at the base of the 
lung whilst supine suggests physiological contributions. When sitting or upside-down the effect was 
amplified or reversed respectively possibly due to the change in hydrodynamic pressure and tissue 
density. The lower magnitude observed whilst upside-down and positive effect whilst supine suggests 
sustained influence from physiological factors. 

Conclusion: 

This work suggests that regional variation in lung function depends on both gravitational and 
physiological effects. The lungs appear to naturally ventilate and perfuse more at the base. This effect is 
amplified when upright and reduced (but not reversed) when upside-down.  

References:  

1) Glenny RW. Determinants of regional ventilation and blood flow in the lung. Intensive Care Med. 2009 
Nov;35(11):1833-42. doi: 10.1007/s00134-009-1649-3. PMID: 19760203. 

2) Voskrebenzev A, Gutberlet M, Klimeš F, Kaireit TF, Schönfeld C, Rotärmel A, Wacker F, Vogel-Claussen J. 
Feasibility of quantitative regional ventilation and perfusion mapping with phase-resolved functional 
lung (PREFUL) MRI in healthy volunteers and COPD, CTEPH, and CF patients. Magn Reson Med. 2018 
Apr;79(4):2306-2314. doi: 10.1002/mrm.26893. Epub 2017 Aug 30. PMID: 28856715.  

 

 

 

 

Investigating Gravitational Influence on Normal Lung Function Using 
PREFUL MRI on an Open Scanner 
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Rashed Sobhan1,2, Amanda Goodwin2, Olivier Mougin1,2 

1Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, NG2 7RD, UK  
2Nottingham NIHR Biomedical Research Centre, University of Nottingham, Nottingham, NG2 7RD, UK  

 

Introduction:  

Understanding the factors influencing local ventilation and perfusion within the lungs is of great 
importance for improving patient care. Initially attributed solely to gravity and compression of lung 
parenchyma, our insight into the determinants of lung function heterogeneity have evolved with 
improvements in imaging methodologies. Differences in ventilation and perfusion within gravitational 
planes have contributed to the theory that the geometry of vascular and airway trees also play a role in 
regional lung function.1  

Phase Resolved Functional Lung (PREFUL) MRI2 has been demonstrated to visualise dynamic lung 
function in health and disease. However, conventional MRI systems typically offer limited opportunity to 
investigate the effect of gravity on the lungs. In contrast, open MRI systems allow for a greater range of 
scanning positions beyond lying down in an enclosed space. This capability is valuable for exploring 
posture-dependent lung function, which could serve as a marker for lung disease and be crucial to 
support stratified treatment approaches.  

Methods: 

Twenty-one healthy volunteers (average age 21±2yrs.) were recruited with ethics approval from the 
University of Nottingham Medical School Ethics Committee. Subjects were scanned in three postures: 
Supine, Sitting and Upside-Down (Figure 1) whilst breathing normally and deeply. All experiments were 
carried out on a 0.5T Open MRI Scanner (Paramed, Italy) with a four channel receive body coil and a 
gradient system with a maximum power of 20mT/m and rise time 0.2ms. 200 dynamic images were 
captured at a rate of 2.6Hz using a 2D GRE protocol: TR/TE=5.7/1.2ms, FOV=32×32cm2, matrix 
size=89×89, slice thickness=10mm. 

PREFUL analysis was implemented in MATLAB-R2022b to reconstruct ventilation and perfusion maps. 
Ventilation and cardiac phase were determined for each frame using diaphragm position and aorta artery 
intensity respectively. Each image was registered to an intermediary inhalation position such that the lung 
parenchyma appears stationary throughout the time series. These images were used to reconstruct a 
single breath and single heartbeat consisting of 20 frames, interpolated onto an equidistant time series 
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Quantification of Gas Trapping in Cystic Fibrosis using Residual Volume (RV) Lung 1H-MRI 
Amy V Simmons, Laurie J Smith, Zoe Somerville, Alberto M Biancardi, Neil J Stewart, Jim M Wild 

POLARIS, Division of Clinical Medicine, Faculty of Health, The University of Sheffield 
Introduction: Cystic Fibrosis (CF) is a genetic disorder primarily affecting the lungs and digestive 
system. Disease typically originates in smaller airways, causing obstruction and narrowing. This leads 
to gas trapping during exhalation, a key feature of early CF disease. Detecting and measuring early CF 
disease is crucial, as intervention can significantly improve long-term outcomes. Gas trapping is 
clinically assessed on a whole-lung basis using body plethysmography, which measures lung volume 
subdivisions, including the residual volume (RV), which is the volume of gas present in the lung after 
complete exhalation. CT is a sensitive imaging measure of gas trapping, however, it is infrequently 
used due to ionising radiation risks. Lung 1H-MRI using a 3D spoiled gradient echo (SPGR) sequence 
acquired at RV has been proposed as a non-ionising alternative for qualitatively imaging gas trapping 
[1], which appears as regions of low signal intensity (see Fig. 1). Hyperpolarised 129Xe MRI ventilation 
defects are also commonly observed in CF patients [1]. This work aims to develop an image processing 
pipeline to automatically quantify gas trapping from widely available lung 1H-MRI techniques and 
compare this measure to pulmonary function tests (forced expiratory volume in one second; FEV1 z-
score), direct measures of gas trapping (RV/total lung capacity; RV/TLC%) and 129Xe ventilation MR 
metrics (Xe ventilation defect percentage; Xe VDP%).  
Methods: A retrospective analysis was conducted on lung 1H-MRI images from 16 healthy children 
(median age 10.43 years, range 8.71-11.92 years, 56.3% male) and 27 individuals with CF (median age 
16.90 years, range 6.40-47.50 years, 40.7% male). 14 CF patients had normal FEV1, defined as a z-
score of > -1.64, the remaining 13 had abnormal FEV1. All MRI scans were performed on a 1.5T GE 
HDx scanner with an 8-channel thoracic receive array.  Participants underwent a 3D SPGR 1H-MRI scan 
acquired at RV (breath-hold ~10 seconds, voxel size=3mm3, TE=0.7ms, TR=1.8ms, FA=3°). CF patients 
underwent 129Xe ventilation MRI as per [1] and pulmonary function tests (PFTs), including spirometry 
and body plethysmography. An N4 bias correction with parameters spline spacing = [150] and 
convergence = [85x85x85, 0.001] was empirically chosen to correct for anterior-posterior signal 
intensity variations and enhanced image contrast (see Fig. 1(b)) [2]. Lung segmentation was performed 
using an in-house deep-learning algorithm [3], with manual edits made in ITK-SNAP. A reference 
histogram was generated from the bias-corrected signal intensity distribution in segmented lung 
regions of all healthy patients. After exploring various threshold and binning methods, the mean-
1.64SD of this histogram was selected as the gas trapping threshold. Signal intensities below this 
threshold were identified as gas trapping regions (Fig. 2). Applying this threshold to healthy and CF 
data, a gas trapping volume (GTV%) was computed as a percentage of total lung volume. Fig. 1(c) 
illustrates gas trapping regions identified in two example CF patients. A normal threshold was set as 
the maximum GTV% observed in healthy patients. In CF patients, GTV% values were compared to lung 
function metrics (FEV1 z-score and RV/TLC%) and 129Xe ventilation MR metrics (Xe VDP%) using linear 
regression and Pearson’s correlation. Differences in GTV% distribution for healthy and CF cohorts was 
calculated using a Mann-Whitney U-test.  
Results and Discussion: Healthy volunteers had a median (range) GTV% of 9.98% (4.40-14.55%). CF 
patients had a median (range) GTV% of 18.27% (7.25-46.42%). The distribution of GTV% in healthy 
and CF patients is visualised in Fig. 3. The difference in median GTV% between the groups was highly 
significant (p<0.001). GTV% in CF patients correlated well with 129Xe ventilation MRI metrics, Xe VDP% 
(p<0.001, r = 0.800), physiological measures of gas trapping, RV/TLC% (p<0.001, r = 0.757), and 
spirometry results, FEV1 z-score (p<0.001, r = -0.762) (see Fig. 4). 18/27 CF patients had a GTV% above 
the upper normal limit (14.6%), 6 of which had normal FEV1 z-scores, suggesting that GTV% may 
provide added value over spirometry measures in these cases. This approach also provides regional 
information on gas trapping distribution (see Fig. 1(c)), which body plethysmography cannot offer.  
Conclusions: Gas trapping in CF can be qualitatively and quantitatively assessed from breath-hold 
residual volume 1H lung MRI. Our proposed metric of gas trapping volume correlates well to direct 

 

Figure 1: Images of a participant in each of the scanned positions: Sitting (i), Supine (ii) and Upside-Down 
(iii) with corresponding diagrams of each posture. Normalised average fractional ventilation for each 
lung segment whilst in each position (A) whilst breading normally and deeply. Normalised average 
perfusion for each lung segment whilst in each position (B). 
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Dynamic 19F-MRI of pulmonary ventilation in lung transplant recipients with and without 
chronic lung allograft dysfunction 

 
Mary A. Neal1,2, Saskia Bos2,3, Charlotte W. Holland1,2, Kieren G. Hollingsworth1, Gerard Meachery3, 
Arun Nair3, James L. Lordan3, Andrew J. Fisher2,3, Peter E. Thelwall1,2  

1 - Newcastle Magnetic Resonance Centre, Newcastle University, Newcastle upon Tyne, UK 
2 - Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK 
3 - Institute of Transplantation, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, UK 
 
Background: Chronic lung allograft dysfunction (CLAD) encompasses all forms of chronic rejection after 
lung transplantation. Its two predominant phenotypes: bronchiolitis obliterans syndrome (BOS) and 
restrictive allograft syndrome (RAS), are characterised by airway and parenchymal fibrosis, 
respectively. CLAD occurs in approximately 50% of lung transplant recipients within five years of 
transplantation and is a substantial contributor to the ~50% 10-year post-transplant mortality rate [1]. 
Current diagnostic tools, such as spirometric-based tests and chest x-ray, are insensitive to early 
changes due to CLAD, or in the case of CT, bring increased exposure to ionising radiation. Dynamic 
fluorine-19 magnetic resonance imaging (19F-MRI) of inhaled perfluoropropane (PFP) is an emerging 
technique used to directly image ventilation. Dynamic 19F-MRI for assessment of ventilatory function 
over multiple inhalations has recently been tested in human studies of patients with cystic fibrosis and 
chronic obstructive pulmonary disease [2-4]. The aim of this feasibility study was to investigate 
whether multi-breath wash-in and washout 19F-MRI of inhaled PFP can detect regional ventilatory 
dysfunction in lung transplant recipients with CLAD compared to stable allograft recipients.  

Methods: Lung transplant recipients with and without CLAD were recruited, and attended a single 
study session. MR imaging was performed with a clinical MRI scanner (Philips Achieva 3T) interfaced 
to a dual-tuned 19F/1H transmit-receive birdcage torso coil (Rapid Biomedical GmbH). Participants were 
positioned supine. An anatomical chest image was acquired using a 3D 1H spoiled gradient echo 
acquisition during a breath-hold at maximum inhalation. Multi-breath dynamic 19F-MRI was then 
performed over up to fourteen 7.6-second dynamics: Participants deeply inhaled a 79% PFP/21% 
oxygen gas mixture and held their breath on alternate inspirations, wherein a 3D 19F-MR imaging 
dynamic was performed (acquisition parameters: ‘3D-FFE’, TE/TR=1.7/7.5 ms, flip angle=45o, field of 
view=400x320x250 mm3, acquisition resolution=10x10x10 mm3, acquisition bandwidth=500 Hz/pixel, 
compressed sensing acceleration factor=1.8, averages=3) [5]. After the 7th imaging dynamic, 
participants were supplied with room air under the same breathing protocol for the remaining 7 
dynamics, permitting collection of PFP wash-out images. 

Following 4D (3D dynamic) image segmentation, voxelwise wash-in and washout rates were calculated 
applying mono-exponential curve fitting to the wash-in and washout signal separately. The ‘regional 
lung clearance index’ (RLCI) was calculated as 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖/𝑜𝑜𝑜𝑜𝑜𝑜 = −𝑙𝑙𝑙𝑙 ( 2.5

100) 𝜏𝜏𝑖𝑖𝑖𝑖/𝑜𝑜𝑜𝑜𝑜𝑜 , where  𝜏𝜏 is the exponential recovery/decay time constant for signal 
wash-in/out, respectively. RLCIin therefore represents the number of breathing cycles required to 
increase the 19F-MRI signal to 39/40ths of the theoretical maximum signal and RLCIout is the number of 
breaths required to equivalently reduce the signal. Correlation between spirometric tests and whole-
lung and regional (centre/periphery) RLCI measurements were analysed using the Pearson correlation 
coefficient. Significance of correlations were tested using Fisher z transformation. All averages are 
displayed as median (25th-75th percentile). 

Results: Ten patients (median age: 54 (31-63); 7 male) were recruited to the study. Five participants 
had a diagnosis of BOS (three stage 1, one stage 2, one stage 3) and one of RAS (stage 1). Four stable 
lung transplant recipients (without any CLAD diagnosis) were also recruited. 

measures of gas trapping, pulmonary function tests, and 129Xe ventilation MRI. Our preliminary data 
shows evidence of abnormal GTV% in patients with CF with normal lung function.  

References:  
[1] L. J. Smith et al. 129Xe ventilation and 1H anatomical MRI to detect functional and structural abnormalities 
in sub-clinical cystic fibrosis lung disease [abstract]. In: ISMRM 2019.; 11-16 May; Montréal, QC Canada. 
[2] J. G. Sled et al. (1998), A nonparametric method for automatic correction of intensity nonuniformity in MRI 
data. IEEE Trans. Med Imaging. 17(1):87-97. https://doi.org/10.1109/42.668698. 
[3] J. R. Astley et al. (2023), Implementable Deep Learning for Multi-sequence Proton MRI Lung Segmentation: 
A Multi-center, Multi-vendor, and Multi-disease Study. J. Magn. Reson. Imaging. 58:1030-1044. 
https://doi.org/10.1002/jmri.28643 

 
Fig. 1. Impact of N4 bias field correction (parameters: 
spline spacing = [150] and convergence = [85x85x85), 
0.001]) on 3D SPGR images acquired at RV. Posterior 
slices are shown before (a) and after (b) correction in 2 
CF patients. Green arrows indicate areas of gas 
trapping. (c) shows areas of gas trapping as selected by 
the proposed automated approach. 
 

 
 

 
Fig. 2. Derivation of gas trapping threshold from 

bias-corrected, normalised signal distribution 
derived from a healthy cohort. The gas trapping 

threshold is derived from the mean -1.64SD of the 
reference histogram (indicated by the red vertical 
line). A histogram from an example CF patient is 

shown for comparison (CF Histogram). 
 
 

Fig. 3. Box-
whisker plot 

of the distribution of GTV% for the 
healthy and CF datasets (p<0.001). 

 
Fig. 4. Correlation of GTV% calculated 
from 3D SPGR RV imaging to (a) FEV1 
z-score (p < 0.001, r = -0.762), (b) 
RV/TLC % (p < 0.001, r = 0.757) and (c) 
Xe VDP% (p < 0.001, r = 0.800). 
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Unlocking Muscle Fatigue: Insights from Multi-Parametric 1H, 23Na & 31P MRI in 
Exercise-Induced Muscle Damage and Inflammation 
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ABSTRACT (750words) 

 
Introduction: Skeletal muscle type III-IV nerve afferents orchestrate the cardiovascular responses to 
exercise 1,2, maintaining adequate blood flow and oxygen delivery to the exercising muscle 3. However, 
muscle nerve afferents  function can be altered in disease states 4, and following inflammation induced 
by uncustomed exercise (i.e., exercise induced muscle damage - EIMD) 5. While previous research has 
shown similar or attenuated cardiovascular responses before and after EIMD 6-9 none of these studies  
accounted for the cofounding factors present following EIMD (i.e., changes in muscle oxygenation, 
metabolism, and weakness). Therefore, the aim of the present study was to investigate whether 
changes of muscle oxygenation and metabolism were associated with changes in cardiovascular 
responses to exercise and the muscle nerve afferents activity following EIMD. We hypothesised that 
changes in the muscle environment following EIMD  alters the blood pressure response driven by 
muscle III-IV afferents. In turn  the ‘perception’ of effort (RPE) would increase  during exercise. 
 
Methods: The study was approved by the local research ethics committee and 12 healthy  males (age 
25.2 ± 5.0 years) volunteered to take part and provided written, informed consent to participate. 
Assessments (questionnaire, MVC and MRI) were completed before and 48h after EIMD (Fig 1.). EIMD 
consisted of 40 min downhill running (DHR) at a 20% decline on a treadmill (H/P Cosmos Saturn 
300/100). We recorded indicators of EIMD which included Maximal Voluntary Contraction (MVC), 
Soreness (VAS), and swelling measured from quadriceps cross sectional area (Qcsa). All MRI measures 
used a SIEMENS MAGNETOM 3T Vida system. Participants were in a feet first supine position with 
suitable RF coils placed over the thigh. 1H T2 mapping confirmed muscle inflammation post EIMD. 
Muscle metabolism and oxygenation was measured at rest, during isometric knee extension and post-
exercise cuff occlusion (PECO) with non-localized 31P NMR spectroscopy and Blood Oxygenation Level 
Dependent measures, respectively. The latter was preceded and followed by 23Na imaging to assess 
the ionic microenvironment of the muscle tissue (Fig 1). Measures of blood pressure (MAP) and heart 
rate (HR) were recorded throughout the MRI assessments with a non-invasive beat by beat device. All 
MRI related outcomes were analysed offline in MATLAB 2020a (The MathWorks, Natick) using 
software routines developed in-house on the middle portion of the vastus lateralis muscle. Paired t-
test was used to analysed outcomes of neuromuscular function and soreness while a two-way 
repeated measures ANOVA was implemented to analyse significant effects of time (pre- vs post-
EIMD), phase (rest, exercise, PECO, recovery) and interaction. Sidak post-hoc analysis was 

PFP wash-in was visually homogeneous and rapid in 
stable patients and substantially more 
heterogeneous in CLAD (Fig.1). BOS patients 
exhibited a significant difference in RLCIin between 
central and peripheral lung regions (W = 30, p = 
0.016) and a wider interquartile range of RLCIin 
compared with stable patients (no CLAD: 8.1, BOS: 
21.3; W = 11, p = 0.032) (Fig. 2). Though the 
distribution of wash-in rates in the patient with RAS 
was visibly different to other groups (Fig.2), this could 
not be tested for significance due to the N=1 sample 
size. Similar findings were observed in PFP washout 
(RLCIout) datasets. Spirometric tests negatively 
correlated with RLCI during wash-in, most strongly 
for the periphery (r = -0.844, p = 0.002), retaining significance after Bonferroni correction (p < 0.05).  

Discussion: Our study presents the first application of dynamic 19F-MRI in lung transplant recipients 
with and without CLAD. We demonstrate that 19F-MRI with a dynamic multiple breath-hold approach 
is feasible and well tolerated even in patients with more severe CLAD, and provides 3D visualisation 
and quantification of regional ventilation defects. This study identified statistically significant between-
group differences in RLCI. Though apparent ventilation defects in RAS and BOS stage 1 patients were 
visible (Fig. 1), sub-group (diagnostic stage) statistical significance was not achieved, at least in-part 
due to the small study sample size. Future work should validate these findings in larger cohorts and 
longitudinal studies. 

Conclusions: Dynamic 19F-MRI identified quantifiable and significant differences in regional ventilation 
heterogeneity between patients with and without CLAD. 19F-MRI presents a promising tool for early 
detection of regional ventilation defects in CLAD. 

1. Chambers, D.C., et al. J Heart Lung Transplant, 2019. 38(10): p. 1042-1055. 
2. Goralski, J.L., et al. JCI Insight, 2020. 5(2). 
3. McCallister, A., et al. Magn Reson Med, 2021. 85(2): p. 1028-1038. 
4. Gutberlet, M., et al. Radiology, 2018. 286(3): p. 1040-1051. 
5. Neal, M.A., et al. Magnetic Resonance in Medicine, 2019. 82(4): p. 1301–1311. 

Fig. 2: Spread of voxelwise RLCI values measured at each 
diagnostic stage. 

Fig. 1: The central coronal slice through 3D 19F-MRI images of inhaled PFP in five representative participants. Images 
were taken during consecutive breath holds to capture PFP gas wash-in. The corresponding central slice of the resultant 
3D RLCI map is displayed in colour. 
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implemented to assess changes between pre and post EIMD and the various phases of the exercise 
protocol. Statistical significance was set when p<0.05.  
 
Results: The downhill running protocol had a significant effect on neuromuscular function and 
soreness 48h post-EIMD, showing a significant decrease in MVC torque (p<0.01) with increase in Qcsa 
(p<0.01) and VASSQ (p<0.01). RPE during exercise increased at 48 post-EIMD (p<0.01), (Fig 2). 
Moreover, significant increases in muscle T2  were observed 48h post-EIMD (p<0.01) confirming 
related tissue inflammation. No significant changes were found for resting Na+ concentration post-
EIMD (p=0.98) whilst changes in [ΔNa+] were found from rest to post sustained isometric contraction 
exercise between conditions (p<0.01).  BOLD measures confirmed that muscle oxygenation 
significantly decreased post-EIMD while 31P MRS showed significant increases in Pi/PCr, intracellular 
and extracellular Pi  pre- to 48h post-EIMD. Interestingly, no changes win ATPγ, PCr and pH from pre- 
to 48h post-EIMD were observed (Fig 3). No changes were found in MAP and HR from pre to post-
EIMD. On the other hand, index of Metaboreflex sensitivity (Pi) changed significantly from pre- to post-
EIMD, with no significant changes in Metaboreflex sensitivity for pH following EIMD (Fig 4).  
 
Discussion: In line with previous investigations, we found a considerable loss in muscle force and 
soreness after EIMD (induced via downhill running). This correlated with MRI T2 measures showing  
increased inflammation 48h later 10. Damaged muscles showed an elevated Pi/PCr ratio during rest, 
exercise, PECO, and recovery 11, as well as decreased oxygenation during occlusion 12 and increased 
RPE during exercise 13. Moreover, we found for the first time increases in delta sodium in damaged 
muscles that has been previously linked with muscle fatigability and weakness 14,15. However, despite 
these peripheral perturbation, cardiovascular responses were unchanged from the non-damaged 
state, suggesting that muscle afferents did alter the cardiovascular responses to isometric exercise 
and PECO. These results show possible interference on oxygen delivery and blood flow during exercise 
that may in turn increase the metabolic demand following EIMD, resulting in extensive reduction in 
muscle oxygenation and consequent increase in exercise effort and muscle fatigability. 
 
Conclusion: This study highlights the importance of an integrative multi-parametric MRI approach to 
study the physiological consequences underlying muscle inflammation following uncustomed 
exercise. This is crucial for advancing our understanding on the abnormal responses present in several 
medical conditions characterised by muscle weakness and fatigability. Our mechanistic study delivers 
an integrated  protocol to track the impact of acute exercise bouts on recovery/rehabilitation in 
inflammatory conditions. 
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Figure 1. Design of the study, MRI protocol and timeline of each imaging acquisition 
sequences. Participant underwent preliminary questionnaire and soreness assessment followed 
by maximum voluntary contraction (MVC) and MRI. Thereafter, participant performed the 
downhill running (DHR). Two days later participants present in the lab and performed all 
baseline assessments. Multi-parametric MRI assessment was composed of structural scans (T1 
and T2) sequences with recording of 31P, 23NA, and muscle oxygenation (mBOLD) during 
exercise and muscle occlusion (PECO). Created with BioRender.com 
 
  

 

Figure 2. Changes in indicators of EIMD, before and after our EIMD (downhill running) protocol. 
MVC = Maximal voluntary Contraction; VASSQ = Visual Analog Scale for Soreness; T2 =1H T2 Map; 
Qcsa = Quadriceps Cross Sectional Area, ΔNa+ = Delta Sodium from rest to exercise; RPE = Rate of 
perceived exertion; Data are presented as mean ± SD, *p<0.05.  

 
 

  
 

Figure 3. Changes in muscle metabolism and oxygenation before and 48h after EIMD. On the 
bottom right of each graph is reported the results from the statistical analysis and its 
respective p-values. Data are presented as mean ± SD. 
  

 

  
 

Figure 4. Changes in Cardiovascular responses and metaboreflex sensitivity before and 48h 
after EIMD. . On the bottom right of each graph is reported the results from the statistical 
analysis and its respective p values. Data are presented as mean ± SD. 
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a small tear overlooked. The agreement with the surgical findings was comparable for both imaging 
protocols in the assessed patient group (p = 0.524). 
Discussion: Our work presents the successful implementation of saline MRI arthrograms and the initial 
results suggest that the use of the new saline protocol is not inferior to the standard GBCA based 
imaging. This new method utilising saline showed fewer discrepancies with the surgical findings, which 
may relate to improved visualisation from an updated protocol rather than anything inherent in the 
contrast.  
The use of GBCA has the potential for allergic reaction, possible nephrotoxicity, is associated with the 
development of nephrogenic systemic fibrosis, and the more recently recognised gadolinium 
deposition within the brain6. Whilst the chance for these effects is minimal, they must still be 
considered when deciding to perform any contrast enhanced MRI. The GBCA which is licenced for 
intra-articular use is classed as high risk for these complications due to their linear formulation and 
have therefore been withdrawn from intra-vascular use, prompting a similar approach to intra-
articular use within many departments2,3,6. Saline is safe, readily available, inexpensive7, and can be 
visualised within the joint space by MRI. Furthermore, costs can be variable but a pre-filled GBCA 
syringes is likely to cost in the region of 10 times as much as an ampoule of saline.  
The main limitation of this study is the small number of patients analysed. Further review is required 
to ascertain the significance of these findings, with additional case reviews planned going forwards. It 
is also worth noting that all images included in this review were acquired on a 1.5T Siemens 
MAGNETOM Sola with the use of AI based acceleration software which enabled faster scan times, 
allowing for acquisition of additional sequences within the protocol and improved image quality, 
which may not be widely available. One disadvantage of the new protocol is a potential for flow 
artefacts in the vicinity of large vessels in T2-weighted sequences, which was addressed in our study 
using a combination of flow compensation and saturation bands. 
Conclusion: This review presents a new saline-based MRI arthrogram protocol for the shoulder and 
demonstrates its suitability as an alternative for GBCA MR arthrography when comparing diagnostic 
value and agreement with surgical findings, whilst considering the reduced risk to the patient, 
increased availability and lower cost. 
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Shoulder MRI Arthrograms – Is saline an intra-articular option? 
 
Charlotte Swain1, Rafal Panek1,2, Iain Macleod1 
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Introduction: Shoulder arthrograms with intra-articular gadolinium-based contrast agents (GBCA) are 
considered the imaging option of choice for diagnosing labral tears and lesions1,2. Recent changes to 
the availability of GBCA licensed for intra-articular use mean an alternative imaging methodology has 
been sought2,3. While saline has been shown to be effective for hip arthrograms, there is limited 
evidence for its use in shoulders 4,5.  
A new protocol was developed locally using saline (0.9% NaCl) rather than a GBCA (Magnevist, 
2mmol/l in 15ml pre-filled syringe).  The initial trial period included scan supervision by a Radiologist 
and MR Physicist followed by image review and protocol consensus by the local MSK Radiology Team. 
This review presents the new saline-specific protocol and examines the MRI report alongside the 
surgical report to ascertain the accuracy of using saline with the new saline-specific protocol compared 
to the conventional GBCA protocol. 
Methods: A retrospective review of 10 patients was undertaken (5-GBCA/5-saline) comparing the 
effectiveness of intra-articular GBCA with saline for shoulder MR-arthrograms. Patients were 
randomly selected from a 1-year period (May 2023-May 2024), 6 months before and after the date of 
the protocol change.  Inclusion criteria were: patient age over 18 years with a successful shoulder MRI 
arthrogram with GBCA/saline and subsequent surgery with available report. All images were acquired 
on a 1.5T Siemens MAGNETOM Sola with a dedicated 16 channel shoulder coil.  
The original protocol utilised T1-weighted TSE GBCA enhanced imaging in axial and sagittal planes with 
fat saturation (FS) together with 3D PD FS (space) axial and coronal scans to provide adequate 
visualisation of the glenohumeral joint. The new protocol includes T2-weighted TSE in all three planes, 
3D isotropic PD FS coronal (axial reconstruction) and T1-weighted non-FS TSE sagittal scan to visualise 
medial muscles. The new saline-only protocol utilised AI based acceleration software (Deep Resolve 
Boost and Deep Resolve Sharp, Siemens Healthcare). 

The MRI arthrogram report was compared with the surgical report to compare accuracy of both 
imaging protocols. Agreement between the MRI report and surgical findings were compared using 
Fisher’s exact test with p = 0.05 significance threshold. 

Results: The quality of acquired images was found sufficient for diagnostic evaluation in all 10 patients. 
Differences between agreement of surgical reports and MRI reports at the time of scan are presented 
in Table 1 for both protocols.   
 
Table 1. Agreement between surgical report and MRI findings at the time of scan  

 Full agreement 
between MR and  
surgical report 

Minor discrepancy 
between MR and 
surgical report 

GBCA 2 3 
Saline 4 1 

 
All 10 cases showed utility of the MR arthrogram, identifying pathology that was best treated 
surgically. Minor discrepancies between imaged and surgical findings were found in 4 out of 10 
patients. These included one false positive SLAP tear and overcall of tear locations in the GBCA group; 
whereas one false negative was seen in the saline group with labral deformity correctly identified but 
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Results: Placental contractions were observed in 33 out of 37 participants. and shown in figure 2A. 
There was no statistically significant trend with gestational age although the variability increased 
with gestational age. 
Placental volume decrease is shown in figure 2B. Placental contractions and simultaneous placental 
and uterine contractions are plotted separately. Where individual participants had more than one 
contraction, the volume reduction is shown as the average volume change for that participant and the 
range. No significant trend was found with gestational age.  

 

 
Fig. 2. A) Rate of placenta contractions across gestational age for low, high and extremely high risk 

pregnancies. B) Percentage of placental volume decrease during placental contractions and 
simultaneous placental and uterine contractions for low, high and extremely high risk pregnancies. 

Average is shown for participants with multiple contractions with the minimum and maximum 
shown as error bars. 

 
Discussion: The higher risk groups showed no difference in the frequency or volume change of 
placental contractions. However the criteria for these categories is broad and therefore retrospective 
categorising based on pregnancy outcome may help to better distinguish placental function. This is 
part of an ongoing study and more data will be acquired from the higher risk groups as well as 
longitudinal information showing the progression of contractions across gestation. 
Conclusions: Placental contractions have been characterised in high and extremely high risk 
pregnancies for the first time. The presence of contractions in the majority of participants across all 
risk groups indicates the necessity of these contractions and highlights the need to further understand 
their purpose. 
Acknowledgements: This work is funded by the Wellcome Leap In Utero program. 
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Placental contractions in low, high and extremely high risk pregnancies 
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University of Nottingham, Nottingham, United Kingdom 
 
Introduction: Placental contractions have recently been discovered to be distinct from uterine 
contractions using MRI and had been previously theorised in biological literature due to the contractile 
elements of anchoring villi [1,2]. Placental contractions have been characterised in low risk 
pregnancies but have previously not been investigated in compromised pregnancies [3]. These 
contractions have an impact on the haemodynamics in the placenta so differences in contractions may 
indicate underlying placental insufficiencies. 
Methods: Ethics approval was obtained from a regional ethics committee and 37 pregnant 
participants were consented and scanned. 30 pregnancies were considered low risk, 3 were 
considered high risk and 4 extremely high risk using the NHS Saving Babies Lives Care Bundle Version 
2 criteria. 
Participants were scanned using a 3T Philips Ingenia, in a left lateral tilt. Dynamic MRI was acquired 
for between 10 and 30 minutes using respiratory triggered, multislice, single shot gradient echo EPI 
(TE 25ms, minimum TR 9s, voxel size 1.56x1.56x4 mm3, Sense 3), with some series also including 
quantitative flow encoding.  
Non flow encoded images were segmented using nnU-Net, a convolutional neural network trained on 
44 volumes from 11 pregnancies, to create placental and uterine masks. Flow encoded images were 
segmented manually as the network was not trained for these images. Placental volume was 
estimated using a percentage change of a central, axial slice in which minimal fetal movement was 
observed. Placental contractions were identified visually from the dynamic MRI and the placental 
volume timecourse. Placental contractions were defined by contraction of the placental bed, 
reduction in placental volume and changes in the BOLD signal of the placenta. While placental 
contractions are independent of uterine contractions, they occurred simultaneously in some cases 
which are marked accordingly. The rate of placental contractions was determined by the number of 
contractions observed in the scan duration. 

Fig. 1. An example of a placenta before and during a contraction and the corresponding change in 
placental volume. 
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Table 1.  Number of experiments for each vendor and field strength (grey background),  
and protocol used in the multivendor experiment. 

Vendor GE Siemens Philips 
Sequence name Lava - Flex VIBE - Dixon Thrive - mDixon 

Fi
el

d 
st

re
ng

th
 

1.5 T 

10 cases 10 cases 3 cases 
TE1,2 = [2.08, 4.17] msec 
TR = [5.64 - 6.19] msec 

𝛼𝛼 = 15° 

TE1,2= [2.39, 4.77] msec 
TR = [6.69 - 7.47] msec 

𝛼𝛼 = [9°- 15°] 

TE1,2 = [1.71 - 1.81, 3.60 - 4.40] msec 
TR = [5.30 - 6.50] msec 

𝛼𝛼 = 10° 

3 T 

10 cases 10 cases 7 cases 
TE1,2 = [1.12, 2.23] msec 
TR = [3.62 – 3.78] msec 

𝛼𝛼 = 9° 

TE1,2 = [1.23, 2.46] msec 
TR = [3.87 – 3.97] msec 

𝛼𝛼 = 9° 

TE1,2 = [0.98 - 1.34, 1.98 - 3.00] msec  
TR = [3.20 - 4.80] msec 

𝛼𝛼 = [9°- 15°] 
 

Results: The 40% PDFF vial value was excluded for eight GE 1.5T datasets because of the water-fat 
swaps. With T1-bias correction, the SFF acquired with different 𝛼𝛼 and hence different amount of T1-
bias were all corrected towards the SFFpd (Fig. 1). However, the corrected values are still biased 
compared to ground truth due to remaining vendor-specific bias, which can be modelled by the SFF 
simulation shown in Fig. 1. With the full proposed correction, 95% limits of agreement (LoA) within ± 
5% and 0.41% mean bias were achieved across all vendors and field strengths, which meet the QIBA 
95% LoA and mean bias requirement for phantom PDFF bias [4] (Fig. 2). 

   

Fig. 2. Bland-Altman plots of Dixon SFF using MRS-PDFF as ground-truth, for scanner-derived SFF when 
no correction is applied (A), for T1-bias corrected SFF (B) and for T1-bias and vendor-specific corrected 
SFF (C). Data acquired at different vendors and field strength are plotted with different colour, and 
the QIBA requirement for 95% LoA, mean bias and worst-case bias [4] are also shown in the figure.  
 

Conclusions: We proposed a bias correction method for commercialised 3D dual-echo Dixon 
sequences to achieve more reproducible and accurate PDFF quantification across scanners and field 
strengths. The proposed method was evaluated using water/oil phantom datasets from GE, Siemens 
and Philips scanner, at 1.5T and 3T. The corrected dual-echo Dixon-derived PDFF shows good 
agreement with the ground truth MRS-PDFF. 
 

Limitations: The proposed method does not correct for noise and T2* bias, which are not major 
confounders in phantom experiments but will be important for in-vivo study. The correction was 
tested on multivendor datasets, however, limited data were available for Philips 1.5T and GE 1.5T at 
40% PDFF value, as water-fat swapped vials were excluded. Also, the QIBA requirement for worst-case 
bias was not met, further investigation of the unsuccess cases is needed.  
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Towards accurate, reproducible PDFF quantification using a 3D dual-echo Dixon body 
composition sequence: validation in phantoms 
Yifei Jin1, Markus Henningsson1, Carolina Fernandes1 
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Introduction: The dual-echo Dixon technique is commonly used for water-fat separation, its 
commercialised 3D Dixon sequence with inline water-fat separation is available on major vendors, 
including Siemens, GE and Philips. The separated fat signal facilitates quantification of fat volumes in 
areas of nearly pure fat such as visceral and subcutaneous fat, needed for body fat composition. 
However, the signal fat fraction (SFF) calculated from the scanner-derived water and fat images with 
conventional imaging parameters (flip angle 𝛼𝛼 ~10°, repetition time TR~4-8 msec) is T1-biased 
compared to proton density fat fraction (PDFF) sequences with small 𝛼𝛼 and long TR [1]. Additionally, 
different echo times (TE) and fat model choice of the vendor introduce vendor-specific bias [2]. In this 
work, we propose a T1-bias correction followed by a simulation-based vendor-specific correction for 
more accurate and reproducible PDFF quantification using commercial 3D dual-echo Dixon sequences.  
 

Theory: The different T1 of water ( 𝑇𝑇1𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 ) and fat ( 𝑇𝑇1𝑓𝑓𝑓𝑓𝑓𝑓 ) result in different T1 weighting 

(𝑇𝑇1𝑊𝑊𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =  (1−𝑒𝑒−𝑇𝑇𝑇𝑇/𝑇𝑇1𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) sin 𝛼𝛼
1−𝑒𝑒−𝑇𝑇𝑇𝑇/𝑇𝑇1𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  cos 𝛼𝛼

 ) on the water and fat component signals, leads to biased 

SFF (𝑆𝑆𝑆𝑆𝑆𝑆 =  𝐹𝐹𝐹𝐹𝐹𝐹 × 𝑇𝑇1𝑊𝑊𝑓𝑓𝑓𝑓𝑓𝑓
𝐹𝐹𝐹𝐹𝐹𝐹 × 𝑇𝑇1𝑊𝑊𝑓𝑓𝑓𝑓𝑓𝑓+ 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 × 𝑇𝑇1𝑊𝑊𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

× 100%) relative to PDFF. With known 𝑇𝑇1𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤, 𝑇𝑇1𝑓𝑓𝑓𝑓𝑓𝑓, 

𝛼𝛼 and TR, a correction factor 𝑓𝑓𝑇𝑇1 =  𝑇𝑇1𝑊𝑊𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤
𝑇𝑇1𝑊𝑊𝑓𝑓𝑓𝑓𝑓𝑓

 can be calculated and applied to the fat signal for T1-

bias correction. The choice of fat model and TEs introduce bias due to the mismatch of the vendor-
implemented signal model and the actual signal model. To address this, we simulated a dictionary to 
find the corresponding unbiased result of the biased SFF for each vendor. The combined water and fat 
signal at each TE were simulated for the full range of PDFF values (0-100%), assuming a 6-peak peanut 
oil fat model [3]. The biased SFF was then reconstructed from the simulated signals using the derived 
vendor-specific fat model and algorithm. By searching the closest simulated SFF value to the acquired 
SFF, the corresponding PDFF can be found.  
 

Experiments: To evaluate the proposed T1-bias 
correction performance, experiments were performed 
on a 1.5T GE SIGNA Voyager system using a water/oil 
phantom (Model 450, Calimetrix), which has 5 PDFF vials 
(5%, 10%, 20%, 30%, 40%) and known T1 (1.5T/3T: T1fat 
= 294/307 msec, T1water = 635/607 msec). Data were 
acquired with Lava-Flex (TE1,2 = 2.084, 4.468 msec, TR = 
7 msec) using three different flip angles 5°, 10°, 15°. And 
then using 𝛼𝛼 = 2°, TR = 15 msec to minimise the T1-bias 
(SFFpd). The different flip angle datasets were T1-bias 
corrected and compared to the SFFpd. The manufacture-
specified magnetic resonance spectroscopy (MRS) PDFF 
was used as the ground truth PDFF.  
 

 
To evaluate dual-echo Dixon-derived PDFF reproducibility using the proposed T1-bias and vendor-
specific correction, data from different vendors, field strengths and multiple sites were acquired using 
seventeen identical Calimetrix phantoms (Table 1). 𝑇𝑇1𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 and 𝑇𝑇1𝑓𝑓𝑓𝑓𝑓𝑓 were assumed identical in 
all phantoms for a given field strength. The Dixon PDFF values after proposed correction were 
compared to manufacture-specified MRS-PDFF. Vials with water-fat swaps were excluded from the 
analysis. 

Fig. 1. The Dixon SFF is plotted against 
manufacture-specified MRS PDFF for each 
phantom vial. The simulated SFF is plotted 
against the known ground truth PDFF. 
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Analysis: Masks of the liver, spleen and Subcutaneous Adipose Tissue (SAT) were created from the 
mDIXON using a nnU-NET [3] previously trained on 40 adult participants’ data. These masks were then 
used to compute liver and spleen volume, FF and T2*, and SAT volume. Liver and spleen masks were 
re-sampled (FSL, fMRIB) and applied to the abdominal T2 and T1 MOLLI maps. Pancreas ROIs were 
manually drawn, and FF maps interrogated. Liver MRS data were analysed using MATLAB, spectra 
were phase corrected, peaks fitted, and FF corrected for T2. 
 

Results: To date, data 
from 9 participants has 
been analysed. Liver 
volume was significantly 
different from baseline at 
all subsequent time points 
(Fig. 2). Liver T2* 
significantly increased at 
6-weeks compared to 
baseline, and liver MOLLI 
T1 reduced at 6-weeks and 6-months compared to baseline (Fig.2). At baseline, all participants had a 
fatty liver when measured by either MRI or MRS (> 6.4% FF [4]) with MRI and MRS measures of FF 
shown to correlate well (R=0.92, p<0.001), Fig.2. There was a significant reduction of liver FF from 
baseline to 6-weeks, and from the end of VLCD to 6-weeks (Fig.2). 7 of 9 patients had a fatty pancreas 
(> 6.2% FF [5]) (Fig. 3). SAT volume significantly reduced at 6-months compared to baseline. No 
significant reduction was observed in pancreatic FF or spleen measures (Fig. 3). 
Discussion: This study's preliminary findings show liver changes associated with bariatric surgery. A 
bias is seen in lower values of FF (FF < 10%), with imaging overestimating compared to MRS. The 
reduction in liver MOLLI T1 is likely an effect of reduced FF and will be compared to FS SE-EPI T1 
mapping [6]. In future, we will also study the effect of bariatric surgery on pancreas T2*, T2 and T1, as 
well as kidney T2* and MOLLI T1 kidney measures, and compare differences between the two types of 
surgery. The MRI measures will be related to blood measures of glucose, GLP-1, GIP, glucagon, C-
peptide, ghrelin, insulin and bile acids. 
 

Conclusion: MRI can detect a quantitative decrease of fatty infiltration within the liver after bariatric 
surgery and could be a valuable tool to monitor NAFLD/ NASH postoperatively. 
 

Acknowledgements: The study was supported by funding from the NIHR BRC, with PhD funding to AS 
from the MRC DTP and to SLB from the EPSRC DTP. 
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Figure 3 - Box plots of the percentage reduction from baseline of spleen 
(purple) volume, FF and T2*, pancreas FF (green) and SAT (red). 
Significant p-values can be seen above their respective box plots. 

 

 

Multiparametric MRI and MRS to study changes across the Surgical Journey in Bariatric 
Patients with Type 2 diabetes or Prediabetes. 
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Introduction: Obesity rates are climbing, leading to a rise in related diseases such as Type-2 diabetes 
mellitus (T2D). Bariatric surgery is an effective strategy to induce sustained weight loss and diabetes 
remission. Before surgery, patients undergo a 2-week Very Low-Calorie Diet (VLCD), consuming 
~800kcal a day, which has been independently shown to induce diabetes remission [1,2], either Roux-
en-Y gastric bypass (RYGB) or sleeve gastrectomy (SG) is then performed. Whether diabetes remission 
occurs due to the VLCD or additional changes in insulin-sensitive tissues after surgery is unclear.  
Aim: To collect multi-parametric 1H MRI and MRS at four time points across bariatric patients surgical 
journey: baseline (before treatment), after a VLCD, 6-weeks post-surgery and 6-months post-surgery. 
Methods: 17 participants (BMI≥35kg/m3, diagnosis of T2D or pre-diabetes, no history of liver 
cirrhosis) registered for bariatric surgery were recruited to have MRI scans at baseline, end of VLCD, 
and 6 weeks and months post-surgery, Fig.1. Of these participants, 6 had RYGB, and 11 had SG. To 
date, 16 participants have completed scans up to +6 weeks, with 12 having completed all 4 time points. 
Participants arrived fasted (≥8 hours) at 08:30 for a 3-hour mixed meal test followed by a 1-hour 
multiparametric MRI. 
MR acquisition: MR 
measures were collected on 
a Phillips 3T Ingenia using a 
large FOV (450 x 450 mm) 
centred on the pancreas, 
including liver and spleen. 
Scans included a 6-point 
abdominal mDIXON to 
assess Fat Fraction (FF) and 
T2*, MOLLI T1 mapping (with 
physiologically simulated 60 
bpm) and fat-suppressed 
(FS) SE-EPI T1 mapping, 
GraSE T2 mapping, B0 and B1 
maps. Kidney T2* and MOLLI 
T1 scans were also acquired. 
Single voxel (20x20x20 mm) 
1H STEAM MRS of the liver 
was also collected with 4 
TE’s (15,30,45 and 80 ms), 
TR = 2500ms, BW = 2000Hz. 

Figure 2 - Liver MRI (blue) and MRS (pink). A) Box plots of the percentage 
reduction from baseline. Significant p-values shown above box plots.       
(B) Comparison of MRS and MRI measured FF, identity line (dashed), full 
dataset fit (blue) and fit for FFMRS > 10% shown in pink with R and p values. 
(D) Strong correlation of FF and MOLLI T1 seen for all time points. 

 

Figure 1 - Timeline of study  
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planes, are presented in Fig. 2. Good contrast 
is observed between the contents of the 
stomach/small bowel and surrounding tissue. 
A 3D rendering of the stomach and small 
bowel, performed in Osirix, are presented in 
Fig. 3. 
Discussion 
In this study, we have provided proof of 
concept for a rapid 3D imaging method to 
assess GI motility, with images successfully 
acquired in the stomach and small bowel. By 
performing 3D motility imaging, it is possible 
to more accurately characterise the unpredictable motion of the GI tract, in comparison to 2D motility 
imaging. Furthermore, planning of the scan is easier to perform, thus negating the need for specialist 
training and reducing the overall time that patients are in the scanner. 
The next step of the project is to perform motility analysis, which will be performed using GIQuant, 
validated software that can reliably measure GI motility in the stomach[7] and small bowel.[8] Using 
a bSSFP sequence provides good contrast between the fluid contents of the GI tract and surrounding 
tissue, which will ease segmentation of regions of interest when performing the analysis, whether 
done manually or using automated methods. 
Conclusions 
In conclusion, we have presented proof of concept of 3D motility imaging in the GI tract, with 
sufficiently short temporal resolution to capture motion of both the stomach and small bowel. This 
method may be used to better characterize GI motion than 2D imaging, and is much easier to plan, 
thus reducing overall time that patients are in the scanner. 
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Fig. 3 3D rendering of the stomach and small bowel. 

Fig. 2 Example images taken from a single frame from 3D motility images 
acquired in the stomach and small bowel. 

 

 

Rapid 3D gastrointestinal motility imaging using a stack-of-spirals sequence and 
compressed sensing reconstruction 

Rebecca R. Baker1,2, Vivek Muthurangu2, Naomi Sakai1, Chloe Dennis1, Stuart Taylor1, David Atkinson1, 
Jennifer A. Steeden2 

1 Centre for Medical Imaging, University College London, London, UK 
2 Centre for Translational Cardiovascular Imaging, University College London, London, UK 
 
Introduction 
Impaired gastrointestinal (GI) function is a symptom in several diseases, such as irritable bowel 
syndrome, Crohn’s disease and Parkinson’s disease, and GI motility assessed using MRI has the 
potential to act as an imaging biomarker.[1] However, GI motility is often assessed using 2D MRI 
methods, which are unable to fully characterise the 3D, unpredictable and aperiodic motion of the GI 
tract. Furthermore, planning of the 2D slices requires skilled radiographers to ensure the correct 
anatomy is captured. Although previous studies have achieved 3D cine imaging of the stomach with 
temporal resolutions of 3-7 s,[2,3] this is insufficient to fully capture motion in the small bowel, which 
requires a temporal resolution of 1 s.[4] However, 3D cine imaging in the heart has been shown with 
temporal resolutions of 1.2 s.[5] Therefore, in this study we aimed to adapt methods used in cardiac 
imaging, to perform 3D motility imaging of the stomach and small bowel, with a temporal resolution 
of 1 s. 
Methods 
3D motility sequence: A 3D stack-of-spirals balanced steady-state free 
precession (bSSFP) sequence with fat saturation was developed. A 
variable density spiral strategy was used in kx-ky (readout duration = 3.0 
ms), with 30 interleaves required to fill the centre 50% of kspace at each 
of the 96 kz partitions. To accelerate acquisition, kx-ky data was 
undersampled by a factor of 6 and kz was undersampled by a factor of 2. 
In addition, partial Fourier (75%) was applied along kz. kz partitions were 
acquired pseudo-randomly in the inner loop, while kx-ky spirals were 
acquired in the outer loop, ordered by the golden angle (Fig. 1). Fat 
saturation was performed at the start of each inner loop. Total 
acceleration factor was 16×, enabling acquisition of a 400×400×202 mm3 
volume with 2.1 mm3 isotropic resolution approximately every 1 s.  
Image reconstruction: Undersampled data was reconstructed using 
compressed sensing (CS) with spatial and temporal total variation. 
Frames were reconstructed in batches of 10. To calculate coil 
sensitivities, the central 8 partitions from the first 8 frames were 
combined to provide a low resolution fully sampled kspace. 
Reconstruction was performed offline using Python and Tensorflow 
MRI.[6] 
Imaging protocol: Imaging was performed on a 1.5 T MRI scanner 
(Avanto fit, Siemens Healthineers). Data was acquired in three patients with Parkinson’s disease, 
following overnight fasting and withdrawal from medication. Patients were given 800 mL of 2% 
mannitol solution, which was consumed over 40 minutes prior to the scan. 3D motility images were 
acquired as described above. To assess stomach motility, 120 frames were acquired, resulting in a 
total acquisition time of 2 minutes. To assess small bowel motility, 20 frames were acquired, resulting 
in a total acquisition time of 20 s. Small bowel imaging was performed with a breath-hold. 
Results 
3D cine data was successfully acquired and reconstructed in the stomach and small bowel, with a 
temporal resolution of 1 s and isotropic spatial resolution of 2.1 mm3. The CS reconstruction took 
approximately 1 minute/frame. Example images of the stomach and small bowel, in three orthogonal 

Fig. 1 Example kspace 
sampling. Variable density 
spirals acquired in kx-ky, 
and pseudo random 
partitions acquired in kz. 
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exponential model and a StimFit model [11]. Distortion correction (FUGUE and TOP-UP) can be applied 
to SE-EPI-based data and model driven registration (MDR) is used to realign T1 (MOLLI and SE-EPI), ASL 
and DWI data and quantitative maps subsequently generated.  
Results: AFiRM has completed recruitment with baseline MRI scans on 421 participants with CKD 
across 10 UK centres on GE, Philips and Siemens 3T scanners at baseline, and has scanned ~100 Year 
2 scans. Preliminary MRI analyses have been completed in 300 baseline datasets for estimation of TKV 
from T2-weighted scans, B0 and B1 mapping, T1 MOLLI and T2* mapping as shown in Figure 2. 

Fig 2: Results of preliminary MRI 
analyses of 300 datasets from the 
AFiRM study showing A) Example T2-
weighted scan and u-Net masks, and 
TKV values separated by CKD 
aetiology. B) Example T1 MOLLI and T2* 
maps, u-Net cortex and medulla 
masks, and associated range T1 and T2* 
values in cortex and medulla in AFiRM 
patients and healthy volunteers. 
 

Discussion: The AFiRM study is a UK-wide large-scale multicentre clinical study of renal 
multiparametric MRI in people with CKD, applying the UKRIN-MAPS harmonised renal MRI protocol, 
data storage, and quality assurance and centralised analysis. Baseline recruitment to AFiRM 
completed in February 2024 and baseline results of measures in the full cohort are now being 
undertaken. 
Conclusions: This study applies the UKRIN-MAPS multiparametric renal MRI protocol to understand 
changes in renal structure and function in CKD disease progression. This has the potential to transform 
the study of novel drugs for CKD progression, assessing changes earlier than traditional clinical 
measures. 
Acknowledgements: This work was funded by the UKRIN-MAPS MRC Partnership grant 
(MR/R02264X/1) and the NIHR AFiRM project (NIHR128494). 
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Introduction: The global burden of chronic kidney disease (CKD) is significant, affecting ~10% of the 
world’s population. CKD can progress to kidney failure and increases cardiovascular risk. Better 
imaging methods to determine cause and prognosis are required. Renal multiparametric MRI provides 
whole kidney structural and functional measurements. The Application of Functional Renal MRI to 
improve assessment of Chronic Kidney Disease (AFiRM) study is a NIHR funded UK-wide multi-centre 
prospective cohort study to assess if multiparametric structural and functional renal MRI can deliver 
prognostic information and ultimately help guide treatment decisions.  
Methods: AFiRM [1] is a multi-centre, prospective cohort study of patients with CKD from 10 UK 
centres, utilising the UKRIN-MAPS [2] multiparametric MRI protocol. Renal multiparametric MRI [3-8] 
is being collected at baseline and Year 2. Subjects are being scanned across GE, Philips and Siemens 
3T MR scanners (1 GE site, 4 Philips sites, 5 Siemens sites) following quality assurance using the 
ISMRM/NIST phantom.  
The MRI protocol (Fig. 1) comprises B0 and B1 mapping (for scanner characterization, correction of 
quantitative measures, and distortion correction), relaxometry measures of T1 (both MOLLI and 
inversion recovery spin echo EPI), T2 and T2* mapping, Diffusion Weighted Imaging (DWI, multiple b-
values and directions for an IVIM fit and estimation of fractional anisotropy (FA)) angiograms and 
phase contrast MRI (PC-MRI) of the renal arteries, magnetization transfer ratio (MTR) mapping, 
volumetric T2- and T1-weighted scans for estimation of total kidney volume (TKV) and cortex and 
medulla volume, mDIXON, and ASL perfusion scans.  

Fig 1: The multiparametric UKRIN-
MAPS protocol, comprising B0 and 
B1 mapping, relaxometry (T1 
MOLLI and Inversion recovery SE-
EPI, ME-SE T2 and BOLD R2*/T2*), 
Diffusion Weighted Imaging, 
angiograms and phase contrast 
MRI, magnetization transfer ratio 
mapping, volumetric T1- and T2- 
weighted scans, mDIXON, and ASL 
perfusion scans.  

The analysis pipeline consists of machine learning based segmentation from the T2-weighted (for total 
kidney [9]) and T1-mapping (for cortex and medulla [10]) scans. B0, B1 and MTR maps are generated, 
BOLD R2*/T2*-mapping data is fit to an exponential model, T2-mapping data is fit to both a simple 
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Ultra-low field Magnetic Resonance Imaging of the human forearm in the Earth’s 
Magnetic Field of Dublin, Ireland. 

Friedrich Wetterling1,2,3, Conor Conway1, Shane Hunt1, Arun Bokde2, and Anil Kokarem1 
1Electronic and Electrical Engineering, Trinity College Dublin, Dublin, Ireland  
2Trinity College Institute of Neuroscience (TCIN), Trinity College Dublin, Dublin, Ireland 
3Trinity Centre for Biomedical Engineering (TCBE), Trinity College Dublin, Dublin, Ireland 
 
Introduction: The aim of this work was to explore the limits and opportunities for ultra-low field 
Magnetic Resonance Imaging in the earth’s magnetic field at 50T (EF-MRI) in Dublin, Ireland. MRI 
normally requires high static magnetic fields (>0.5T) to polarise the hydrogen-1 nuclei in tissue and to 
maximise the available signal.  Callaghan et al. developed EF-MRI for use in antarctica [1] before 
advancing the technology to commercialisation as an educational systems globally [2]. Nowadays 

those systems can be developed at low material cost of less 
than 200EUR [3, 4]. However, their use has not evolved much 
beyond scientific and educational exploration.  Some 
universities reported student laboratories for undergraduates 
using the system in physics [5] and in chemistry [6]. Yet, other 
examples demonstrated the remaining signal challenges to 
work with this approach in practice [7].  
Methods: All EF-MRI experiments were carried out on a 
system with an inner diameter of 80mm (Terranova, Magritek, 
Wellington, New Zealand, Figure 1) which provided 
approximately 21mT polarization magnetic field strength 
using 7A polarization current. The maximum gradient strength 
was 80μT/m. First-order shimming was achieved by supplying 
the three-axis gradient coil set with currents of up to 30mA. 
An autoshim algorithm was applied, employing a modified 
bisection approach to iterate towards the ideal shim by 
maximizing the peak height. The B1-coil was tuned by 9.5nF to 
2095Hz Larmor frequency.   The Free Induction Decays (FIDs) 
(Tpol/TB1/Tdelay/Tacq/TR=1.5s/0.65ms/17ms/0.5s/3s, 8192 
points) were processed offline using a routine written in 

MATLAB (Mathworks, Nattick, USA). EF-MRI of phantoms filled with tab water were conducted using 
a 2D filtered back projection sequence (Tpol/TB1/Tdelay/TE/TR=4s/0.7ms/17ms/100ms/8s, 32 
projections, 64Hz bandwidth, and 64 samples, for 200x200mm FOV in z-direction and y-direction 
resulting in a nominal voxel resolution of 3mm x 3mm). The total imaging time was 4min16s.  For the 
forearm the following parameters were reduced: TE to 50ms, Tpol to 1s, TR to 2s, TB1 to 0.66ms, and 
projections to 16 with 32 samples per projection. The total acquisition time was 32 seconds. Ten FIDs 
were collected for the forearm (Tpol/TB1/Tdelay/Tacq/TR=1.5s/0.6ms/17ms/0.5s/3s, 8192 points). 
Results: Figure 2 shows the raw data captured for a single FID of the water bottle, the filtered result, 
and the full spectral extend of this signal showing substantial amount of 50-Hz related noise peaks. 
The resonance was conveniently positioned between the 2150Hz and 2250Hz harmonic noise peaks.  
Notably, the noise was substantially reduced from ~50V to ~10V root mean square through 
orienting the device 90degree rotated compared to the recommended position – requiring a slight tilt 
of the system itself. Figure 3 shows the FIDs for 100 recordings within 10 minutes.  Expectedly, the 
noise peak was more stable at a mean and standard deviation of 2151.5±1.0Hz than the water 
resonance that showed larger variance at 2193.6±3.4Hz translating to a magnetic field strength of 
51.52±0.08T. Figure 4 shows images captured of the water bottle and structured water phantom.  
Figure 5 shows a spectrum captured of the human forearm and a corresponding first image. While 
some signal is visible compared to the noise image more work remains to be conducted to substantiate 
this method.  

 
Fig. 1. the top image shows the location of the 
Medical Circuits and Systems laboratory 
(www.MediCAS-Lab.eu) hosted at the 
Electronics and Electrical engineering 
Department at Trinity College Dublin (TCD) in the 
city centre of Dublin, Ireland.  The bottom picture 
shows the Magritek Earth’s Field MRI system 
positioned for measurements of the forearm.  
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Tuneable Digital Phantoms for Grey Matter Modelling 
1 Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, 
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École polytechnique fédérale de Lausanne, Lausanne, Switzerland. 4 Frankfurt Institute for Advanced Studies, 

Frankfurt am Main, Germany. 5 Ernst Stru¨ngmann Institute (ESI) for Neuroscience in cooperation with the Max 
Planck Society, Frankfurt am Main, Germany 

Introduction: Numerical phantoms play an indispensable role in advancing and validating magnetic 
resonance imaging (MRI) techniques[1]. This is particularly true of diffusion MRI (dMRI), where the 
need arises for generating adjustable and microstructurally accurate representations of complex 
biological tissues. While considerable effort has been dedicated to developing numerical phantoms for 
brain white matter (WM)[2-4], the same tuneable phantoms capable of replicating the complexity of 
grey matter (GM) microstructure are lacking. In this work, we introduce Contextual Cellular Growth 
(ConCeG) as a solution to synthesize morphologically accurate GM tissue substrates, employing 
principles similar to the Contextual Fibre Growth (ConFiG) approach applied to WM[2]. 
Methods: To create realistic GM phantoms, it is essential to define the key morphological features 
required to faithfully replicate neural cells, including neurons and glia[5]. We categorized these 
attributes into three groups: structural, topological, and shape (Fig.1). Real neural cell reconstructions 
from open-access datasets such as neuromorpho.org[6] and the Allen brain atlas[7] were used to 
estimate distributions of these morphological features within the GM of the healthy adult mouse brain, 
utilising the TREES toolbox in MATLAB[8]. 
ConCeG is the algorithm introduced to synthesize realistic GM phantoms and it is implemented in 
Matlab. It takes as inputs: voxel size, the number of nodes, predefined morphological parameters 
(structural, topological, and shape, see Fig.1), and layer-specific density profiles for each cell type. The 
output consists of cells formatted in SWC[9] format. Similar to ConFiG[2], ConCeG relies on a network 
of connected nodes. The algorithm starts by distributing soma nodes within specified dimensions, 
following the user-defined cell density with respect to cortical depth. Additional nodes are randomly 
placed within the voxel space, creating a connected network for cellular projections. This network 
serves as a guide for cellular projections to navigate, considering biologically informed cost functions. 
The projections extend toward attractor points efficiently while avoiding nodes already occupied by 
existing projections or nodes that would lead to unrealistic projection shrinkage. ConCeG facilitates 
branching by employing the topological neuron synthesis approach[10]. As a projection grows, its path 
length increases, and the probability of branching is determined in relation to the birth lengths of 
remaining bars in the barcode. The branching probability increases as the path length approaches the 
birth length of another bar and satisfy the probability of branching given the current branch order. 
Newly initiated branches select angles from the angle distribution and pick attractor points that 
satisfies this angle in relation to the parent branch. Cellular growth occurs contextually, with the 
maximum node radius for nodes in the network updated at each growth step. 
Results: Fig.2 demonstrates that ConCeG can recreate cellular structures accurately when cells are 
grown individually, preserving key morphological characteristics' distributions. Fig.3 shows that the 
same degree of accuracy can be achieved when cells are grown contextually. 
Finally, in Fig.4 we illustrate ConCeG's flexibility and capabilities by synthesizing a column of the mouse 
visual cortex based on density profiles from the Allen brain atlas [11] and [12]. 
Discussion: Here, we have developed a highly versatile approach, ConCeG, which leverages real cellular 
data to create realistic digital phantoms of brain GM. These phantoms are ready to be incorporated 
into dMRI simulators, such as Camino[13], DiSimPy[14] and MCDS[15]. 
The current implementation of ConCeG enables the generation of large voxels within reasonable 
computational time (e.g. ~5 hours to generate a 100x100x1200 μm3 voxel using a single CPU-thread). 
However, further developments are necessary to achieve dense cellular packing. In fact, the densest 
voxel we were able to generate thus far has a 54% intracellular volume fraction. Future work will focus 
on increasing ConCeG ability to achieve denser cellular packings (e.g. ~70%), implementing strategies 
such as post-growth optimization similar to ConFiG[2]and MEDUSA[4]. 

 

 

  
Fig. 2. Free Induction Decay (FID) recorded for a bottle filled with tab water (0.5l). 
The raw data recorded as a function of time is shown in the graph on the left. 
The filtered data using an exponential decay time constant at 150ms and 8 times 
zero filling is shown on the left central graph.  The spectrum for that signal is 
shown in the right central graph demonstrating several harmonic peaks 
originating from 50 Hz noise. The right graph shows zoomed in spectrum to 
magnetic resonance of water at 51.4uT (2190Hz). 

Fig. 3. 100 FIDs captured for water bottle and 
plotted as a function of time to explore the local 
magnetic field fluctuations.  The mean and 
standard deviation of the resonance frequency was 
at 2193.6Hz±3.4 Hz while the 50Hz harmonic at 
2150Hz was estimated to be 2151.5±1.0Hz.  

 

  
Fig. 4. cross-sectional image of water bottle with 75mm 
diameter captured using back-projection recording and 
resonance frequency correction (left).  Images from phantom 
containing two air filled tubes horizontally (centre) and 
vertically arranged (right).    

Fig. 5. Magnetic Resonance signal obtained from 10 FIDs for lower arm 
showing a resonance between 2180 and 2205Hz. Note harmonic of 50Hz 
at 2150Hz at a much higher magnitude (top). Magnetic Resonance 
Images obtained Image obtained for lower arm inside scanner (bottom, 
left) and corresponding noise image when the arm was removed 
(bottom, right). 

Discussion: Imaging of water filled phantoms is easily achievable even in the city centre of Dublin, a 
major capital city in Europe.  However, imaging of tissue remains challenging.  The shortened 
relaxation times in tissue require adaptation of existing solutions.  Future systems may facilitate 
shorter acquisition delays and faster repetition times.  Currently, 20ms delay are required before the 
transmit coil ringdown is complete and before signal can be received and TRs must be twice the 
polarisation time to prevent overheating of the system.  Cooling and more appropriate transmit-only 
receive-only resonator solutions may offer first innovation approaches to advance EF-MRI further. 
Sodium-23 MRI suffers from a comparable signal loss as EF-MRI achieving approximately 20 000 less 
signal than hydrogen-1 MRI, yet while whole body sodium MRI has been captured in 2012 [8], EF-MRI 
remains to be challenging. The use of SQUIDs and higher pre-polarisation may offer a viable avenue 
to boost signal for EF-MRI. 
Conclusions: In conclusion, EF-MRI offers sufficient signal for MRI of water phantoms. Device 
positioning and calibration remains challenging and magnetic field variations require correction for 
imaging.  Optimized resonator coils and sequences may offer a new avenue for EF-MRI in the future. 
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Simultaneous Structural and Functional Susceptibility and Conductivity Mapping 
Using a Rapid High-Resolution Multi-Echo EPI Acquisition 

Jierong Luo1, Oliver C. Kiersnowski2, Patrick Fuchs1, Jannette Nassar1, Oriana V. Arsenov1, Stephen 
Wastling3,4 and Karin Shmueli1 

1Department of Medical Physics and Biomedical Engineering, University College London (UCL), London, UK 

2Azienda Ospedaliera Universitaria San Martino di Genova, Neuroradiology Unit, Genoa, Italy 
3Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, UCL, London 

4Lysholm Department of Neuroradiology, National Hospital for Neurology & Neurosurgery, London 
Introduction: Quantitative susceptibility mapping (QSM), electrical conductivity mapping (EPT) and 
fMRI show promise in characterising neurodegenerative diseases [1–2], but each currently needs a 
separate ~5-minute acquisition. Using a highly accelerated multi-echo EPI acquisition, simultaneous 
structural and functional QSM and EPT can be achieved. Here we optimised a rapid (~6 minutes) and 
high-resolution (1.3 mm isotropic) multi-echo GRE-EPI acquisition, and processing pipelines, to 
provide simultaneous structural and functional MRI, QSM and EPT and characterized their temporal 
signal-to-noise ratios (tSNR). 
Methods: Three healthy volunteers (HVs) were scanned on a 3T Prisma (Siemens, Erlangen, Germany) 
using a single-shot 2D GRE-EPI sequence [3], with 1.3 mm isotropic resolution, GRAPPA=4, MB=3, 
partial Fourier 6/8, TR=4034 ms, TEs =15.6, 41.6, 67.6 ms. Seventy volumes were acquired with a block 
design visual stimulus paradigm [4], in a total acquisition time of 6 min 15 s including reference scans.  
To calculate QSM within each volume, a total field map was estimated from a non-linear fit [5] of MP-
PCA denoised [6-7] complex data, followed by Laplacian unwrapping [8]. Background fields were 
removed using V-SHARP [9,10] and PDF [11], and dynamic distortion correction was applied to the 
local field map [12]. Susceptibility was calculated using non-linear total variation [13] with α=2.4x10-4 
and two-pass masking [14]. 
For EPT, the MR transceive phase (𝜑𝜑0) was 
extrapolated from the multi-echo complex 
data and unwrapped as described previously 
[15], followed by correction of slice-to-slice 
inconsistencies [16]. To reduce noise and 
preserve anatomical structures, the 
conductivity was calculated as the surface 
integral of the 𝜑𝜑0 gradient estimated by 
weighted polynomial fitting within kernels 
based on tissue segmentations [17]. The 
temporal mean image over all volumes of 
the CNR-optimal echo-combined 
magnitude [18] was used for the fitting 
weights and segmentations using SPM12 
[19]. 
Final structural contrasts were calculated as the mean 
over all 70 volumes co-registered across the time 
series, and temporal SNR (tSNR) maps for the echo-
combined magnitude, absolute QSM and EPT were also 
calculated as the temporal mean over the temporal 
standard deviation in each voxel. The structural EPT 
was calculated as the median of non-zero conductivity 
over all 70 volumes to minimise the effect of non-
physiological conductivities. For functional analysis, 
the registered echo-combined magnitude MRI, QSM 
and EPT images were analysed using a standard 
SPM12 pipeline [20], with the default haemodynamic 

Fig. 1. Structural and functional contrasts calculated 
from the multi-echo 2D GRE-EPI acquisition in HV1. 
Whole-brain positive (red) and negative (blue) fEPT 
activations are projected on the median EPT image. 

Fig. 2. Temporal SNR (tSNR) calculated for 
echo-combined magnitude (a), QSM (b) and 

EPT (c) time series in different subjects.  

Conclusion: Here we introduced ConCeG: a significant contribution to the field of neuroimaging and 
computational biology, enabling more accurate and insightful simulations of complex neural tissues. 
Acknowledgements: Dr Palombo, myself, and this work is supported by UKRI Future Leaders 
Fellowship. 
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Figure 1: Morphological features for ConCeG. Structural: branch and order; Topological Persistence 
Barcode[16]: which encodes the start and end of each branch; Shape: shape is described by the 
distribution of terminal points onto a sphere. 

Figure 2: Comparison between real and non-
contextually synthesised cells. 
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Figure 3: Comparison between real and contextually 
synthesised cells. 
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Figure 4: A column of synthesised 
mouse visual cortex, colours 
indicate the different cortical 
layers. Histogram of somas with 
respect depth for neurons and 
non-neurons overlaid with 
analytic al solutions given the 
real distribution [12]. 
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response function. To avoid bias introduced by preprocessing [21], no smoothing was applied to the 
EPT time series prior to the functional analysis. 
Results and Discussion: Fig. 1 shows structural 
contrasts with regional susceptibility values and 
conductivity values in line with literature values at 3T 
[22, 23]. Temporal SNR maps (Fig.2) characterise the 
image quality across the time course, with the 
absolute QSM tSNR difficult to interpret and low EPT 
tSNR in the ventricles and cerebellum. Fig. 3 shows 
novel multi-echo fQSM activations that were weaker 
and less extensive than fMRI activations [24,25] and 
highly novel fEPT activations with large inter-subject 
variability [26, 27]. 
Conclusions: The highly accelerated multi-echo 2D 
GRE-EPI acquisition and processing pipelines we have 
developed provide high-quality simultaneous 
structural and functional QSM and EPT, together with 
conventional magnitude and fMRI. Multi-echo fQSM is 
more localised than fMRI and fEPT provides novel 
information and requires further optimisation.  
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Fig. 3. Functional activations of fMRI, fQSM 
and fEPT in different subjects. Note only 

negative fEPT activations are shown here. 

 

 

Adaptive Wavelet Noise Suppression 
Teddy Zhao 1,2    1Cancer and Genomic Sci, Uni of Birmingham 2Oncology, Birmingham Children’s Hospital 

Introduction Proton magnetic resonance spectroscopy (1H-MRS) [1] can observe the in vivo 
metabolite profiles of brain tissue non-invasively. Spectral noise, one of the main challenges in clinical 
and scientific 1H-MRS observation, leads to inaccurate metabolite concentration estimation, and it 
hardly be fully avoided by optimising physical sequences [2]. This abstract presents a novel 
computational method, naming adaptive wavelet noise suppression (AWNS), for suppressing spectral 
noise and evaluated its performance through simulated brain tissue 1H-MRS [3]. 
Methods Adaptive wavelet noise suppression AWNS is a spectral processing method that combines 
the concepts of wavelet theory and data mining (Fig. 1A). Wavelet decomposition and reconstruction 
can remove spectral components based on their energy distribution, and the assignment of noise and 
noiseless components is often manually determined [4]. AWNS assesses all the possible wavelet 
variations and finally selects the outstanding spectrum according to quality-control parameters. 
Evaluation AWNS was assessed by using simulated 1H-MRS that was generated with VeSPA [5] and 
1.5T/3T short-TE point-resolved spectroscopy (PRESS) or stimulated-echo acquisition mode (STEAM) 
(Fig. 1B). Metabolites that can be fitted with visibly minimal residual were used for simulating artificial 
normal brain, epilepsy and tumour spectra [3,6,7] and Gaussian white noise (fSNR 4—30). Spectra 
were quantified by using LCModel [8] and TARQUIN [9]. The metabolite ratio improvement was 
measured as 𝑓𝑓 = |metab ratio of noise−suppressed MRS – metab ratio of noiseless MRS

metab ratio of noisy MRS – metab ratio of noiseless MRS | , and the metabolite 

ratio error was calculated as 𝑒𝑒 =  |1 −  metabolite ratio of noise suppressed MRS or noisy MRS
metabolite ratio of noieless MRS | . 

Results The source code and simulation examples are available at teddychao.github.io/awns.html. 
Totally 6 metabolites were used after fitting assessment, namely alanine, creatine, GABA, glutamate, 
glutamine, and NAA (Fig 1C). Simulated brain tissue includes frontal lobe for normal subjects, 
idiopathic generalised epilepsy, white matter (normal), meningioma, astrocytomas, anaplastic 
astrocytomas (example given in Figure 2), glioblastomas, and metastases for adults (1.5T, 
PRESS/STEAM), ependymomas, medulloblastomas and pilocytic astrocytomas for paediatrics 
(1.5T/3T, PRESS). Metabolite concentration error showed decreased after performing AWNS (mean 
ƒ<1). Metabolites showed significantly more accurate (paired P<.05, Figure 3) in some tissues. 
Discussion This study focuses on the noise issue in real-world 1H-MRS by presenting computational 
analysis. Initially, the results showed spectral noise can affect the accuracy of metabolite 
concentration estimation since the metabolite ratios became inaccurate after adding noise and the 
fitting performance was impacted. Suppressing 1H-MRS noise is challenging due to the complexity of 
1H-MRS line shape and the unpredictable level of spectra noise. There have been methods such as 
apodisation, principal component analysis and deep learning, yet they suffer from enlarged line width 
[2], signal leakage [10] and the dependence on training data [11] that are not always available due to 
the diverse clinical metabolite profiles. AWNS is designed to address these issues, where its 
dependence on quantification preserves signals from leakage and makes it free from dependence on 
any training data. Theoretically, AWNS learn from prior knowledge from the process of spectral 
quantification, so it can be adaptive based on the diverse noise in real-world MRS acquisition. Previous 
results indicated potential of AWNS for improving diagnosis [3], yet better diagnosis does not directly 
prove more accurate metabolite profiles. To do that, this study uses simulated 1H-MRS where the 
ground truth is known and metabolites can be freely controlled, so that various human brain tissue 
profiles can be studied. It then assesses the performance of AWNS for suppressing the negative impact 
of manually added noise. As the result, the included metabolites can be more accurately determined 
in noise-suppressed 1H-MRS than noisy 1H-MRS. The study started from observing the metabolites 
that have basic line shapes that can be fitted with not much visible residual. Some other metabolites, 
such as myo-Inositol and choline, have not been included in this study, because the fitting of noiseless 
spectra for these metabolites is visibly much poorer in their single-metabolite spectra. The future work 
is to improve fitting for other important and challenging metabolites like choline, myo-Inositol, lactate, 
and taurine and to include other tissue profiles and field strength whereas available. 
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Magnetic Source Separation in the Head and Neck: 
Comparing Three Gradient Echo Methods 

Matthew T. Cherukara,1 Patrick Fuchs,1 and Karin Shmueli1 
1Department of Medical Physics and Biomedical Engineering, University College London, London, UK 
 
Introduction: Quantitative susceptibility mapping (QSM) is an MRI technique that reconstructs tissue 
magnetic susceptibility (𝜒𝜒) distributions from the MRI signal phase. Recently, several methods have 
been proposed to quantify the relative contributions to bulk susceptibility of paramagnetic and 
diamagnetic compartments within each voxel [1-5]. Such techniques typically rely on the assumption 
that para- and diamagnetic sources interfere constructively in causing reversible 𝑅𝑅2′  decay, while 
interfering destructively in their effect on phase [2]. As such, many source-separation techniques 
require a spin-echo-based 𝑅𝑅2 estimate or make simplifying assumptions about the relationship 
between 𝑅𝑅2 and 𝑅𝑅2∗  [1,4]. The DECOMPOSE method for example fits multi-echo data to a three-pool 
model to estimate susceptibility sources without the need for 𝑅𝑅2′  [3]. These techniques have been 
used in the brain [5], but the head and neck (HN) region presents unique challenges including fat-
water phase artefacts and greater air-tissue interfaces, flow effects, and physiological motion. In this 
study, we compared the results of susceptibility source separation using three publicly available 
methods applied to GRE data in the head and neck. 
Methods: This analysis was applied retrospectively to four-echo GRE data acquired from ten healthy 
subjects using a 3T Achieva system (Philips, Netherlands). Acquisition parameters were: 𝑇𝑇𝑇𝑇 = 22 
ms, 𝑇𝑇𝐸𝐸1 = Δ𝑇𝑇𝑇𝑇 = 4.61 ms, flip angle 12°, 1.25 mm isotropic resolution. QSMs were reconstructed 
using a standard pipeline, consisting of: MP-PCA denoising [6], non-linear complex fitting across 
echoes [7], SEGUE phase unwrapping [8], V-SHARP background field removal (with a 22mm kernel 
width) [9], and dipole inversion using Star QSM [10]. These results were used to calculate para- and 
diamagnetic maps using 𝜒𝜒-separation (with iLSQR regularization) [2] and 𝜒𝜒-sepnet. The same 
pipeline was applied to GRE data from each echo separately, and the resulting single-echo QSMs 
were used to estimate para- and diamagnetic signal compartments using DECOMPOSE [3].Regions of 
interest (ROIs) in the brain (thalamus, caudate nucleus, putamen, and globus pallidus) were 
segmented automatically from first-echo magnitude GRE images using FSL FIRST [11] and ROIs in HN 
(submandibular gland, parotid gland, and several lymph nodes) were obtained by manual 
segmentation checked by an experienced radiologist. Average values of paramagnetic and 
diamagnetic susceptibility were compared in each ROI.  
Results: Fig. 1 shows a 
visual comparison of the 
source separation 
methods in a 
representative subject. 
Each method achieved 
source separation, 
although the contrast 
varies. 𝜒𝜒-sepnet achieved 
clear muscle-fat contrast 
in the posterior neck 
(yellow and red arrows). 
DECOMPOSE produced 
more uniform values in the 
ROIs. Fig. 2 shows average 
values of component 
susceptibilities in each ROI. 
Discussion: The challenges of QSM in the neck are exemplified by the Star QSM results, where the 
submandibular gland has large 𝜒𝜒 variations, and in the posterior neck there are strong fat-water 

Fig. 1. Axial slice of the neck from one subject: GRE magnitude data 
(with ROIs outlined), Star QSM susceptibility map, and para- and 
diamagnetic susceptibility maps from three separation algorithms. 

 

 

Conclusion Simulation suggests 1H-MRS spectral noise can limit metabolite concentration accuracy 
and can be suppressed through computating for providing more accurate estimation. (700 words) 
References [1] R.R. Ernst & W.A. Anderson Rev. Sci. Instrum. 37, 93 (1966). [2] R. Kreis, et al. NMR Biomed. 34, 
e4347 (2020). [3] T. Zhao, et al. NMR Biomed. 37, e5129 (2024). [4] M. Stéphane, A wavelet tour of signal 
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Fig. 1. Flowchart of the study and example data: A, AWNS pipeline; B, generating and analysing 
artificial normal or disease 1H-MRS; C, 1.5 T artificial short-TE single-metabolite spectra (PRESS). 

 
Fig. 2. Example of noise suppression performance on artificial 1H-MRS that simulates anaplastic 

astrocytoma by using creatine, glutamate, glutamine, GABA, and NAA, including 1H-MRS spectra as 
noiseless (A), noise-added (B, by adding GWN) and noise-suppressed (C, processed with AWNS). 

 
Fig. 3. Examples of metabolite concentration estimation error comparing pre and post noise 

suppression (preNS, postNS). Examples are given by GABA/Cr of frontal lobe in idiopathic (genetic) 
generalised epilepsy patients (A) and NAA/Cr of white matter in normal controls (B).  
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ON-HARMONY 2.0: A comprehensive travelling-heads resource for multi-modal 
neuroimaging harmonisation 

Andrea Torchi1*, Shaun Warrington1*, Olivier Mougin2, Jon Campbell3, Martin Craig1, Asante Ntata1, 
Fidel Alfaro-Almagro3, Karla Miller3, Mark Jenkinson3, Paul S Morgan1, Stamatios N Sotiropoulos1 

1Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, United Kingdom. 2Sir Peter 
Mansfield Imaging Centre, School of Physics, University of Nottingham, United Kingdom. 3Wellcome Centre for 

Integrative Neuroimaging, WIN-FMRIB, University of Oxford, UK. *Equal Contribution   

Introduction: In studies that involve multiple MRI scanners, an important challenge that arises is the 
dependence of measured imaging features on scanner- and site- dependent factors that are not 
related to the scanned subject [1-3]. To tackle this problem, several approaches are possible; some of 
them involve attempting to harmonise as much as possible the acquisition protocols and the 
processing pipelines [4,5], including using vendor-agnostic sequences [6]; while others directly 
address the final parameters to try and regress out the non-biological differences [7,8]. In order to 
assess the nature of these confounding factors for neuroimaging studies, we ran a travelling heads 
study involving a group of healthy participants, scanned over different 3T MRI systems of several types 
and vendors across different sites. The Oxford-Nottingham Harmonisation (ON-HARMONY 2) study 
builds upon our previous work [9] and comprises one of the most comprehensive travelling heads 
resources with data from 20 subjects (9 subjects with multiple within-scanner repeats), each scanned 
in 6 3T scanners (Siemens, Philips and GE) and 5 modalities (T1w-MPRAGE, T2w-FLAIR, diffusion MRI, 
resting-state fMRI, SWI).  
Methods: The study ran in two 
phases (10 subjects per phase) 
(Figure 1). The first phase took 2 
years to complete (median time 
difference (TD) between first 
and last rescan for a subject 
across scanners: 374 days), as 
interrupted by the COVID19 
pandemic. The second phase 
was completed in less than 6 
months (TD: 126 days). Phase A involved 3 Siemens, 2 Philips and 1 GE scanner, while Phase B had 2 
scanners from each vendor (Figure 1). A better sex balance was maintained in Phase B (50% females 
vs 20% females in phase A). Acquisition protocols were aligned with the UK Biobank imaging study 
[10], however adjustments were made to respect best practices for each scanner/imaging site 
(therefore parameters were not simply nominally matched) [9]. Each participant was scanned in 6 
different scanners, while 9 participants (4 in phase A, 5 in B) had in addition 6 within-scanner repeats 
(most of scanners had at least one participant with 6 within-scanner repeats). That way between-
scanner and within-scanner variability for subjects could be characterised and compared to between-
subject (i.e. biological) variability, which is typically the variance of interest. All data underwent quality 
control using MRIQC [11] and eddyQC [12] leading to image-quality metrics (IQMs) for 4 modalities. 
They were subsequently processed with a modified version [9] of the UK Biobank pipeline [13]. 
Hundreds of imaging-derived phenotypes (IDPs), i.e. multi-modal imaging features were derived for 
each session. That way, different pools of IDP and IQM variability could be compared. 
Results and Discussion: Figure 2 demonstrates examples of the raw data, depicting a subset of the 
sessions acquired for each of the participants, across scanners (columns) and modalities (rows). We 
subsequently extracted IQMs to assess consistency of data quality across subjects and scanners for 
each imaging modality (Figure 3). In the top plots, each quality metric for each subject was z-scored 
across the six scanners. The z-scores were then averaged across the subjects. In the bottom plots, each 
IQM was z-scored across the ten subjects and then averaged across the scanners. The plots indicate 
that across both phases A and B there are no scanners/subjects that act as major outliers in terms of 

Figure 1. Summary of the acquisition paradigm for subjects, scanners and 
modalities involved in each phase of the study (w: wide-bore, n: narrow-bore, ch: 
Number of head coil channels).  

 

 

effects at the muscle boundaries (Fig. 1, yellow & red arrows). These phenomena propagate into the 
para- and diamagnetic susceptibility maps produced by 𝜒𝜒-separation, values are higher than other 
methods in the neck (probably driven by noise, Fig. 1 & 2) but lower in the brain (Fig. 2). 
DECOMPOSE estimated paramagnetic 𝜒𝜒 components with lower variance than the other methods in 
all ROIs except the thalamus. Diamagnetic 𝜒𝜒 values from DECOMPOSE had lower variance in HN 
ROIs, but in deep-brain ROIs 𝜒𝜒-sepnet produced the most consistent diamagnetic results. Across all 
ROIs, the total 𝜒𝜒 from DECOMPOSE was more diamagnetic than the results of other methods (not 
shown). Venous vessels such as the internal jugular veins (Figure 1, green arrows) have strong signal 
in the first-echo GRE magnitude and are expected to be strongly paramagnetic due to the presence 
of deoxyhemoglobin, but they are not obviously elevated in paramagnetic component maps, likely 
due to inflow effects.  
There are several limitations to this study. The DECOMPOSE multi-compartment model ideally uses 
five echoes for fitting and is underdetermined with this four-echo dataset. 𝜒𝜒-sepnet was trained on 
brain data at 1-mm resolution, and so may not perform optimally on these 1.25-mm-resolution data. 
Finally, there are no ground truth values available, nor comparable source-separated results in the 
literature, so it is necessary to rely on visual inspection and differences across subjects to compare 
these methods qualitatively. 
Conclusions: This first study shows that susceptibility source separation using only GRE data is 
possible in the neck, but further work is needed to validate the resulting maps and regional values. 
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sequence,” Proc. ISMRM 19, #120. 
[2] Shin H et al. (2021). “𝜒𝜒-separation: Magnetic susceptibility source separation toward iron and myelin mapping in the 
brain,” NeuroImage, 240: 118371. 
[3] Chen J, Gong N, Chaim K T, Otaduy M C G, Liu C (2021) “Decompose quantitative susceptibility mapping (QSM) to 
sub-voxel diamagnetic and paramagnetic components based on gradient-echo MRI data,” NeuroImage, 242: 118477. 
[4] Dimov A V et al. (2022). “Susceptibility source separation from gradient echo data using magnitude decay modelling,” J. 
Neuroimaging, 32(5), pp.852-859. 
[5] Ji S et al. (2024). “Comparison between R2’-based and R2*-based 𝜒𝜒-separation methods: A clinical evaluation in 
individuals with multiple sclerosis,” NMR Biomed. May 2024, e.5167. 
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[7] Liu T et al. (2013). “Nonlinear formulation of the magnetic field to source relationship for robust quantitative 
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Trans. Med. Imaging 38(6), pp.1347-1357. 
[9] Wu B et al C (2011). “Whole brain susceptibility mapping using compressed sensing.” Magn. Reson. Med. 24, pp.1129-
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Figure 2. Mean 
paramagnetic (A) 
and diamagnetic 
(B) compartment 
susceptibilities in 
HN and brain 
ROIs. Error bars 
indicate standard 
deviation across 
10 subjects. 
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image quality. Subsequently, 
we assessed how the 
similarity of IDPs changes 
across different pools of 
variability (Figure 4). We 
represented each scan session 
in terms of the multi-modal 
imaging features we could 
extract and computed 
Spearman correlations across 
sessions for different IDP 
groups (subcortical volumes, 
brain tissue volumes, 
subcortical T2*, cortical parcel 
volumes, dMRI regional and 
tract-wise microstructure (FA, 
MD, MO, L1, L2, L3), rfMRI functional connectivity node amplitude and edges). Figure 4 shows the 
median correlation across IDP groups for session pairs belonging to three different pools (between-
subject/same scanner, between-scanner/same subject and same-scanner/same-subject). It shows 
how biological variability (red) has hardly any overlap with scan-rescan variability of a subject (blue) 
as expected, however it overlaps quite substantially with between-scanner variability (green). 

Conclusion: We have presented one of the most comprehensive harmonization resources for multi-
modal neuroimaging, which we will use as a testbed to develop and explore both explicit and implicit 
harmonisation approaches [9]. 
 
 
 

 
 
  

Figure 2. Example of a subset of the acquired data for a single subject. Five different 
modalities (three shown here) and 6 scanners, located in five different imaging sites 
were obtained for all 20 participants. Data from Phase B scanners are shown. 

Figure 3. IQMs of each session, averaged across each IDP 
group, then z-scored across subjects and averaged across 
scanners (upper row) or vice-versa (lower row) for each 
study phase.  

e 

Figure 4. Spearman correlation of session IDPs (calculated as 
the median across groups of the Spearman correlation of 
IDPs in the same group for each session). Violin plots show 
IDP similarities across the different categories. 
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Discussion: Simulations show that for UKBB kidney ShMOLLI data, heart rate will modulate the measured T1 
especially for the medulla which has a longer T1. Using a look-up table the influence of HR on measured T1 can 
be corrected. It should be noted that the measured ShMOLLI T1 is also influenced by other factors such as B1, 
and so here the look-up corrected assumed a 30o delivered flip angle for the ShMOLLI scheme to account for 
lower than 100% B1 delivery. In future work the corrected T1 values will be used to assess changes between 
HVs and disease groups in the assessment of fibrosis. As part of this work we will also correct for the influence 
of fat fraction (FF) (in the liver and pancreas), for which higher FF is known to increase ShMOLLI T1 [4].  
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Figure 1: (A) Bloch simulation of UKBB ShMOLLI 
5(1)1(1)1 liver and pancreas scheme for a 
simulated T1 of 800ms showing the longitudinal 
(Mz) magnetisation (top) and transverse (Mxy) 
magnetisation (bottom) which is fit to estimate 
T1*. (B) Measured T1 versus simulated T1 for a 
range of heart rates in BPM simulated for the 
liver/pancreas shMOLLI scheme (top) and the 
kidney ShMOLLI scheme (bottom). Note the 
dependence on HR, particularly at higher T1 
values found in the kidney. 

Figure 2: Plots of measured T1 against BPM shown uncorrected and after correction using shMOLLI 
scheme look-up table. Results shown for HV data in the liver, pancreas and kidney cortex and medulla. 
Note the strong increase in measured T1 (slope P<0.0001) with increasing BPM for medulla which is then 
corrected.  
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Assessing the influence of heart rate on MOLLI T1 mapping in the UK Biobank 
Margot Roeth, Martin Craig, Ali-Reza Mohammadi-Nejad, Dorothee Auer, Stamatios N Sotiropoulos,  

Eleanor Cox, Susan Francis 
Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham; and the DEMISTIFI consortium 

Introduction: Organ fibrosis occurs in many conditions, including chronic kidney disease and liver cirrhosis. 
MRI can provide a non-invasive, quantitative assessment of fibrosis by performing longitudinal (T1) mapping of 
the tissues. The UK Biobank (UKBB) [1] is a prospective population study which includes abdominal Shortened 
Modified-Look-Locker-Imaging (ShMOLLI) [2] T1 mapping of the liver, pancreas and kidneys of participants with 
healthy organs and those with a primary disease, with abdominal data collected on 55K participants scanned 
to-date. In February 2021, dedicated kidney ShMOLLI MRI scans were added with data collected on ~7K 
participants. However, ShMOLLI T1 mapping data is collected ECG-triggered, rather than with a fixed spacing. 
This work aims to simulate and correct the effect of heart rate on measured ShMOLLI T1.  

Methods:  
Abdominal MRI data: UKBB Siemens 1.5T abdominal ShMOLLI 5(1)1(1)1 data (T1 recovery curve in three epochs 
over 9 heartbeats using single-shot balanced steady-state free precession (bSSFP) acquisitions) with separate 
schemes used for the liver & pancreas, compared to the kidney. (Liver/pancreas: TE/TR = 1.93/4.8 ms, flip angle 
(FA) 35°, Field of View (FoV) 440mm,  resolution 192, Trigger delay (TD) 50 ms, 1st ShMOLLI inversion time (TI) 
170 ms, five increments of 50 ms; Kidney: TE/TR = 1.41/3.4 ms, FA 35°, FoV 384mm, resolution 256, TD 0 ms, 
1st TI 156 ms, 5 increments of 50 ms; both collected with GRAPPA 2 and 24 reference lines). 
Simulations: Simulations were performed in Python to solve the Bloch equations and iteratively simulate the 
ShMOLLI scheme for the liver/pancreas and kidney UKBB acquisitions. Simulations were performed at a FA of 
35° , and a lower 30° FA to account for B1 field inhomogeneities. The center k-space of the simulated signals 
was fit to estimate T1* and corrected to give T1measured = (B/A-1)T1*. A range of tissue T1 (0.4-2.0s) and heart 
rates (30-120bpm) were simulated, selected to cover the range of the data in the UKBB data. Measured and 
simulated T1 values were compared to assess the impact of heart rate. The measured and simulated T1 values 
were then used to create a look-up table (MATLAB) to correct the UKBB T1 measured based on a participants’ heart 
rate.  
Analysis and correction of UKBB Data: Initial analysis compared the results of 500 healthy volunteer (HV) 
participants (no chronic/fibrotic disease) with 235 participants with disease [124 kidney (ICD10:I12-
13,N08,11,14-18), 24 pancreas (ICD10:K85-86), 87 liver (ICD10:B18,22,K70-77)]. Automated segmentation of 
the data was performed using machine learning [3]. Measured T1 values of participants’ liver, pancreas, kidney 
cortex and kidney medulla were corrected using the look-up table and the uncorrected measures compared 
with corrected. 

Results:  

Simulations: Figure 1A shows the ShMOLLI simulated signals for the liver/pancreas scheme. Figure 1B shows 
for both liver/pancreas and kidney ShMOLLI schemes the greater dependency of measured T1 on heart rate at 
higher T1 values (kidney cortex and medulla) compared to organs with lower T1 (liver and pancreas). Low heart 
rates (below 60bpm) led to an underestimation in measured T1 across most of the simulated T1 range (except 
at low T1), while higher heart rates led to a overestimation of measured T1. The kidney shMOLLI scan led to a 
greater distribution of measured T1 with heart rate compared to the liver/pancreas shMOLLI.  

Figure 2 shows measured UKBB for the 500 HV participants T1 data versus heart rate before correction, in 
agreement with the simulation, a higher measured T1 value with a higher heart rate is seen for the kidney 
medulla and liver (P<0.0001), whilst the kidney cortex and pancreas show no dependence. After applying the 
HR correction, the HV data shows no significance HR dependence in the medulla or pancreas, and the liver 
showed a reduced significance (P<0.01).  Similar trends were observed for the disease participants. 
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The optimized brain scan showed reduced artefacts on a basic reconstruction which we were able to 
slightly improve using TGV regularization, see Fig. 3. The MTw scan shows a strong GM/WM contrast 
which can be noticed especially in the putamen, the cortex and the head of the caudate nuclei. The 
GM/WM contrast is also present in the MTR scan as to be expected. However, it is much less 
accentuated.  

 
 
 
Discussion: This work showed an empirical correction to artefacts that were observed when using 
ZTE at a low number of SPS to optimally image the MTR. Compared to our previous work [2] we 
observed a promising increase in contrast and resolution in the MTw volume as to be expected from 
our optimization. However, the MTR map is yet to be improved. It would be desirable to model the 
refocusing effects using EPGs or isochromat simulations to optimally choose the k-space trajectory. 
This may help to reduce the grainy appearance of the reconstructions. Further work will investigate 
correcting the receive B1 inhomogeneity observed in the top part of the image. Lack of image 
registration may also be responsible for some of the grainy appearance of MTR and will be 
implemented soon. 
Conclusions: We have shown that it is possible to reduce scan time while improving the contrast and 
resolution of silent MTw imaging using a low number of spokes per segment and optimized k-space 
trajectories. This may prove fruitful in a future attempt to optimize silent MTR acquisitions. 
References 
[1] R. W. Chan et al, Magn. Reson. Med., vol. 61, no. 2, pp. 354–363 (2009). 
[2] T. C. Wood et al, Wellcome Open Research, vol. 5, pp. 74 (2020). 
[3] S. J. Malik et al, Magn. Reson. Med., vol. 83, no. 3, pp. 935–949 (2020). 
[4] T. Wood et al, ‘spinicist/riesling: v0.11’. Zenodo, May 17, 2023. doi: 10.5281/zenodo.7944190. 

Fig. 3 Optimized silent-MTR mapping. (please zoom in to appreciate image details) 

 

 

Optimization of a Silent ZTE Magnetization Transfer Ratio Sequence at 3T 
Oliver Pinna1, Gareth J. Barker1, Tobias C. Wood1 

1Centre for Neuroimaging Sciences, King’s College London 
 

Introduction: Previous research from our group has shown the feasibility of performing myelin-
weighted acquisitions exploiting the MT effect [1]. Since then, substantial improvements have been 
made in the reconstruction and acquisition side of our ZTE data allowing us to push the reconstructed 
pixel size to 1mm isotropic. This abstract guides us through the optimization process and shows the 
latest results.  
Methods: We used a 3T GE Premier scanner with a 48ch head coil. The sequence was a local 
implementation of 3D radial ZTE with curved k-space spokes and a generalized spiral trajectory with 
golden means rotation between segments [2]. Simulation of MTw and PDw signals following the 
method of [3] pointed us towards the choice of the lowest possible number of SPS to maximise the 
MT-weighting hence the contrast of myelinated tissue, see Fig. 1. 

 
Fig. 1 MTw and PDw ZTE steady states in WM as a function of SPS. 

 
We first acquired a base scan of a healthy volunteer with the MT-prepared ZTE with 32 spokes-per-
segment (SPS). The scan resulted in artefacts impacting the image quality significantly. We 
hypothesized that the origin of these artefacts could be attributed to the refocusing of FIDs from 
previous spokes which we did not model. While we use RF-spoiling and obtain some spoiling from the 
readout gradients, it is possible that the overall phase induced by the gradients over a spherically 
symmetric acquisition of k-space can sum up to zero before the FID decays thus causing gradient 
echoes.  
To test our hypothesis, we acquired data in a CALIBER phantom investigating configurations of 128, 
64 and 32 SPS with a trajectory consisting of either half of our spherically symmetric k-space or the 
full k-space. If our hypothesis was correct, we expected to observe a reduction in the artefact when 
increasing the SPS or when acquiring half of the k-space due more T2* FID decay or unbalanced 
gradient moments respectively.  
After verifying that the k-space trajectory was the main factor causing the artefact, we re-acquired 
brain MTw and PDw volumes with optimized scan settings and used them to compute the MTR. 
The full optimized scan settings were Gaussian MT preparation pulse Δ=2.0kHz, τMT=7.68ms, αMT=800°, 
SPS=32, αRO=2°, τRO=16μs, BW=25kHz, TR=2.672ms, FOV=240mmx240mmx240mm. We used Riesling 
[4] to reconstruct the data with Total Generalized Variation (TGV) regularized least squares, λ=0.01.  
Results: In line with our hypothesis, we observed a reduction in artefacts when increasing the number 
of SPS and an even more noticeable reduction when using the modified trajectory, see Fig 2. 

 
Fig 2.  Artefact changes as a function of the sequence used (ZF1 = full k-space, ZF05 = half k-space).  The first image was 

acquired on a separate day hence at a slightly different location. (please zoom in to appreciate image details) 
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Discussion: The study highlights the complexity of using DCE-MRI-derived PK parameters to 
distinguish between TP and PsP in GBM.  While no significant differences in parametric values were 
observed between the TP and PsP groups, the volume transfer constant Ktrans, which measures tissue 
perfusion and vascular permeability, was generally lower in PsP than in TP, potentially reflecting TP’s 
higher vascular permeability. Similarly, the rate constant kep, indicative of contrast agent transfer from 
the extracellular extravascular space to plasma, was also lower in PsP for all models. The extracellular 
volume fraction ve was higher in PsP in some models potentially due to treatment-related edema. Fp, 
plasma flow, was higher in TP, while vp, the plasma volume fraction, displayed variable trends across 
models. The intracellular water lifetime τi, which was hypothesized to be higher in PsP due to 
decreased metabolism in necrotic areas, was higher in TP for both the shutter speed and 3X2M models 
[7,8]. The absence of significant differences may be attributed to the small sample size and the lack of 
histological confirmation of diagnosis for all cases, underscoring the need for larger studies with 
histological confirmation which can provide more robust evidence to guide clinical decision-making 
and improve patient outcomes in the management of glioblastoma progression. 
Conclusions: Although we observed trends in Ktrans, kep and τi values in TP across various models, these 
differences were not statistically significant. Future studies with larger sample sizes and histological 
confirmation are needed for improving clinical decision-making in GBM management. 

References 
[1] Schaff, L.R. and Mellinghoff, I.K. (2023), JAMA, 329(7), p. 574. [2] Brown, N.F. et al. (2022), Cancers, 14(13), 
p. 3161. [3] Fekete, B. et al. (2023), Frontiers in Surgery, 10. [4] Young, J.S. et al. (2023), Journal of 
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Figure 1: Representative images of pseudo-progression and true progression cases. 
(A-C) Pseudoprogression: (A) Axial T1-weighted post-contrast image, (B) Axial T2-weighted FLAIR  
image, (C) T1-weighted image with overlay of parametric Ktrans map on the lesion of interest. 
(D-F) True progression case: (D) Axial T1-weighted post-contrast image, (E) Axial T2-weighted FLAIR  
image, (F) T1-weighted image with overlay of parametric Ktrans map on the lesion of interest. 
 

 

 

Pharmacokinetic Modelling of DCE-MRI for Differentiation Between True Tumor 
Progression and Pseudoprogression of Glioblastoma 

Gabriela W Kostrzanowska1,  Sourav Bhaduri1,2, Madhav K Madhusudhanan1, Archith Rajan3, Mahon L 
Maguire1, Sanjeev Chawla3 , Harish Poptani 1  
 

1Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK. 2Institute for Advancing 
Intelligence (IAI), TCG CREST, Kolkata, India. 3Department of Radiology, Perelman School of Medicine 
at the University of Pennsylvania, Philadelphia, PA, USA. 
 
Introduction: Glioblastomas (GBMs), the most common malignant tumours of the central nervous 
system, carry a 5-year survival rate of <10%, and despite intensive treatment, reoccurrence is 
inevitable [1,2,3]. During post treatment follow up with MRI, up to 36% of patients present with the 
appearance of new lesions, termed pseudoprogression (PsP), that show enhanced T1-weighted MR 
image contrast, mimicking true progression (TP) [4]. TP and PsP are handled differently with PsP 
managed conservatively and TP with aggressive treatment strategies or enrolment in new trials. 
However, discriminating PsP from TP remains a diagnostic dilemma, with histology remaining the gold-
standard despite biopsy carrying a risk of mortality [4]. Dynamic contrast-enhanced magnetic 
resonance imaging (DCE-MRI) has been suggested as a tool to differentiate between TP and PsP [5,6,], 
as it allows quantification of parameters related to tumour vascularity and permeability using different 
pharmacokinetic (PK) models. However, no consensus has been reached as to which PK model to use 
for the most accurate differentiation. This study aimed to evaluate the efficacy of different PK models 
of DCE-MRI in distinguishing TP from PsP in postoperative GBM patients. 
Methods: This retrospective study included thirty-one patients clinically diagnosed with either TP 
(n=24) or PsP (n=7). Diagnosis was confirmed through histological examination or verified through 
radiological follow-up. DCE-MRI data for each patient was fitted to five PK models (Non-linear Tofts, 
Extended Tofts, Shutter-Speed, Two-Compartment Exchange (2CXM), and Three-Site Two-Exchange 
(3S2X) models) to generate parametric maps. The parameters Ktrans, ve, kep, vp, Fp, and τi were extracted 
from the contrast enhancing areas. 
Results: Representative images and parametric maps from a PsP and TP patient are shown in Figure 
1. In general, the PsP group exhibited lower median Ktrans, ve, and kep values (Table 1). In the Shutter-
speed and the 3S2X models, the PsP group demonstrated higher ve values when compared to the TP 
group. The τi value was lower in PsP than TP in both the Shutter-Speed and 3S2X model, while vp 
displayed variable trends across models, and Fp was lower in PsP.  However, these differences did not 
reach statistical significance (p>0.05). 

 Table 1: Median values of DCE-MRI parameters from the enhancing region of TP and PsP patients 
derived using the various PK models. 

 

 Ktrans  (min-1) Ve (ml) Kep  (min-1) τi  (s) Vp (ml) Fp (ml/min/ 
100mg) 

 TP PsP TP PsP TP PsP TP PsP TP PsP TP PsP 
Non-linear 
Tofts 

0.19 0.11 0.21 0.15 1.17 0.87 N.A. N.A. N.A. N.A. N.A. N.A. 

Extended 
Tofts 

0.12 0.06 0.24 0.20 0.65 0.45 N.A. N.A. 0.04 0.02 N.A. N.A. 

Shutter-
Speed 

0.22 0.15 0.28 0.28 0.94 0.75 0.22 0.15 N.A. N.A. N.A. N.A. 

2CXM 0.11 0.06 0.24 0.20 0.46 0.44 N.A. N.A. 0.19 0.20 0.58 0.55 

3S2X 0.34 0.23 0.42 0.42 0.88 0.94 0.43 0.38 0.35 0.35 N.A. N.A. 
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Results and Discussions: Tables 2 and 3 summarise the CoV and the outcomes of the linear regressions 
for the MRI metrics respectively. Measures from structural data show that cortical thickness, 
subcortical volumes, FA, and MD exhibit minimal variability, indicating high consistency across sessions 
and sites. In contrast, functional MRI measures showed relatively increased variability; however, both 
tSNR and CBF metrics achieved satisfactory reproducibility.  The variablity in tSNR measures was 
highest in Site 2, this is driven by overall higher tSNR values in Session 2. However, Table 3 shows that 
there is still a strong relationship of tSNR values across ROIs for Site 2. CBF demonstrated low within-
site variability but high between-site variability as indicated by both the CoV and R2 values. 
Importantly, the variablity in the CBF data is in line or better than previous multi-vendor studies [3,4]. 
After motion correction was employed in the analysis, the observed within-site variability in the tSNR 
and CBF metrics suggests that some of this variability could be attributed to physiological changes 
between days as well as differences in sequences across sites. For CBF data, differences in end-tidal 
CO2 between days for the subject may partially explain the differences in measured values. In addition, 
improvement in CBF reproducibility may be achieved by using novel ASL analysis pipelines such as 
Bayesian approaches developed by Quantified Imaging Ltd to harmonise metrics across vendors. 

 

 

 
 

 

 

 

 

 
Conclusion and future work: This study successfully optimised MRI sequences for a multi-site mTBI 
study. For most of the MRI metrics assessed, the CoV was below the 10% threshold often targeted in 
MRI studies as biologically meaningful [5], with the highest consistency for structural measures, as 
expected [6]. The subsequent phase of this study will evaluate the variability of these MRI measures 
across sites using a cohort of 20 healthy controls and 20 patients. This evaluation will determine which 
MRI measures have adequate sensitivity and reliability to be used as biomarkers in the large-scale, 
longitudinal study, mTBI-PREDICT: a harmonised program of detailed clinical phenotyping of acute 
mTBI patients coupled with state-of-the-art multimodal biomarker evaluation to best predict 
outcomes in over 610 patients. 
References [1] Kim SY, et al. Military-related mild traumatic brain injury: clinical characteristics, advanced 
neuroimaging, and molecular mechanisms. Transl Psychiatry. 2023 Aug 31;13(1):289. [2] Harris AD, et al. 
Harmonization of multi-scanner in vivo magnetic resonance spectroscopy: ENIGMA consortium task group 
considerations. Front Neurol. 2023 Jan 4; 13. [3] Wu B, et al. Intra- and interscanner reliability and reproducibility 
of 3D whole-brain pseudo-continuous arterial spin-labeling MR perfusion at 3T. J Magn Reson Imaging. 2014 
Feb;39(2):402-9. [4] Mutsaerts HJ, et al. Multi-vendor reliability of arterial spin labeling perfusion MRI using a 
near-identical sequence: implications for multi-center studies. Neuroimage. 2015 Jun; 113:143-52. [5] Marenco 
S, et al. Regional distribution of measurement error in diffusion tensor imaging. Psychiatry Research: 
Neuroimaging, 2006,147(1). p. 69-78. [6] McGuire SA, et al. Reproducibility of quantitative structural and 
physiological MRI measurements. Brain Behav. 2017 Aug 2;7(9). 

Table 2. Coefficient of variation of MRI metrics within-
site (left side) and between-site (right side) calculated 
from an average of all relevant ROI measures. Majority 
of CoV values are below the threshold of 10% [5]. *pcASL 
data not available for Site 3. 

Table 3. Linear Regression of MRI 
metrics across all relevant ROIs. 
Results within sites (left side of the 
table) and between sites (right side 
of table) are shown. *pcASL data not 
available for Site 3 

 

Reproducibility of 3T MRI metrics across multi-site, multi-vendor settings for a mild 
Traumatic Brain Injury study  
 

Ruwan Wanni Arachchige1, Iman Idrees2, Yidian Gao3, Tara Ghafari3, Alice Waitt2,3, Sebastian 
Coleman1, Jessikah Fildes1, Dan Ford1, Aliza Finch3, Waheeda Hawa2, Martin Craig1, Lisa Hill4, James 
L. Mitchell4, Alexandra J. Sinclair4, Samuel J.E. Lucas3, Matthew J Brookes1, Jan Novak2, Martin 
Wilson3, Andrew Bagshaw3, Davinia Fernandez-Espejo3, Karen J Mullinger1, on behalf of the UK mTBI 
Predict Consortium 
1Sir Peter Mansfield Imaging Centre, University of Nottingham, UK, 2Institute of Health and Neurodevelopment, Aston 
University, UK, 3Centre for Human Brain Health, University of Birmingham, UK, 4 Translational Brain Science, Institute of 
Metabolism and Systems Research, University of Birmingham, UK 

Introduction: Traumatic brain injury (TBI) is a silent epidemic leading to 1.4M hospital visits every year 
in England and Wales, of which 85% are classed as mild (mTBI). ~30% of mTBI patients have disabling 
long-term sequelae impairing their ability to return to work, play or duty. Whilst conventional clinical 
MRI/CT scans of mTBI patients are mostly negative, advanced MRI measures show promise as 
biomarkers [1]. However, the reliability of these biomarkers is compromised when combining data 
acquired across different sites and scanners [2] – limiting clinical potential. To prepare for a multi-site, 
multi-vendor mTBI patient study, this work aims to minimise inherent variability by optimising the 
setup of MRI sequences across platforms to best match neuroimaging metrics to be used on patients.  
Method:  Three different 3T MRI scanners equipped with 32-channel head receive coils were utilised 
across three research facilities (Table 1). The optimised scans included: T1-weighted MPRAGE; multi-
slice, multi-shell 2D-EPI Diffusion-Weighted Imaging (DWI); multislice 2D-EPI for functional MRI (fMRI); 
and pseudo Continuous Arterial Spin Labelling (pCASL), as detailed in Table 1. These imaging sequences 
were optimised by adjusting parameters to ensure high quality and consistent data across sites. Two 
multimodal data sets were acquired per site from a single healthy participant during separate visits. 
Standard neuroimaging tools were employed for preprocessing and analysis. Reproducibility and 
agreement between sites were assessed for the following metrics within anatomically relevant regions 
of interest (ROIs). Cortical thickness and subcortical volume were derived from FreeSurfer using the 
Desikan-Killiany-Tourville atlas and ASEG (62 cortical and 20 subcortical ROIs). Mean Fractional 
Anisotropy (FA) and Mean Diffusivity (MD) values were extracted using the diffusion toolbox (FDT) in 
FSL with the Johns Hopkins University white matter atlas (48 ROIs). Temporal signal-to-noise ratio 
(tSNR) for EPI scans was calculated using an in-house MATLAB script (frontal, cingulate, temporal, 
parietal, occipital grey matter ROIs). Additionally, Cerebral Blood Flow (CBF) was extracted using BASIL 
in FSL, with same ROIs as tSNR. Coefficient of variation (CoV) and linear regressions were calculated to 
assess systematic and random variability across data.  

 

 

 

 

 

  

 

 

Table 1. Summary of scanner information and acquisition parameters across all sites  
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parameters are accurately recovered at the 
system edges but around x=14cm the solution 
lowers in quality (Fig 4). In particular, the 
exchange term is not well captured, with 
consistently lower values than the ground truth 
at the system centre. Inclusion of measurement 
noise results in significantly erroneous 2-
compartment parameters. 
Discussion: Successful recovery of parameters 
for 1-compartment 1D and 2D systems 
illustrates PINNs approaches are appropriate for 
simple spatiotemporal systems. Particularly, the 
robust retrieval under increasing measurement 
noise in 1D and easy extension to 2D systems 
highlight the potential translation into realistic 
datasets. Hyperparameter tuning, such as 
batch size optimisation, could reduce runtimes. 
The PINNs approach for 2-compartment 
systems is highly susceptible to measurement 
noise and returns low accuracy exchange parameter 
values. Currently, boundary conditions are not enforced 
due to the general application of physics loss terms. 
Definition of appropriate boundary conditions could help 
better define these systems and may allow robust 
identification via a PINNs approach.  
Conclusions: PINNs allow excellent parameter recovery 
in 1-compartment systems for the voxel interface 
velocities. Successful extension to 2D systems illustrates 
the potential for spatiotemporal applications of realistic 
scale via PINNs, with hyperparameter optimization 
proposed as future work. Within 2-compartment systems 
only the interface velocities were well reconstructed. 
Boundary conditions to better define these 2-
compartment systems may improve parameter retrieval. 
Acknowledgements: Funding from EPSRC-CASE PhD 
Studentship with Bayer AG at University of Leeds. 
References: [1] Sourbron. 2014. A tracer-kinetic field 
theory for medical imaging. IEEE; 33(4):935-46. [2] 
Shalom et al. 2024. Current status in spatiotemporal 
analysis of contrast-based perfusion MRI. Magn Reson 
Med; 91(3):1136-48. [3] Shalom et al. 2024. 
Identifiability of spatiotemporal tissue perfusion models. 
Phys Med Biol; 69(11):115034. [4] Raissi et al. 2019. 
Physics-informed neural networks: A deep learning framework for solving forward and inverse 
problems involving nonlinear partial differential equations. J Comp Phys; 378:686-707. [5] Raissi et al. 
2020. Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations. Science; 
367:1026-30. [6] van Herten et al. 2022. Physics-informed neural networks for myocardial perfusion 
MRI quantification. Med Image Anal; 78:102399. [7] Ramachandran et al. 2017. Searching for 
Activation Functions. arXiv; 1710.05941. [8] Parker et al. 2006. Experimentally-derived functional form 
for a population-averaged high temporal-resolution arterial input function for DCE-MRI. Magn Reson 
Med; 56(5):993-1000. 

Fig 4: Parameter retrieval for: 2-
compartment noiseless (a) and (b) noisy 
data. The black lines show ground truth 

parameters. 

Fig 3: Parameter retrieval for 1-compartment 1D: 
noiseless (a) and noisy (b) data, and (c) 2D noiseless 
data. The black lines show ground truth parameters. 

 

 

Are Physics Informed Neural Networks feasible for efficient spatiotemporal tracer kinetics? 
Eve S. Shalom 1,2, Amirul Khan 3, Sven Van Loo 4, Steven P. Sourbron 1 

1Division of Clinical Medicine, School of Population and Health Sciences, University of Sheffield, UK 
2School of Physics and Astronomy, University of Leeds, UK 
3School of Civil Engineering, University of Leeds, UK 
4Department of Applied Physics, Ghent University, Belgium 
 
Introduction: Conventional tracer kinetics applies 
temporal models within single voxels and neglects 
local exchange between voxels. Spatiotemporal 
tracer kinetics [1] models the tracer transfer between 
and within voxels directly via continuum mechanics. 
This approach improves accuracy, removes 
inaccurate assumptions such as a global input 
function, and allows extraction of parameters that 
characterise spatial perfusion and flow patterns [2]. 
Spatiotemporal 1-compartment systems are readily 
identifiable, but extension to 2-compartment perfusion 
(hereinafter 2-compartment) systems yields degenerate 
solutions in some toy models [3]. Additionally, standard 
gradient descent requires long runtimes and is susceptible 
to local minima even in small systems [3]. Physics Informed 
Neural Networks (PINNs) [4] have shown promise in 
uncovering transport parameters from concentration data 
in both computational fluid dynamics [5] and conventional 
tracer kinetics [6]. The aim of this work is to determine 
whether PINNs can produce accurate solutions to 
spatiotemporal tracer kinetics systems. This could provide 
feasible analysis runtimes for 3D perfusion datasets with 
further development. Results are presented for a 1D and 
2D 1-compartment model and a 1D 2-compartment model. 
Methods: Theory: A fluid dynamics approach was used, 
proposed in [1], which employs incompressibility, mass 
conservation and spatially variable transport coefficients to 
describe compartmental tracer evolution. Specifically, 
transport proceeds via convection between identical 
compartment types of neighbouring voxels and via perfusion exchange from arterial to venous 
compartments in the 2-compartment case.  
Model: System layouts are illustrated in Fig 1. Interface velocities (𝑢𝑢, 𝑢𝑢𝑎𝑎, 𝑢𝑢𝑣𝑣) and centred exchange 
terms (𝐾𝐾𝑣𝑣𝑣𝑣)  are defined. Influx at the arterial compartment boundaries were based on a population 
arterial input function [8], with no influx at the venous boundaries. A zero initial condition was used. 
Simulations: A forward time and upwind advection discretization was used. Systems were 25.6x0.8cm 
(1D) or 25.6x25.6x0.8cm (2D) with voxel width 0.8cm and evolved to 80s. An internal time step of 0.2s 
was used with concentration measurements taken every 2s. 
Inverse Approach: Parameters, P, are normalised, such that |P|≤1. The fitted concentration was 
optimised via a PINNs approach (Fig 2, Table 1) employing a least squares data fit and adherence to 
governing equations. For optimization in 1-compartment P={𝑢𝑢}, for 2-compartment P={𝑢𝑢𝑎𝑎, 𝑢𝑢𝑣𝑣, 𝐾𝐾𝑣𝑣𝑣𝑣}. 
Network weights were updated to minimise the data and physics loss terms via backpropagation using 
a full batch size.  
Results: Spatial velocities are recovered with low error in 1-compartment systems for noiseless data 
in both 1D and 2D (Fig 3a/c) and noisy 1D data (Fig 3b). In the 2-compartment system, velocity 

Fig 2: PINNs layout shown for 2-
compartment. 

Fig 1: System layout for (a) 1-compartment 
and (b) 2-compartment models. 
Table 1: Hyperparameter values. 
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and the parcellation highlight the lesion. 
 

 

 

 
 

 
 
 
 

Fig. 1. Simulation results on a synthetic phantom with the SM, representing realistic white matter 
tissue configurations [11] using µGUIDE and Hierarchical-µGUIDE. 

Fig. 2. Parametric maps of a participant with epilepsy using µGUIDE and Hierarchical-µGUIDE (L=8 
parcels), with the SM. The lesion appears to be clearly segmented in the obtained parcellation. 

Discussion: Hierarchical-µGUIDE yields faster posterior distribution estimates compared to existing 
hierarchical methods relying on MCMC8,9, and returns a parcellation learnt from, not imposed on, the 
data. Its efficiency unlocks applications on large datasets, therefore gaining statistical power. 
Hierarchical-µGUIDE can seamlessly be applied to other biophysical models or hierarchical structures. 
Conclusion: Hierarchical-µGUIDE improves the quality of tissue microstructure estimations by using a 
hierarchical Bayesian approach to efficiently estimate full posterior distributions along with a tissue 
parcellation. Hierarchical-µGUIDE reduces estimates uncertainty, while preserving tissue 
heterogeneity, allowing for pathology detection. 
Acknowledgements: This work, MJ and MP are supported by UKRI Future Leaders Fellowship (MR/T020296/2). 
LR and DW are supported by the ERC-StG NeuroLang (ID:757672). 
References: [1]Alexander et al., NMR in Biomed (2019) [2]Jelescu et al., J Neurosci Methods (2020) [3]Novikov 
et al., NMR in Biomed (2019) [4]Jallais et al., arxiv (2024) [5]Cranmer et al., PNAS (2020) [6]Jallais et al., MELBA 
(2022) [7]Rouillard et al., TMLR (2023) [8]Powell et al., CDMRI (2021) [9]Orton et al., MRM (2014) [10]Ianuş et 
al., MRM (2017) [11]Coelho et al., NeuroImage (2022) 

 

 

Hierarchical-µGUIDE: Fast and Robust Bayesian Hierarchical Modelling using Deep 
Learning Simulation-Based Inference 

Louis Rouillard1, Demian Wassermann1, Marco Palombo2,3, Maëliss Jallais2,3 

1Université Paris-Saclay, Inria, CEA, Palaiseau, 91120, France; 2Cardiff University Brain Research Imaging Centre 
(CUBRIC), Cardiff University, Cardiff, United Kingdom; 3School of Computer Science and Informatics, Cardiff 
University, Cardiff, United Kingdom 
Introduction: Diffusion-weighted MRI is a promising imaging technique for characterizing brain 
microstructure in-vivo [1,2,3]. By fitting a biophysical model to the acquired diffusion signals, one can 
quantify histologically meaningful microstructural parameters within each voxel [1]. However, most 
approaches a) only provide the most likely parameter value without offering insights about their 
robustness and reliability, although crucial interpreting the results, and b) fit each voxel 
independently, without exploiting information redundancy across voxels. A recent approach, µGUIDE 
[4],  based on Simulation-Based Inference (SBI) [5], estimates full posterior distributions and quantifies 
the uncertainty of the estimated tissue parameters [4,5,6]. µGUIDE circumvents the limitations of 
traditional Bayesian inference approaches (e.g. Markov-Chain-Monte-Carlo) by providing faster and 
more robust estimates of parameters posteriors in each voxel independently. However, the estimated 
voxel-independent posterior distributions can present large variance (i.e. high uncertainty) due to low 
signal-to-noise ratio (SNR). Resulting parameter maps can be noisy and obscure or misdiagnose 
pathologies. Here we introduce hierarchical-µGUIDE, a new method enhancing the fitting quality of 
microstructure parameters by combining information across voxels presenting a similar 
microstructure, hypothesising a hierarchical structure [7,8,9]. Similar voxels are grouped into parcels. 
The posterior distributions and the parcellation are jointly estimated from the observed data. Voxel 
parameters are estimated with higher precision, enhancing their clinical utility. 
Methods: Hierarchical-µGUIDE: Hierarchical-µGUIDE relies on Bayesian inference, which takes as 
input a multi-shell diffusion-weighted signal for each voxel 𝑋𝑋𝑣𝑣𝑣𝑣𝑣𝑣, and outputs the posterior 
distributions 𝑝𝑝ℎ𝑖𝑖𝑖𝑖𝑖𝑖(𝜃𝜃𝑣𝑣𝑣𝑣𝑣𝑣|𝑋𝑋𝑣𝑣𝑣𝑣𝑣𝑣) of the microstructure parameters 𝜃𝜃𝑣𝑣𝑣𝑣𝑣𝑣, defined by a given biophysical 
model of the tissue [2,3]. Contrary to µGUIDE [4], voxels are not considered independently. Instead, 
we group voxels into L parcels of similar microstructure. Each parcel is associated with the average 
parameters 𝜃𝜃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, and each voxel’s microstructure 𝜃𝜃𝑣𝑣𝑣𝑣𝑣𝑣 is assumed to be a perturbation of the parcel 
parameters it belongs to, with variability 𝜎𝜎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. Using hierarchical-µGUIDE, we 1) learn a parcellation, 
and 2) reduce the uncertainty in each voxel’s estimation by sharing information across voxels in the 
same parcel. Hierarchical-µGUIDE consists of two successive steps. First, using μGUIDE [4], we learn 
the independent posteriors 𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖(𝜃𝜃𝑣𝑣𝑣𝑣𝑣𝑣|𝑋𝑋𝑣𝑣𝑣𝑣𝑣𝑣), by training over a large synthetic dataset of 
microstructure-signal pairs, sampled from a simulator with a uniform prior 𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖(𝜃𝜃𝑣𝑣𝑣𝑣𝑣𝑣). Second, we 
hypothesise a hierarchical structure over the voxels [7,8,9] with prior 𝑝𝑝ℎ𝑖𝑖𝑖𝑖𝑖𝑖(𝜃𝜃𝑣𝑣𝑣𝑣𝑣𝑣, 𝑙𝑙𝑣𝑣𝑣𝑣𝑣𝑣, 𝜃𝜃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝), that 
replaces the independent prior 𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖(𝜃𝜃𝑣𝑣𝑣𝑣𝑣𝑣). Using Plate Amortized Variational Inference (PAVI) [7], we 
start from the posteriors 𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖(𝜃𝜃𝑣𝑣𝑣𝑣𝑣𝑣|𝑋𝑋𝑣𝑣𝑣𝑣𝑣𝑣), and progressively regularise those into 𝑝𝑝ℎ𝑖𝑖𝑖𝑖𝑖𝑖(𝜃𝜃𝑣𝑣𝑣𝑣𝑣𝑣|𝑋𝑋𝑣𝑣𝑣𝑣𝑣𝑣).  
Exemplar application: As demonstrator, we applied hierarchical-µGUIDE to the Standard Model (SM) 

[3], a two-compartment model with five microstructural parameters: neurite signal fraction, intra-
neurite diffusivity, orientation dispersion index, and parallel/perpendicular diffusivity within the extra-
neurite space. 
Training: SBI training was performed on 105 synthetic simulations computed using MISST [10] with 
random combinations of the model parameters, uniformly sampled from biologically plausible ranges. 
To match experimental data, Rician noise (SNR=30) was added to the simulated signals. 
Experiment: MRI data: We applied hierarchical-µGUIDE to a participant with epilepsy. Data were 
acquired using a PGSE acquisition with b-value=[200,500,1200,2400]s/mm2, respectively 
[20,20,30,61]diffusion encoding directions uniformly distributed, δ/Δ=7/24ms and TE/TR=76/3200ms. 
Results: Fig.1 presents the results over simulated data, fitting the voxels using µGUIDE and 
Hierarchical-µGUIDE. Hierarchical-µGUIDE provides more accurate and precise parameter estimates. 
Fig.2 presents the SM parametric maps estimated using µGUIDE and Hierarchical-µGUIDE on a 
participant with epilepsy, alongside their uncertainty and parcellation. The sharper parametric maps 
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Fig. 1. Small bowel water content (SBWC) measured over time after ingestion of one of three food 
groups (glucose, fructose or Inulin). The left-hand side was produced by manual segmentation, and 
is reproduced from the work by Major et al [4]. The right-hand side was produced for this abstract 

using machine learning methods. 
 
Discussion: The principal benefit of measuring SBWC in this way compared to traditional methods is 
the time difference. Manual annotation of the near thousand scans required to produce the 
generated figures took many months of work. Using the machine learning method described above, 
segmentation of all scans can be conducted in as little as 25 minutes. This is a colossal time save, 
even if training time is considered. The difference in overall volume is not ideal, however correction 
of erroneous masks is faster than segmentation from scratch. This significant decrease in annotation 
time opens the pathway to potential future clinical viability, which is currently not possible with 
manual annotation due to the time required. 
Conclusions: We used nnU-Net, a popular state of the art image segmentation network, to 
reproduce manually analyzed results from literature. The time required to do this was significantly 
reduced from months to minutes. The trend of results was clearly reproduced, with some 
discrepancy of measurement at the larger volumes. The significance of this work is that the time 
decrease opens a pathway to clinical viability. Future work will target automatic methods to 
determine which datasets may need manual corrections following machine learning segmentation. 
Acknowledgements: Stephen is funded by the Engineering and Physical Sciences Research Council.  
We thank the authors of Reference [4] for allowing their anonymised data to be shared for this work. 
References 
[1]  Hoad, C. L., et al. "Non-invasive quantification of small bowel water content by MRI: a validation 
study." Physics in Medicine & Biology 52.23 (2007): 6909. 
[2] Isensee, Fabian, et al. "nnU-Net: a self-configuring method for deep learning-based biomedical image 
segmentation." Nature methods 18.2 (2021): 203-211.  
[3] Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net: Convolutional networks for biomedical image 
segmentation." Medical image computing and computer-assisted intervention–MICCAI 2015: 18th 
international conference, Munich, Germany, , proceedings, part III 18. Springer International Publishing, 2015. 
[4] Major, Giles, et al. "Colon hypersensitivity to distension, rather than excessive gas production, produces 
carbohydrate-related symptoms in individuals with irritable bowel syndrome." Gastroenterology 152.1 (2017): 
124-133. 

 

Automation of Small Bowel Water Content Evaluation using Machine Learning Image 
Segmentation Methods. 

Stephen Lloyd-Brown1, Caroline Hoad2, Xin Chen1 
1School of Computer Science, Faculty of Science, University of Nottingham, Nottingham.  
2Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham. 
 
Introduction: Measurement of small bowel water content (SBWC) using MRI requires manual 
annotation of the small bowel [1]. For volumetric images this process can be extremely time 
consuming. For studies involving multiple participants over multiple sessions this process is even 
more protracted. Machine learning methods present an alternative annotation solution. We show 
that machine learning methods allow for a quicker way of determining SBWC in timeseries data, and 
we compare these results to manual annotation. 
Methods: To form our training set, a set of 298 heavily T2 weighted TSE scans was compiled, taken 
from a variety of studies across four different scanners (two 1.5T, two 3T). The scans in the training 
set each had their small bowels manually labelled. These scans were fed to nnU-Net [2], a self-
configuring variant of the popular image segmentation network U-Net [3]. nnU-Net was trained with 
hyperparameters which were automatically determined by the network. The network was trained 
using a single RTX 2060 TI, 15GB of RAM, and 4 CPU cores. Training was allowed to run for the full 
1000 epochs, for a duration of 40 hours. 
To test our model, data from a prior study [4], which investigated small bowel water content (SBWC) 
changes after ingestion of carbohydrates, were recompiled into a testing set. The full test set 
consisted of 58 participants, of which half were irritable bowel syndrome (IBS) patients, and half 
were healthy controls. They were scanned after ingesting one of three types of food, on three 
separate occasions, so that each participant has ingested each food once. The scans consisted of 7 
scans taken at 60-minute intervals after ingestion, including one baseline scan before ingestion. 
Scans from the testing set were fed to the trained image segmentation model. Voxels identified as 
small bowel were deemed to contain entirely water. Total water content was therefore taken as the 
sum of small bowel voxels multiplied by voxel volume. 
Results: Our results can be seen on the right-hand side of figure 1. For ease of comparison the 
results from the study by Major et al [4] are reproduced on the left-hand side of figure 1. There is 
clear agreement of trend behavior between the two methods for both IBS patients and healthy 
controls, with the relative responses between the different carbohydrates matching well between 
methods. There are differences in overall measured volume, especially at large volume. These 
differences are being investigated. 
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Results and Discussion 
The rectangular pulse showed greater sensitivity to B1 inhomogeneity and off-resonance compared to 
composite refocusing pulses (Fig. 1). TPG showed most insensitivity to B1 inhomogeneity (Fig 1a), while 
LT showed the most insensitivity to off-resonance effects in the range of ±1kHz (Fig 1b). 

In vivo imaging showed significant B0 inhomogeneity (Fig 2a); the average off-resonance frequency 
within ROI 1 and ROI 2 is 1288Hz and -98Hz respectively. The SNR for all refocusing pulses is lower in 
ROI 1 than ROI 2 (Fig 2c), likely due, in part, to off-resonance effects. LT, which is designed to 
compensate for off-resonance conditions, offers improvements in SNR in both regions and the effect 
is largest in the region of greatest off resonance. This is in keeping with the phantom study, where LT 
performed best in the range of ±1kHz (Fig. 1b). 

Conclusions 
This work shows that composite pulses that compensate for off-resonance effects boost SNR which is 
one of the limiting factors for image quality at this field strength. Overall, LT showed an improvement 
in SNR over other refocusing pulses for in vivo. This suggests that that B0 inhomogeneity has the 
greater influence on SNR compared to B1 inhomogeneity; however, this will need to be further 
investigated with a B1 map to establish this.  
References  
[1] Odedra, S, Wimperis, S (2012). Use of composite refocusing pulses to form spin echoes. J. Magn. 
Reson. 214 (2012) 68-75. 
[2] Meet MGNTQ. Available at: https://multiwave.ch  
[3] O'Reilly T, Teeuwisse WM, Webb AG. Three-dimensional MRI in a homogenous 27 cm diameter 
bore Halbach array magnet. J Magn. Reson. (2019) Oct;307:106578. 
 

Fig. 2 (a) In vivo B0 map with two ROIs in high (ROI1) and low (ROI2) off-resonance conditions. (b) The 
corresponding slice in the TSE image showing the noise ROIs (green circles). (c) Bar graph showing SNR of ROIs 
displayed in (a, b) with each refocussing pulse. 
 

Fig. 1. Performance of rectangular (single-component) and composite refocusing pulses in a 1-dimensional 
spin-echo acquisition of phantom. (a) Normalized spin echo signal intensity across a range of B1 scaling factors 
and (b) 0KHz being on-resonance. 
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Assessment of Composite Pulses in Ultra-Low field MRI: application to TSE Imaging 
 
Finn Aubrey Conboy1, Samira Bouyagoub1, Itamar Ronen1, Ivor Simpson2, Nick Dowell1  
1Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Brighton, BN1 9RR  
2School of Engineering and Informatics, University of Sussex, Brighton BN1 9QJ  
 
Introduction 
Ultra-low field (ULF) MRI offers increased accessibility, lower costs and greater mobility than high field 
scanners. However, imaging at ULF is typically characterized by poor signal to noise ratio (SNR) caused 
primarily by field strength and exacerbated by inhomogeneity in B0 and B1 fields.  

Composite refocusing Radio Frequency (RF) pulses consist of a series of contiguous, or near-
contiguous, pulses, each may have a different phase or flip angle. These have been shown to be less 
sensitive to common imperfections such as B1 inhomogeneity and off-resonance and have 
demonstrated improved efficiency over conventional rectangular (i.e. single component) pulses [1]. 

Method 
  
Table. 1: Refocusing pulses discussed in this work  
Designation Refocusing Pulse Components (flip anglephase)  Compensation  

Rectangular  180°0°  None  

LF  90°90°180°0°90°90°  B1 inhomogeneity  

LT  90°135°270°45°90°135°  Resonance offset  

TPG  180°256°180°52°180°0°180°128°180°0°180°232°180°0°180°308°180°104°  
B1 inhomogeneity  
 (+ Resonance offset) 

 
Data was acquired on a Multiwave MGNTQ scanner equipped with a 50mT Halbach permanent magnet 
array, solenoid head coil and Kea2 Magritek spectrometer [2,3]. Three composite refocusing pulses 
(Table. 1) [1], were implemented in a 1-dimensional spectra spin echo pulse sequence with acquisition 
parameters: TE=42ms, number of points=512, Dwell time=50μs, TR=15000ms, using a lactate solution 
phantom. LF and LT pulses compensate for off-resonance and B1 inhomogeneity respectively, and TPG 
offering a degree of compensation for both. 

To assess composite pulse performance in the presence of B0 inhomogeneity, off-resonance conditions 
were created by modulating the centre-frequency of the spectra in increments of 0.5KHz in the range 
of ± 5kHz. To assess the effect of B1 inhomogeneity, refocusing pulse amplitudes were modulated from 
the experimentally-determined optimum (B1opt) for the rectangular refocusing pulse, from 
B1/B1opt=0.12 to B1/B1opt=1.05 in increments of B1/B1opt=0.025. The resulting spin echo signal intensity 
was used to assess the performance of the composite refocusing pulses compared to a rectangular 
pulse in both of the above experiments. 

Performance of the composite refocusing pulses was then assessed in vivo (male, 26 years old). Brain 
images were acquired with a 3D Turbo Spin Echo sequence: ETL=4, TR=500ms, TE=20ms, averages=2, 
resolution=2.5mm x 2.5mm x 5mm, FOV 200mm, 8 mins per acquisition, using the composite 
refocusing pulses in Table 1. A B0 map was acquired using a TSE B0 acquisition with two readings taken 
with an echoshift of 1μs and 200μs, with the same acquisition parameters except for ETL 16 (as used 
for TSE imaging). Two regions-of-interest (ROIs) as shown in B0 map were used to assess the 
performance of the composite pulses in the presence of high and low B0 inhomogeneity (Fig. 2a), and 
4 noise regions were taken (Fig. 2b) with the average of the standard deviation. SNR was then 

calculated for each ROI using: 𝑆𝑆𝑆𝑆𝑆𝑆 = 0.66×𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  
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acquisitions under the currently strict Nova 8Tx headcoil 
limit. Slice-by-slice design could improve this efficiency 
since different pulses are likely not limited by the same 
VOP. 
The superior flip angle homogeneity is translated into 
more uniform images, validated in the phantom and in 
vivo experiments. 

References 
1. Hennig, J. et al. MRM 3, 823–833 (1986). 2. Meiboom, S. & 
Gill, D. Review of Scientific Instruments 29, 688–691 (1958). 
3. Yetisir, F. et al. MRM 93, 87–96 (2022). 4. Sbrizzi, A. et al. 
MRM 77, 361–373 (2017). 5. Eggenschwiler, F. et al. MRM 71, 
1478–1488 (2014). 6. Gras, V. et al. MRM 80, 53–65 (2018). 7. 
Zhang, M. & Rodgers, C. T. MRM 91, 2358–2373 (2024). 8. 
Setsompop, K. et al. MRM 59, 908 (2008). 9. Weigel, M. JMRI 
41, 266–295 (2015). 10. Hargreaves, B. A. et al. MRM 52, 
590–597 (2004). 11. Weigel, M. & Hennig, J. Zeitschrift für 
Medizinische Physik 18, 151–161 (2008). 

 
Figure 1 Form of an example scalable 3-spoke pTx pulse. The RF form 
is symmetric in time, and Gxy is antisymmetric. 

 
Figure 2 Scalability illustration with Bloch simulations. (a-b) show the 
behaviour of an unconstrained 3-spoke pulse designed without 
restrictions on the Gxy waveform symmetry. Scaling the voltage 
significantly changes the flip angle magnitude and phase patterns. 
Whereas (c-d) shows 3-spoke pulses where the Gxy waveform 
symmetry was constrained. These “scalable” pulses show better 
scaling properties under the same extent of voltage scaling. (e) 

compares the complex normalized RMSE between the two designs, 
where the target magnitude is the target flip angle, and target phase 
is the actual phase pattern of the designed pulse (the 120° pulse in 
this case). 

 
Figure 3 Turbo-spin-echo (TSE) echo strengths simulated by extended 
phase graph (EPG), comparing the performance between CP, direct 
signal control RF shimming optimization, and our scalable BOGAT 3-
spoke pulses. (a) shows the mean and standard deviation of each 
echo across all voxels in a slice. (b-d) show the spatial variation of 
the echo magnitude at the center (5th) echo. 

 
Figure 4 (A) Phantom TSE acquisitions with (i) CP, (ii) pTx scalable 3-
spoke pulses designed with BOGAT, and (iii) the scalable pulse after 
VERSE conversion in phantom. Two types of echo trains were tested 
– a 120° constant refocusing train, and a variable flip angle 
hyperecho train. (B) In vivo comparison between (iv) CP and (v) 
VERSE scalable 3-spoke pulse, with 120° constant refocusing train 
shown in 3 slice positions. The scalable 3-spoke pulses show superior 
performance in both cases. 

Scalable spokes pTx pulses for 2D turbo-
spin-echo imaging at 7T 
Minghao Zhang1, Christopher T. Rodgers1 

1. Wolfson Brain Imaging Centre, University of Cambridge 

Introduction 
7T MRI gives excellent resolution and SNR but often 
suffers from regions of signal drop-out. The clinically 
important Turbo-spin-echo (TSE, RARE, FSE)1 sequence 
is particularly affected because its repeated refocusing 
pulses allow any flip angle error to accumulate.  
Parallel transmit (pTx) scans can improve image 
homogeneity, but a pTx TSE sequence must still satisfy 
Carr-Purcell-Meiboom-Gill (CPMG) conditions.2 Recent 
studies have improved 2D TSE by phase-matching the 
excitation and refocusing pulses,3 or by using direct-
signal-control (DSC) to directly optimize the echo signals 
with dynamic RF shimming.4 For 3D TSE, the scalable kT-
point pulses were introduced by Eggenschwiler et al5 
and formally proven by Gras et al.6 We introduce 2D 
scalable spokes pTx pulses for TSE. 

Methods 
Pulse design 
It was proven6 that the flip angle of a pulse scales well 
with the applied voltage if the RF waveform is 
symmetric about the centre of the pulse, and the 
gradient trajectory is antisymmetric. It also means that 
the 90° phase difference between excitation and 
refocusing pulses required by the CPMG condition can 
be satisfied with a single phase shift, which 
conventional magnitude least squares (MLS) pulse 
design can not assure. 
For 2D imaging, each slice-selective subpulse is often 
approximated as a single packet of RF energy, and 
hence we propose the slice-selective gradient is exempt 
from this requirement. We create spokes pTx pulse 
forms that satisfy this symmetry condition (Figure 1). 
This reduces the number of degrees of freedom. The 
pulses also include a pre- and post- in-plane blips, which 
ensures that the middle spoke is in the centre of the 
transmit k-space.  
Pulse optimizations were performed with a modified 
PPD code (Siemens). Spokes parameters were optimized 
with Bayesian Optimization of GrAdient Trajectory7 
(BOGAT) and a Tikhonov-regularized magnitude least 
squares RF optimizer.8 
Simulation 
Simulations were performed on a database of phantom 
and in vivo field maps from our Terra 7T MRI (Siemens) 
and 8Tx32Rx head coil (Nova) and the vendor-provided 
satTFL B1+ and dual-echo GRE B0 mapping sequences.  

To test the scalability, 3-spoke pulses with and without 
symmetry constraints were designed on a set of 
phantom fieldmaps for a 120° flip angle. The voltage 
was then scaled, and their performance computed with 
Bloch simulations.  
To simulate the TSE performance, a 120° 3-spoke 
scalable pulse was designed for a set of in vivo field 
maps. The pulse was scaled to 90° and 180°, and a 90° 
phase shift was applied to the refocusing pulse. The TSE 
echo train was simulated with extended phase graph 
(EPG),9 where each pulse was represented by an 
instantaneous rotation whose effect is calculated from 
Bloch simulation of the 3-spoke pulse. The EPG 
simulates 9 echoes with 12ms echo spacing, 
T1=1000ms, T2=100ms. The result is compared with 
conventional circularly polarized (CP) pulses, and with 
DSC-optimized RF shimming4 TSE train.  
Validation experiments 
A 3-spoke scalable pTx pulse was designed as described 
above for a spherical agar phantom. To reduce SAR, 
VERSE was applied10 without changing the spacing 
between the centres of subpulses. TSE images were 
acquired, first for a standard TSE train with 120° 
refocusing, TE=76ms, TR=5000ms, 0.9mm in-plane, 
echo spacing 12.8ms, 9 echoes per shot, GRAPPA 3.  
Further images were acquired with a hyperecho train11 
to further reduce SAR.  
The 120°-refocusing TSE scan was repeated for one 
volunteer (with written consent) for hippocampus 
imaging. 

Results 
Figure 2 demonstrates that a scalable 3-spoke pulse 
scales better with voltage than unconstrained 3-spoke 
pulse as predicted by theory. Crucially, scaling maintains 
a more consistent phase pattern. 
Figure 3 shows EPG simulations of the TSE echo train. 
The scalable 3-spoke pulse performed comparably with 
DSC optimization for the mean echo strengths, and 
showed better spatial homogeneity. 
Figure 4 show the phantom TSE images acquired with 
the scalable pulses. The 3-spoke pulse images show 
better uniformity than CP images. 

Discussions and Conclusion 
We have demonstrated that 2D scalable spokes pTx 
pulse designs are well suited for CPMG TSE imaging. 
Simulations show that 3-spoke pulses outperform RF 
shimming, and only required the computational burden 
of 1 single pulse design (<10s) per optimization volume.  
Fitting the duration of a 3-spoke pulse in TSE presents a 
significant SAR challenge. However, with VERSE 
conversion and the hyperecho train, we achieved an 
estimate of 50% slices per TR compared with CP 
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Results & discussion: The algorithm successfully calculated optimum shim weights for the two regions 
using all 3 methods (M, S, and M+S). Within the MRS VOI, increasing α led to an increase in the 
standard deviation of B0. The opposite was true for the whole brain (Fig. 2A). When shimming was 
strongly weighted towards either the MRS VOI or whole brain, M+S always predicted a lower standard 
deviation within the corresponding VOI. There were no instances in which using M alone would be 
beneficial compared to using S alone, so this prediction was not considered in further analysis. An 
intermediate weighting value of α (indicated in Fig. 2A) was used to characterise the relative benefit 
of M+S compared to S alone. This weighting predicted an improvement of whole brain homogeneity 
for a <1 Hz increase of in standard deviation in the MRS VOI, in all regions. The addition of the multi-
coil array predicted varying levels of improvement in the MRS VOI when placed in different brain 
regions (Fig. 2B), with the MRS VOI in the ACC and left/right motor cortex showing a predicted 
improvement in homogeneity within these regions using M+S instead of S alone. In the visual cortex 
and PCC, the use of M+S does not predict an improvement. This is potentially because the position of 
the VOI is distant from the multi-coil array (Fig. 1B), so the shim is unlikely to improve with the 
additional use of M. In the whole brain, the use of M+S predicts a 15±4% improvement in standard 
deviation compared to S alone at this value of α.  

Conclusions: In future work, these predicted changes will be tested in vivo, using a static shimming 
approach comparing M, S, and M+S. Subsequently, a dynamic approach will be performed, applying a 
fixed value of the spherical harmonic terms and dynamically updating the shim applied with the multi-
coil array to improve the field over the MRS VOI and whole brain. Dynamic shimming will then be 
integrated into an interleaved fMRI-MRS approach to simultaneously investigate haemodynamics and 
changes in metabolism. 
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acquires simultaneous glutamate and BOLD-fMRI signals in the human brain. NeuroImage, 155, 113–119.  
[2] Schrantee, A., Najac, C., Jungerius, C., van der Zwaag, W., Jbabdi, S., Clarke, W. T., & Ronen, I. (2023). A 7T 
interleaved fMRS and fMRI study on visual contrast dependency in the human brain. Imaging Neuroscience, 1, 
1–15.  
[3] Boer, V. O., Andersen, M., Lind, A., Lee, N. G., Marsman, A., & Petersen, E. T. (2020). MR spectroscopy using 
static higher order shimming with dynamic linear terms (HOS-DLT) for improved water suppression, 
interleaved MRS-fMRI, and navigator-based motion correction at 7T. Magnetic Resonance in Medicine, 84(3), 
1101–1112.  
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Fig. 2 – (A) Effect of α on predicted standard deviation of B0 in an MRS VOI (right motor cortex, purple) 
and whole brain (orange), with shims predicted using the scanner spherical harmonics (S, dashed line), 
multi-coil array (M, dotted line), and both together (M+S, solid line). The grey dashed line shows α = 
10-4, used to compare standard deviation of B0 within (B) MRS VOI and (C) whole brain, with the MRS 
VOI placed in different brain regions, comparing S and M+S configurations. 
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B0 shimming using a multi-coil array for simultaneous regional and whole brain acquisition 
at 7T 

Claire Lucas, Susan Francis, Adam Berrington 
Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham 
 
Introduction: Single-voxel Magnetic Resonance Spectroscopy (MRS) has recently been combined with 
whole brain functional Magnetic Resonance Imaging (fMRI) to investigate simultaneous changes in 
neurochemicals and BOLD during tasks [1,2]. However, large B0 inhomogeneities that arise at 7T cause 
MRS line-broadening and distortions in the imaging data. For interleaved fMRI-MRS approaches, 
higher order shimming on small volumes of interest (VOIs) can generate suboptimal B0 field 
distributions outside of the VOI, resulting in poor water suppression in MRS and geometric distortions 
in MRI. Dynamic shimming using spherical harmonic shim coils can improve local and global B0 
homogeneity, but this is generally limited to updating linear shim terms only due to eddy current 
effects [3]. Multi-coil shim arrays offer the possibility to improve B0 homogeneity at 7T, with fast 
switching, for simultaneous local and whole brain shimming [4]. 
A commercially available 24-channel coil array used in combination with a weighted shimming 
approach was simulated to assess the improvement in B0 field homogeneity over a small MRS VOI and 
the whole brain. 

Methods: A weighted algorithm for simultaneous shimming over two regions was developed in 
Python based on a previous approach [3], using B0 field maps acquired in phantom (n=4) and in vivo 
(n=4). B0 maps used for simulations were acquired on a Philips 7T Achieva system (Philips Healthcare, 
Netherlands) using a 32-channel Nova Medical head coil (Nova Medical, Massachusetts). B0 
distribution was optimised using a least squares algorithm, using spherical harmonic basis fields (n=9, 
up to second order) from the scanner’s inbuilt shim system (S) and the individual currents (n=24) of 
the multi-coil array (M) (Elara, MR Shim GmbH, Germany) mounted onto the anterior of the head coil. 
Resulting B0 fields were simulated for 3 shimming methods: individually (M or S) and together (M+S). 
The predicted effect of performing the shim optimisation for a 25x25x25mm3 MRS VOI placed in 
various regions across the brain versus the whole brain was investigated using a weighting parameter, 
α, where for high values of α more weight is given to whole brain homogeneity. Simulations for the 
weighted shim were performed on 4 MRS VOIs placed in the anterior cingulate cortex (ACC), visual 
cortex, posterior cingulate cortex (PCC), and left/right motor cortex (Fig. 1A). A coil coverage map was 
produced using the sum-of-squares image of the coil bases (Fig. 1B), to visualise areas where the multi-
coil array might be most effective. 
  

Fig. 1 – Location of anterior cingulate cortex, visual cortex, posterior cingulate cortex, and left/right 
motor cortex VOIs used for simulation, shown in (A) T1 weighted structural image and (B) map showing 
coverage of the multi-coil array within the brain, where bright areas indicate higher coverage. 
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tissue-mass were calculated following IEC guidelines [5]. 

Results: The RF coil was tuned and matched to 
300MHz using Sim4Life matching toolbox. Fig. 
2 shows the B1+-field and E-field distributions in 
the rodent model, which clearly show that the 
graphene-based probes can increase the B1+ as 
well as E-field magnitudes by approximately 15-
20 % in the vicinity of the probes. It is due to 
the induced current during transmission to the 
metal present in the layers of probes. Fig. 3 
shows the SAR distributions in the rodent 
model, clearly shows the elevated SAR due to 
the probe. The mean mass-avg SAR (W/kg) 
values are 0.63 and 0.83 in the rodent model 
without and with probe, respectively. The peak 
mass-avg SAR (W/kg) values for 0.01g, 0.1g and 
1g tissue mass are 2.49, 1.29, 0.82; and 5.9, 2.8, 
1.6 in the rodent model without and with 
probe, respectively, and was localized in the 
skin. The computational time for a rodent with 
a probe is around 160 hours per port, while 
without a probe it is 1.5 hours per port on a 
single GPU. There is a computational power 
restriction on a single GPU that needs to be 
addressed, and cluster GPU implementation is 
required. 

Discussion: The simulation results indicate that 
the graphene-based EEG probes increase the 
SAR deposition but remain within acceptable 
limits. There are no SAR limit guidelines for 
rodents, however the permissible mass-
averaged SAR values for humans are 2W/kg for 
the whole body and 3.2W/kg for the head. 

Conclusions: This study successfully demonstrates the EM interaction of graphene-based EEG probes 
in an MRI environment. Through meticulous EM simulations, it was shown that graphene-based 
probes can affect RF transmission and increase SAR deposition while remaining within permissible 
limits, thus ensuring MR compatibility and safety. Further work is necessary to optimize computational 
efficiency, experimental verification using phantom, concurrent EEG-fMRI studies in vivo in chronically 
epileptic rodents and scale these probes for human application. 

Acknowledgements: This project is funded by the EPSRC under grant no. EP/X013669/1. The authors 
are grateful for the support from Sim4life, ZMT for providing the science license.  
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Fig. 2. Simulated B1+-field distribution in rodent model 
(A) without, (C) with probe model; E-field distribution 
in rodent model (B) without, (D) with probe model. 

Fig. 3. Simulated mass-avg SAR distribution in rodent 
model (A) without, (B) with EEG probe model for 0.01g, 
0.1g and 1g tissue mass. 

 

 

Investigation of Electromagnetic Interaction Between RF Coil & Graphene-based 
Electrophysiology Probes at 7 Tesla Preclinical MRI 

Suchit Kumar1, Samuel M. Flaherty2, Alejandro Labastida-Ramírez2, Anton Guimerà Brunet3,  
Ben Dickie4, Kostas Kostarelos2, Rob C. Wykes1,2, Louis Lemieux1* 

1University College London Queen Square Institute of Neurology, London, UK 
2Centre for Nanotechnology in Medicine & Division Neuroscience, University of Manchester, UK 

3Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 
Madrid, Spain 

4Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, UK 

Introduction: New graphene-based electrophysiological recording technology (known as Graphene 
Solution-Gated Field-Effect Transistors, or gSGFET) [1], offers several advantages over existing 
electrodes. These advantages include a significantly reduced amount of metal that can interfere with 
MRI and high-fidelity DC-coupled brain signal recording in rodents [2]. There is interest in being able 
to perform MRI acquisitions in animals with such probes implanted, therefore the MR compatibility 
and safety of the graphene-based EEG probe need to be ensured. Here we report on computational 
simulations to assess the electromagnetic (EM) interaction and safety of the animals with these probe 
in the MRI environment, with the ultimate goal of achieving the highest possible level of MR 
compatibility. 

Methods: EM simulation analysis based on finite-difference time-domain (FDTD) method was 
performed using Sim4Life (V8.0, ZMT, Switzerland) in a 3D rodent model, which includes a total of 68 
tissues [3, 4]. For RF transmission, quadrature birdcage RF coil is used which has the following 
specifications: coil diameter: 72mm, coil length: 72mm, shield diameter: 90 mm, shield length: 
225mm, 8 rungs, each rung (width: 9.9mm) has a capacitor (14.2pF) placed on the end-rings (width: 
11.5mm) (Fig.1A). Figure 1B shows the rodent model inside the transmit RF coils without and with EEG 
probe model implemented in this work.  

The 3D model of graphene-based EEG probes was generated from 2D drawings (.dxf format) and 
exported to CAD (.stl format) via Autodesk Fusion 360 (California, USA). The simulations were 
performed on a Windows 11 PC (3.00GHz, 32GB RAM, 23GB GPU) as follows: 300MHz of gaussian 
excitation with bandwidth of 650MHz excited in two-port and results were combined in circular-
polarized mode. The additional sub-gridding feature was used and obtained from ZMT for localized 
mesh refinement. Mean and peak specific absorption rate (SAR) averaged over 0.01g, 0.1g and 1g 

Fig. 1. (A) Transmit highpass birdcage RF coil dimensions; (B) Configuration of rodent model placed in MRI 
RF coil without, and (C) with graphene-based EEG probe model as a brain implant. 
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coil. Calculated H-field map generated by a RF-coil at the Larmor frequency of 23Na in the 
central cross section is presented in Figure 1D.  Magnetic field magnitude values were 
normalized to the 1 W of the power accepted by the RF-coil. 
 

Sodium spectra acquired at 0.5T in 0.6M 
NaCl agar phantom are shown in Figure 
2.  As one can see the signal falls off 
exponentially as the spacing between 
the phantom and the coil surface 
increases, in line with simulation shown 
in Figure 1C. 
Discussion. The coil behaviour is in line 
with theoretical predictions. Sodium 
signal from physiological 0.1M NaCl was 
collected within 10 min. Sodium signal 
collection using native Paramed console 
using this coil is currently under way to 
evaluate coil performance for in vivo 

A

0

0.8 A/m
D

E

B

C

Figure 2. 0.6M Agar Gel 3mm film moved from the coil 
surface as shown in the bottom panel. 23Na signal was 
recorded for each position. Signal decay away from the 
coil surface is exponential.  

Figure 1 A, General view of RF-coil simulation model. B, Frequency dependence of the reflection 
coefficient on the discrete port of RF-coil. C, Calculated B1+ maps at the Larmor frequency of 23Na 
plotted in the central cross section. D, The field profile for the second eigenmode. E. Manufactured 
RF-coil. 
 

Multi-split ring surface coil for gradient free volume localised sodium spectroscopy at 0.5T. 
 
Kristina I Popova 1, Anna A Hurshkainen1, Georgiy A Solomakha2, Arthur Harrison3, Thomas 
Meersmann3,4, Galina E Pavlovskaya3,4 
1 School of Physics and Engineering, ITMO University, St. Petersburg, Russian Federation, 
2Department of High Field Magnetic Resonance, Max Plank Institute for Biological 
Cybernetics, Tuebingen, Germany, 3Sir Peter Mansfield Imaging Centre, Medicine, University 
of Nottingham, 4Nottingham NIHR Biomedical Research Centre, Nottingham. 
 
Introduction.  Low field (< 0.5T) has been acknowledged as an emerging technological 
development in the attempt to democratise MRI. Low field MRI scanners are affordable by 
low-income countries thus enabling higher quality healthcare currently hampered in these 
countries by MRI instrumentation costs. While low field MRI development has been mainly 
focussed on anatomical imaging using protons, our group explored sodium detection at 0.5T 
with the view of translation to sodium sensory technology.  Availability of sodium sensors is 
highly anticipated in diabetes research as it enables departure from glucocentric views on 
diabetes aetiology. Exploration of sodium role in Diabetes can help in managing about 20% of 
Diabetes cases currently not responsive to available treatment [1].  
However, sodium detection at 0.5T needs to be optimised to achieve sodium signal collection 
from clinically relevant ROI.  To address this, we have simulated and built sodium surface coil 
that allows for collection of sodium signal from the dermis skin layer. We report relevant 
proof of principal data in phantoms studies. 
Methods. RF-coil was designed as multi-split ring resonator (MSRR) [2] The RF-coil was 
numerically simulated using the CST Studio 2021 (Dassault Systèmes, Vélizy-Villacoublay, 
France) software using finite-element method in the frequency domain [3]. External 
dimensions of the resonator were chosen as 54 × 42 mm what correspond to desired field of 
view. The coil was tested at 0.5T Paramed open magnet using portable Kea2 console 
(Magritek, Germany) in phantoms. 
Results. The resulting setup of RF-coil as MSRR is presented on Fig. 1A. In such system of ten 
coupled split-ring resonators, it is possible to excite ten eigenmodes at different frequencies. 
Numerically simulated frequency response of the reflection coefficient S11 of RF-coil is 
presented in Fig. 1B, which illustrates the tuning of the second order eigenmode to the Larmor 
frequency of 23Na in a field of 0.5 T - 5.63 MHz. The graph of magnetic field profile (the 
dependence of the amplitude on the coordinate along the normal to the plane of RF-coil) in 
Figure 1C shows that magnetic field amplitude generated by single-loop coil several tens of 
times lower than the field of MSRR and is falling slightly along normal to the surface of the RF-
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Prospective 8Tx thoracic-lumbar spinal array at 7T MRI 
Yiling Hu1, Divya Baskaran1, Belinda Ding2, David A. Porter1, Natasha Fullerton3, Shajan Gunamony1,4 
1Imaging Centre of Excellence, University of Glasgow, Glasgow, UK 
2Siemens Healthcare Ltd., Frimley, UK 
3Queen Elizabeth University Hospital, NHS Greater Glasgow and Clyde, UK 

4MR CoilTech Limited, Glasgow, UK 
 
Introduction: The appeal of 7T MRI’s superior resolution compared to 1.5T and 3T is countered by 
increased radiofrequency (RF) field inhomogeneity and tissue power deposition associated with the 
higher resonant frequency of hydrogen at 7T [1]. Parallel transmission (pTx) is a method that splits the 
transmit coil into multiple independently-controlled channels to mitigate the above issues [2]. This 
abstract presents preliminary simulation results from a new pTx spinal array design with eight transmit 
elements for thoracic-lumbar spinal imaging, and compares it with an existing spinal array design 
similar to the one introduced by Kraff et al. [3]. 
Methods: Finite-difference time-domain (FDTD) EM simulations were performed in CST 2022 (CST 
Studio Suite, Dassault Systems, France). An eight-channel transmit array was modelled in CST with 
copper wire loops of width 100mm, length 135mm, and wire radius 1mm. The loops are arranged in 
a dual-column configuration, with nearest-neighboring elements overlap-decoupling and next-
nearest-neighboring elements inductively decoupling (Fig. 1a). Elements are displaced by 4mm from 
their nearest neighbors in the y-direction (Fig. 1b). Each loop has fixed capacitors of 6.8 pF to 7.5 pF 
(in blue) and ports (in red) for matching, tuning, and decoupling circuits. A copper EM shield of 0.2mm 
thickness is placed 30mm from the coil (Fig. 1c). Scanner conditions were recreated using a 325mm 
radius copper bore and FR-4 coil housing. The right column (Tx5-8) has a 180° phase shift from the left 
column, as Kraff described in his paper [3]. B1 simulations were performed on a phantom with tissue 
properties of muscle taken from digital voxel model Ella (ε = 55.032, σ = 0.9429S/m) with 1W power 
input per channel for a total of 8W input power. SAR simulations were performed on a 1mm resolution 
Duke digital voxel model loaded as shown in Fig. 1c, with a total input power of 1W. This array (“non-
offset”) was compared to a design similar to Kraff’s (“offset”) in Fig. 1d&e where the right column is 
shifted in the -z-direction by half of a loop length. The offset array used only overlap-decoupling and 
all elements sat on the same xy-plane, with jumper cables used to avoid contact. 

     
Fig. 1. Non-offset (a,b) and offset (d,e) coil layouts and Duke’s positioning with respect to the coil 

and shield (in gray) (c). 
Results: Optimal overlap dimensions for the non-offset array were found to be 30mm between the 
left and right columns, and 14-18mm between vertically adjacent elements. S-parameters from the 
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gradient free volume localised sodium spectroscopy.  
Conclusion.  Eigen mode coil design allows for sodium volume localised spectroscopy without 
the use of gradients thus enabling fast sodium signal collection for clinically relevant ROIs in 
the body.   
References: [1] https://doi.org/10.1080/17446651.2022.2092094; [2] 
https://doi.org/10.1364/OE.17.005933; [3] https://archive.ismrm.org/2013/0231.html 
 
 

P19



Power Pitch Session 1Power Pitch Session 1

140139 BIC-ISMRM 2024 Annual Meeting Nottingham 11th - 13th September 2024

 

 

Developing AI based methods for glioma segmentation across novel clinical contexts 
Gabriela Flores Lopez1, Dr. Matthew K Townend2,3, Dr. Hamied A Haroon1,3 

 
1The University of Manchester, Oxford Road, Manchester, M13 9PL, UK 
2King’s College London, Strand, London, WC2R 2LS, UK 
3AINOSTICS Limited, 3 Hardman Square, Spinningfields, Manchester, M3 3EB, UK 
 
Introduction: Gliomas are some of the most common supratentorial tumours of the central nervous 
system (CNS), which are classified through growth rate into high-grade gliomas (HGGs) and low-grade 
gliomas (LGGs) [1]. Convolutional neural networks (CNNs) are used to segment glioma subregions in 
preoperative magnetic resonance imaging (MRI) scans. These accurately label oedema, tumour 
necrosis and tumour growths, which are useful for successful resection [2]. In this study, we applied 
pre-trained weights from our CNN model to novel datasets using transfer learning (TL) to reproduce 
clinically accurate segmentations (overall dice score above 0.78) across post-operative scans in HGGs 
via a modified nnUNet model.[2]  
 
Methods:  We used a modified baseline nnUNet model (MBL-nnUNet), an out-of-the-box 
segmentation tool for subregional tumour labelling [1][2]. We initially trained on the Brain Tumour 
Segmentation (BrATS) challenge 2020 dataset, reducing the total amount of epochs (iterations over 
total amount of data) to 100 from the original 1000. We applied TL across two additional cohorts: the 
Rio-Hortega University Hospital (RHUH-GBM) for HGGs [4] and the TCGA-LGG (TCGA-LGG) dataset for 
LGGs [5]. Each model had two configurations, 2D and 3D, where predictions were finetuned on a 
subset of the data: pre-finetuned models were termed ‘Pre-MBL’, whereas post-finetuned models 
were named ‘Post-MBL’. Total training times for these models corresponded to 3.92 and 11.13 days, 
respectively.  
Results:  

1. MBL-2D(RH) and MBL-3D(RH) performance before and after finetuning 
Glioma subregional predictions were assessed for the RHUH-GBM group, with an initial mean DSC of 
0.489 for Pre-MBL2D(RH) and 0.491 for Pre-MBL3D(RH). Scans at three time points (pre-operative, 
post-operative and recurrence) were included for finetuning (n=8). We observed an increase in 
segmentation accuracy for overall mean DSC in both Post-MBL2D(RH) and Post-MBL3D(RH), with an 
overall accuracy of 0.783 and 0.795, respectively. Results for each subregional label with respect to 
ground truths (GTs) are reported in Table 1. 

Mean DSC  
Model configuration  Pre-fine-tuning: PRE-MBL2D(RH), 

PRE-MBL3D(RH)  
Post-fine-tuning POST-MBL2D(RH), 
POST-MBL3D(RH)  

WT  ET  TC  Mean  WT  ET  TC  Mean  
2D  0.439  0.433  0.596  0.489  0.854  0.686  0.763  0.783  
3D  0.451  0.423  0.600  0.491  0.834  0.734  0.793  0.795  
         

Table 1. MBL nnUNet accuracy before and after fine-tuning across the RHUH-GBM cohort. Results 
are presented through individual labels and overall accuracy as compared to ground truth (manual) 
segmentations). WT = Whole Tumour, ET = Enhancing Tumour, TC= Tumour Core (necrosis).  

2. Post-operative scans have analogous performance in Post-MBL2D(RH) and Post-MBL3D 
We assessed the performance in post-operative scans only for the RHUH dataset across finetuned 
models as compared to GTs. We found that neither performance on each subregional label nor 
overall DSC varied significantly across each model, as observed in Figure 1.  

 

 

 

non-offset coil are shown in Figs. 2 and 3. Both reflection and coupling coefficients were successfully 
tuned and matched to below -20dB and -15dB, respectively. The non-offset coil has a more uniform 
B1+ excitation field and higher B1+ average (1.50µT) across a midsagittal slice of 30mm depth compared 
to the offset coil, which has a B1+ average of 1.09µT (Fig. 4). Fig. 5 shows a more uniformly distributed 
SAR map in the non-offset coil compared to the offset coil, however the max SAR is also higher 
(0.86W/kg vs 0.45W/kg). 

   
Fig. 2. S-parameters of non-offset coil, plotted for reflection coefficients (left), nearest-neighbor 

coupling (middle), and next-nearest neighbor coupling (right). 

   
Fig. 3. S-parameter matrix for non-offset array, 

in dB. 
Fig. 4. B1+ maps of non-offset (left) and offset 

(right) arrays, scaled to a maximum of 3µT. 
Conclusions: FDTD EM simulations of a prospective dual-column 8Tx array for thoracic-lumbar spinal 
imaging yield improved B1+ field distribution compared to an existing design with an offset between 
the right and left columns. Developing a 4Tx cervical-thoracic spine (neck) coil to the 8Tx array using 
channel splitters in future work would provide a better picture of whole-spine imaging. 

  
Fig. 5. SAR maps of non-offset (left) and offset (right) arrays. 

References 
[1] Williams et al. (2023). Physics in Medicine and Biology, 68(2). 
[2] Padormo et al. (2016). NMR in Biomedicine, 29(9), 1145–1161. 
[3] Kraff et al. (2009). Invest. Radiol, 44(11), 734-740. 

Discussion: Initial results from the non-offset coil 
simulations are promising and improve upon the 
offset design. The high SAR can be mitigated by 
increasing the distance between the coil and the 
subject. 
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Figure 1. Post-MBL2D(RH) and Post-MBL3D(RH) 
performance in recurrence cases. Top row: RHUH 
post-operative FLAIR scan showing signal change due 
to a high-grade glioma. Second rows: GT 
segmentations across glioma subregions: WT, ET, and 
TC (colour-coded). Third and bottom rows: 2D and 3D 
predictions, respectively, after fine-tuning. (n=8) 

 

 
 
 
 
 
 
 
 
 
 

Discussion: We aimed to generate accurate subregional glioma segmentations using weights from a 
MBL trained model using TL. We used this model to produce subregional segmentations (whole 
tumour, enhancing tumour, and tumour core) across two patient cohorts, RHUH-GBM (n=40) and 
TCGA-LGG (n=69). The most accurate segmentations were obtained from the Post-MBL3D(RH) model, 
though we did not observe a statistically significant drop in performance for the Post-MBL2D(RH) 
predictions. Further, the Post-MBL3D(RH) model sustained accurate predictions across post-operative 
and recurrence scans with structural differences from resection to those in the training set [6]. 
Nevertheless, we found that the model accuracy decreased in Post-MBL2D(LGG) compared to that of 
Post-MBL2D(RH), which could be attributed to differences in labelling for both tumour subtypes. 
Conclusions: We aimed to show TL applied in subregional glioma segmentation across two novel 
clinical contexts for HGGs and LGGs. Our MBL nnUNet models produced subregional segmentations 
in a time-efficient manner by reducing the total number of epochs. This resulted in accurate 
subregional segmentations for the HGG group but was limited in the LGG group.  Further research 
could elaborate on improving accuracy in regional segmentation of LGG by curating a more 
representative training cohort. 
Acknowledgements: We thank AINOSTICS Limited for their support using their high-performance 
compute (HPC) cluster with high-spec GPU nodes. 
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Fig. 2. Overview of mesh sensitivity study; (a) 1D Displacement profiles of simulated phantom for 

varying mesh sizes at timepoint t = 86ms . (b) The RMS difference (compared to reference mesh) of 
simulated displacement profiles each mesh. 

 

 
Fig. 3. Wave image comparison between experimental study and simulation results for four phases 

of driving frequency at 60.1Hz driving frequency. 
Discussion: In this study, we examined the displacement data and frequency response of the MRE 
phantom under dynamic loading conditions using FEBio. Our mesh convergence analysis found that a 
mesh-size of ~48k elements should be sufficient for our simulations – and simulating 100 ms of 
transient behaviour took ~12 minutes on a 64-CPU compute node. The simulation model we have 
used so far is purely elastic and we would not expect this to accurately represent the viscoelastic 
behavior observed in biological tissues. The next step for our future work is to investigate how to 
incorporate realistic viscoelastic properties into our simulations. 
Conclusions: Our preliminary results demonstrate the capabilities of open-source software 
implementations to simulate a simple MR elastography experiment in a cylindrical phantom. We aim 
to develop this approach to allow deeper investigation into the optimisation of brain MRE in human 
subjects. 
Acknowledgements: Mehmet Nebi YILDIRIM's PhD study was funded by the Republic of Türkiye 
Ministry of National Education under the Study Abroad Scholarship Program. 
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Developing an Open-Source Framework for the Simulation of  
MR Elastography Experiments 
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Introduction: Magnetic Resonance Elastography (MRE) is a non-invasive quantitative medical imaging 
technique used to estimate tissue stiffness. The technique allows for the detailed assessment of tissue 
mechanical properties, providing valuable insights into liver disease, breast cancer, and neurological 
disorders such as Alzheimer's disease, multiple sclerosis, and traumatic brain injury [1]. Utilizing 
computational models and personalised simulations in MRE can offer valuable insights into the 
biomechanical properties of biological tissues in health and disease. Previous studies have shown that 
finite element (FE) modelling can be effectively utilized to develop and evaluate MRE, investigating 
the effects of material properties, excitation frequency, and boundary conditions on shear wave 
propagations [2, 3, 4]. In this work, we aim to develop an open-source approach for FE simulations of 
the tissue biomechanics that lead to the MRE contrast, allowing ourselves and others to test and 
compare different acquisition strategies as well as stiffness estimation techniques. 

 
Methods: For our initial simulation we investigated an 
elastic, homogeneous, nearly incompressible, and 
isotropic cylindrical model to create a simplified 
representation of tissue mechanics and to compare with 
real MRE data collected on a cylindrical phantom (CIRS 
Inc, VA, USA). The FE analysis for this study was conducted 
using the open-source package ‘FEBio’ [5], and using the 
GIBBON (Geometric Image-Based Bioengineering 
Network) toolbox in MATLAB to generate the mesh. In our 
FE analysis, we used tetrahedral (tet10) elements, which 
have 10-nodes and quadratic shape functions. The 
material properties of the phantom were characterized by 

a Young's modulus of 9kPa, a Poisson's ratio of 0.49 to ensure nearly incompressible behavior, and a 
density of 1000 kg/m³. Sinusoidal motions in the z-direction at 60.1 Hz with amplitude of 150 µm were 
applied to the nodes in the entire outer surface of the model to simulate the vibration used in MRE. 
The outer nodes were also fixed along X and Y, assuming the container to be rigid. A high-quality mesh 
is essential to achieve both high accuracy and computational efficiency in FE modelling.  To determine 
the appropriate mesh resolution necessary for obtaining accurate results, we conducted a mesh 
sensitivity study.For the experimental part of the study, the phantom underwent MRE acquisitions on 
a 3T MR scanner (Siemens Healthineers, Erlangen, Germany). We utilized a Resoundant MRE system 
(Resoundant Inc., USA) that generated mechanical vibrations at a frequency of 60.1 Hz, synchronized 
with the MRE sequence. The phantom was positioned within the MR head coil, with the passive driver 
placed on its top surface to transmit mechanical vibrations produced by the pneumatic active driver. 
Results: The displacement data show observable deformation patterns throughout the model. We 
plotted the resulting displacement values against different mesh sizes (Fig.2) to observe the effect of 
mesh refinement on the accuracy of the model. Our findings indicate that the mesh size converges at 
approximately 48,000 Solid Elements. At this convergence point, the displacement values stabilize, 
and further reductions in mesh size yield nearly negligible changes in the displacement values. The 
MRE wave images from both the FE simulation and experimental results at four phases of driving 
frequency, all conducted at 60.1 Hz, show good visual agreement in their depiction of the propagation 
of shear waves within the phantom (Fig.3).  

 
Fig. 1. Mesh view of 3D Cylindrical 

MRE phantom FE model. 
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Figure 1: (A) (i) 1H mDIXON image collected with the surface coil showing the skin phantom. Calibration 
of the reference tubes for 23Na images in (ii), (iii) and (iv) and associated histograms of signals in the 
reference tubes. Note the 30 mmol/L tube has been ignored due to shrinkage. (B) In-vivo data from an 
example healthy subject showing (i) 1H mDIXON image collected with the surface coil showing the skin 
layer and vasculature, (ii) 23Na image uncorrected, (iii) 23Na image following calibration using the 
reference tubes using simple sensitivity map, and (iv) 23Na image following calibration using the 
reference tubes using B1 map.  
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Validation of High Spatial Resolution 23Na Imaging of the Skin. 
Theodora Slater1, Ben Prestwich1, and Susan T Francis1 
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Introduction: The storage of sodium in the skin has been shown to be a physiologically important 
regulatory mechanism for blood pressure, volume regulation, with an increase shown with age and 
hypertension [1,2], as well as in patients with renal [3,4] and cardiovascular disease [5]. The capability 
to perform robust sodium quantification in the skin in vivo will enable testing of treatments aimed at 
reducing sodium content in skin. However, the skin layer is thin, <2 mm, making imaging with standard 
coils difficult. Here we develop a dual tuned 1H/23Na coil to image both sodium and water to study the 
skin at high spatial resolution, and test this on a ‘skin phantom’ and in healthy subjects to study sodium 
quantification. 
 

Methods: Acquisition: A dual tuned 1H/23Na surface coil was developed for high resolution imaging of 
the skin on a 3T Phillips Achieva scanner. Specific absorption rate (SAR) simulations and assessment 
of RF power deposition of the coil were performed to meet the safety requirements and assess the 
simulated sensitivity field. The surface coil was placed on a support with reference tubes of four 
sodium concentrations (15, 30, 45, 60 mmol/L) below. To establish the B1 field of the surface coil, B1 
maps were collected on a uniform phantom of 50 mmol/L sodium using a 3D gradient echo (GRE) 
scheme of 1.5 × 1.5 x 10 mm3 spatial resolution which collected images across a flip angle sweep 
(TE/TR = 2/100 ms, 0 – 140o in 10o steps, and 160 - 220 o in 20o steps).  
A ‘skin phantom’ was made comprising agar of approximately 3 mm thick and sodium concentration 
50 mmol/L to mimic skin tissue, with 25 mmol/L sodium to mimic muscle, and a layer of lard of varied 
thickness at its minimum 3 mm to represent subcutaneous fat. 23Na images were acquired on the skin 
phantom using a 3D GRE scheme of 1.5 × 1.5 x 10 mm3 spatial resolution, and 1H images were collected 
using a 3D T1-weighted scheme at 0.18 × 0.18 x 2 mm3.  
In-vivo data was collected on the calf of six participants (age 20–28 years) using matched 23Na and 1H 
protocols to those used on the ‘skin phantom’, in addition a 1H mDIXON scan was also collected to aid 
visualisation of the skin and vasculature.  Skin phantom and in vivo 23Na measures were also collected 
at spatial resolutions of 1 x 2.25 x 10 mm3 and 0.75 x 3 x 10 mm3 similar to that performed by Zhu et 
al. [6]. 
Analysis: The 23Na images were B1 corrected using both a sensitivity image and the B1 map from the 
multiple flip angle data. Data was converted to total sodium concentration (TSC) in mmol/L using a 
regression line computed across the reference tube 23Na concentrations. 
 

Results: Figure 1 shows example 23Na ‘skin phantom’ and in vivo images at each spatial resolution 
quantified using the B1 mapping correction. Applying B1 correction of the in vivo data led to skin 
sodium measures of 8-24 mmol/L across subjects from the 1.5 × 1.5 x 10 mm3 spatial resolution data.  
Collecting 23Na images at a higher in-plane resolution of 0.75 x 3 x 10 mm3 increased the measured 
sodium to 17-35 mmol/L. 
 

Discussion: This work has demonstrated that the ‘skin phantom’ is a useful tool to assess 
quantification of skin sodium, with B1 mapping improving estimation. Further work will be performed 
to produce a phantom with thinner skin layers. The dual tuned 1H/23Na surface coil provides high 
sensitivity within a range of 10 mm from its surface allowing spatial resolution imaging of human skin, 
enabling better separation of the skin’s 23Na signal than the volume birdcage coil. 
 

Conclusion: In future, segmentation of the 1H images into tissue types will be used to correct for partial 
volume effects. These methods will be applied to study changes in sodium levels in the skin across age 
and ethnicity, and the effects of disease such as hypertension. 
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Figure 1. (A) Hp 129Xe NMR spectra of oil and ZR45H-blue foams covered with oil at various 
mass percentages. (B) Hp129Xe uptake in oil covered foam samples as a function of √τex for 
various oil-foam mass percentages. Filled symbols (top three curves) show the uptake into 
the oil phase and open symbols (3 lowest curves) show the uptake into the polyurethane 
material. (C) Hp129Xe 2D-EXSY NMR spectrum of the foam/oil system for 𝜏𝜏𝑒𝑒𝑒𝑒 = 500𝑚𝑚𝑚𝑚. 

 
The highest RBC median value from the oil-free foams was measured with value of approx. 0.002 
which is close to the 0.003-0.004 range observed in healthy volunteers. M/Gas ratios are as expected, 
strongly dependent on the quantity of oil and the median value for the 36% oil sample of ~0.00065 
falls in range of what is expected for healthy volunteers. The M/RBC ratio of around 0.4 in the 36% oil 
sample is again very similar to that of human healthy volunteers and the 100% oil sample reflects 
quantitatively a M/RBC ratio reduction expected in severe fibrotic conditio

 
Discussion and conclusions: The current iteration of the developed phantom enables cost-effective 
training, easy setup, and rapid testing of experimental protocols without regulatory approval and 
governance. The devised system allows for gas handling protocols that match clinical protocols and  
reproduces signal ratios found in human lungs astonishingly well. Furthermore, the introduced 
concept shows a pathway for future development of a quantitative universal standard for dissolved 
phase pulmonary hp129Xe MRI that will require materials with longer shelf lifetime as the oil-foam 
system and that would benefit from a more defined microstructure. 

Figure 2. (A) Photograph of the 
hp129Xe dissolved phase 
phantom loaded with various 
foams separated by white Teflon 
spacers. L-tube loaded with 
polyurethane foam containing 
36% weight percent oil (bottom) 
and 100% oil (top) separated by 
spacer and free gas space at top. 
(B) The central slice of the 3D 1.5 
T MRI of the three phases as 
indicated. (C) extracted boxplots 
of intensity ratios. RBC/M of 30% 
oil resembles that of healthy 
volunteers. 
 

 

 

A Standardized MRI Phantom for Dissolved Phase 129Xe MRI. 

Max Filkins1,2, Arthur Harrison1,3,4, Guilhem J. Collier5, Graham Norquay5, Jim M. Wild5, Sean P. 
Rigby2, Galina E. Pavlovskaya1,3,4, Thomas Meersmann1,3,4. 
1Sir Peter Mansfield Imaging Centre, University of Nottingham, NG7 2RD, UK 
2Department of Chemical and Environmental Engineering, University of Nottingham, NG7 2RD 
3Translational Medical Science Unit, School of Medicine, University of Nottingham, NG7 2UH 
4NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals 
NHS Trust, Queen’s Medical Centre, Derby Road, Nottingham NG7 2UH, UK 
5POLARIS, Division of Clinical Medicine, School of Medicine and Population Health, Sheffield, UK 
 
Introduction: Pulmonary MRI of hyperpolarized xenon-129 (hp129Xe) dissolved in the lung parenchyma 
and vascular phase is gaining increasing attention for clinical assessment of gas exchange in multiple 
diseases. These conditions can involve thickening of barrier tissues due to fibrotic scarring or reduced 
capillary blood flow leading to diminished gas-blood exchange hence, the ratios between hp129Xe 
signals arising from the lung membrane (M), the red blood cells (RBC), and the gas phase hold 
significant diagnostic value. However, comparing hp129Xe signal ratios quantitatively across different 
studies poses significant challenges due to varied experimental conditions such as different field 
strengths, pulse sequence protocols and various, and specific the rf-coil design. Data from healthy 
volunteers does no not provide a good standard due to variabilities and the significant costs incurred 
due to the hp129Xe gas contrast agent usage and associated regulatory requirements. A solution to 
this problem arises from materials science applications of hp129Xe where xenon dissolved in materials 
such as polymers can display chemical shifts and hp129Xe uptake dynamics that are similar to that 
typically found in human lungs in health and disease. 
 
Methods: This work explores the generation of a dissolved phase 129Xe MRI phantom standard that 
reproduces MR spectral profiles, with respect to chemical shift and signal uptake ratios. The 
identification of suitable phantom materials followed a two-step process. Firstly, polymer foams and 
oils were investigated for their dissolved phase 129Xe chemical shift and uptake behaviour using a 
Bruker Avance III NMR spectrometer with a 9.4 Tesla vertical, clear-bore magnet (110.7 MHz 129Xe 
frequency). A home-built hyperpolarizer was used for spin exchange optical pumping (SEOP) of a 
5%:95% Xe:N2 gas mixture (26.4% 129Xe  natural abundance), producing a continuous flow of hp129Xe 
with a spin polarization of P = 12 %.  
In a second step, MR Images of suitable identified phantom materials were obtained with a clinical 
1.5T whole body MRI scanner (GE HDX13) and a transmit/receive vest coil (Clinical MR Solutions, 
Wisconsin, USA) resonating at 17.66 MHz. A commercial hyperpolarizer (Polarean 9800) was used to 
fill Tedlar® bags with 1L concentrated hp129Xe (92% isotopically enriched) with a hyperpolarization of 
P = 12 ±1 %.  This MRI protocol is identical to the one used previously for a multi-site clinical study.  
 
Results: At ambient temperatures, reticulated open cell polyurethane foam treated with olive oil as a 
fatty phase produce dissolved phase 129Xe chemical shifts of 215 ppm and 196 ppm, respectively, that 
emulate typical RBC and TP signals (Fig 1A). During short timescales, the hp129Xe uptake (Fig. 1B) into 
both the polymer and oil is governed by diffusion and follows a √t dependence. The 2D EXSY NMR 
spectroscopy (Fig. 1C) indicates the major mode of gas exchange is from the gas phase directly into 
the oil and polymer phases and exchange between the two dissolved hp129Xe phases is relatively small 
in comparison and will have little effect on the net build of both peaks.  
Hp129Xe MRI of dissolved phase phantom in 1.5T whole body scanner: The RBC/gas ratio difference 
between the various oil-free foams is much more pronounced than between the same foam with and 
without oil, as expected from polymer surface to gas volume ratio changed between foams and the 
hp129Xe NMR spectroscopic data.  
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Results: Nine participants (9 male; mean age ± SD: 39 years ± 13 years) were recruited. No 
statistically significant change in SNR was measured between measurements on days 14 and 
28 [SNRday 14 = 5.5 (± 3.4) and SNRday 28 = 10.4 (± 8.4), p=0.297] (Fig. 2). The mean in vivo 
elemental lithium content was 68 (± 48) μg per slice on Day 14, and 89 (± 70) μg on Day 28 
(Fig. 3). There was absent signal before supplementation and seven days after 
supplementation cessation (SNRday 0 = 1.4; SNRday 35 = 1.1). These were significantly lower than 
the SNRs measured during supplementation, with complete separation between the two 
groups (U = 0, p = 0.013).  

Discussion: The ability to directly and non-invasively quantify lithium content in its target 
organ holds potential utility as a research tool in a field where there is growing research 
interest in the therapeutic value of lower dose lithium. This study was able to detect very low 
brain lithium concentrations (in the range of ~10-100 uM) during lithium supplementation, 
with broadly constant concentrations between Days 14 and 28. Two individuals had notably 
higher 7Li-signal intensities (~2-4×) compared to other study participants (Participants 6 and 
9, Fig. 3), despite self-reporting good adherence to the dosage instructions. Future work will 
further explore these inter-individual differences in brain uptake, as well as the relative 
uptake and efficacy of different salt forms of lithium.  

Conclusions: In this study we have demonstrated the ability to detect the very low brain 7Li 
concentrations that arise from dietary supplementation with commercially available lithium 
orotate in healthy participants. This methodology affords the field with a novel approach to 
study lithium in its target organ, apposite for the study of low dose lithium administration in 
psychiatric and neurodegenerative disorders.  

References: 
1. Malhi, G.S., et al. Bipolar Disord., 2012. 14: p. 1-21. 
2. Rocha, N.K.R., et al. Front. Neurosci., 2020. 14: p. e579984. 
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Fig. 2: SNR measured in each of the 9 
participants on two MRI scan sessions. 

Fig. 1: Reconstructed voxel position and 
acquired 7Li-MRI signal in one representative 
participant. 

Fig. 3: Lithium content (ug) measured in each image slice on each of the two MRI scan sessions. 

7Li-MRI of the human brain following dietary supplementation with low-dose 
lithium 

Mary A. Neal1,2, Rebecca Strawbridge3, Victoria C. Wing2,4, David A. Cousins1,2,4, Peter E. 
Thelwall1,2 
1Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK 
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University, Newcastle upon Tyne, UK 
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Introduction: Lithium carbonate, typically prescribed as a 400-1200 mg daily dose in adults, is 
the first line treatment for patients with bipolar disorder [1]. Lithium possesses acute 
antimanic and antidepressant properties, however its mechanism of action is incompletely 
defined. Recent studies suggest lithium also has neuroprotective effects [2], where trials have 
demonstrated that lithium ingested at both moderate [3] and low [4] doses decreased the rate 
of cognitive decline in Alzheimer's disease, but it is not clear how these findings relate to brain 
lithium concentration in vivo. 
7Li has a favourable magnetic resonance (MR) sensitivity at 29.4% that of proton (1H), however, 
in vivo concentrations of 7Li at prescribed therapeutic levels are many thousandths of the 1H 
signal density in tissue, making detection by MR challenging. Nonetheless, 3D 7Li-MR images 
of lithium distribution in the brain of patients taking therapeutic doses for treatment of bipolar 
disorder have recently been published [5]. In recognition of a growing research interest in the 
potential therapeutic utility of lithium at lower doses, we sought to determine whether this 
acquisition can be adapted to detect brain lithium from very low-dose lithium orotate dietary 
supplements.  

Methods: Lithium orotate supplements (5 mg elemental lithium, ~2-7% of a typical 
therapeutic lithium dose) were taken daily by healthy adult male participants for up to 28 
days. 7Li-MR images were acquired on a clinical MRI scanner (Achieva 3T, Philips Medical 
Systems) interfaced to a dual-tuned 1H/7Li radiofrequency quadrature birdcage head coil 
(RAPID Biomedical) on two occasions: seven participants were scanned on days 14 and 28, 
one on days 0 (ie. pre-supplementation) and 14, and one on days 28 and 35 (ie. 1 week after 
supplementation cessation). A 1H structural brain image was acquired using a 3D 1H-TFE 
sequence with 2 mm isotropic resolution. A 7Li image was then acquired using a one-
dimensional balanced-steady state free precession (b-SSFP) acquisition sequence centred on 
the midbrain and oriented along the head-foot dimension (acquisition parameters: ‘2D b-
FFE’ with phase encoding then turned off, FOV = 600 mm, slice thickness = 37.5mm, 
acquisition resolution = 1x12x1 pixels, reconstructed resolution = 1x16x1 pixels, bandwidth = 
500Hz/pixel, TE/TR = 1.5/10ms, flip angle = 40o, averages = 276480, duration = 46 mins 5s) 
(Fig. 1). Mean signal was determined from the four neighbouring highest signal datapoints. 
Noise measurements were made from four neighbouring voxels outside the head. Signal-to-
noise ratio was measured as (𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) 𝑆𝑆𝑆𝑆(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)⁄ )√2 − (𝜋𝜋 2)⁄ . The Wilcoxon 
signed-rank test was used to test the significance of paired SNR change between Days 14 and 
28 and a two-tailed Mann-Whitney U Test was used to test the significance of difference 
between SNR measured at baseline and during supplementation. Data are presented as 
mean (±SD) throughout. Signal from a test object with physiologically representative 7Li T1, 
T2 and coil loading [6] was used to quantify human brain lithium content. 
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Conclusions: This study demonstrates the feasibility of applying the tailored time domain fitting algorithm, 
AMARES, to DMI data. Further understanding of the system and enhancements in the analysis pipeline are 
still required to minimize artefacts and leverage the advancements of using 7T MRI and optimized RF coils. 
Nonetheless, these have already yielded enhanced temporal and spatial resolutions. They hold significant 
potential for clinical and research applications, providing deeper insights into human brain metabolism and 
paving the way for future studies in both healthy and pathological conditions. 
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Fig1. Spectral grid map of a mid-transverse slice from a full 3D CSI 
dataset of a healthy brain at the final time point. The grid on the left 
overlays a localizer to demonstrate positioning. 
 
 
 
 

Fig2. Metabolite map over the time course of a mid-transverse slice from 
a full 3D CSI dataset of a healthy volunteer, showing signal dropouts 
predominantly in the brain's central region and in distinct patterns. 

 
 
 
Fig3. (A) Boundary region showing signal dropout in a healthy volunteer 
at the 37-minute time point, depicted in both the phase and amplitude 
maps for the glucose peak. Voxels of interest along the boundary are 
outlined in red, with corresponding spectra plotted. (B) Full spectrum 
displayed for one of the voxels outlined in (A), revealing a discernible 
wave pattern in the baseline. (C) Simulated data illustrating misfit 
spectra resulting from phasing errors.  
 
 
 
 
 

Fig4. (A) Free induction decay (FID) with AMARES model fit for an 
example voxel at the 37-minute time point in a healthy volunteer. 
(B) Residual plot showing non-random behaviour. (C) Spectrum 
plotted with the entire dataset in black (FID), and with only the 
latter half of the FID in magenta (endFID), both phase corrected.  

 
Fig5. (A) Free induction decay (FID) with AMARES model fit for 
an example voxel within a deuterium phantom. (B) Residual 
plot showing non-random behaviour. (C) Spectrum plotted 
with the entire dataset in black (FID), and with only the latter 
half of the FID in magenta (endFID), both phase corrected 
(+ph). 

(A)
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Fitting for 7T Deuterium Metabolic Imaging (DMI) 
Masha Novoselova1, Jabrane Karkouri1, Christopher T. Rodgers,1 
1Department of Clinical Neurosciences, University of Cambridge 
 
Introduction: Deuterium metabolic imaging (DMI) is an MR technique designed to investigate human brain 
metabolism in vivo. Participants drink 0.75g/kg body weight of deuterated glucose (Glc) in solution. DMI 
enables non-invasive monitoring of Glc uptake and its subsequent metabolism. In the brain, signals are seen 
from semi-labelled water (HDO), glutamine/glutamate (Glx), lactate (Lac) and potentially lipids near the skull. 
These can be analysed quantitatively providing a radiation-free alternative/complement to ¹⁸FDG-PET. This 
has potential applications in oncology and dementia. In a pilot study [1], we applied DMI in 6 healthy 
volunteers and a phantom. This abstract describes our work to develop a robust pipeline for analysis of 7T 
DMI data in readiness for planned clinical studies. 
Methods: Data was acquired using a 7T Terra MRI (Siemens) and an 18-element ²H/2-element ¹H dual-tuned 
receive array head coil (Virtumed LLC). The protocol was as follows. Baseline: Six healthy volunteers were 
instructed to fast for four hours prior to scanning. Baseline scans were performed to capture the natural 
abundance HDO signal as an internal reference before the consumption of the glucose tracer. The baseline 
scan included localizers, B0 shimming, GRE structural imaging, and a 6.9mL resolution DMI scan (3D CSI, 
16x16x8 matrix, 220x200x320mm³ field of view, acquisition weighting with six averages at k=0, 250ms TR, 
1ms hard pulse at Ernst angle (66°), 5kHz readout bandwidth, 4m59s scan time). Glucose Consumption: 
Subjects were moved out of the scanner and instructed to sit up to drink 0.75g/kg body weight (maximum 
60g) of 6,6’-[²H₂]-glucose dissolved in approximately 200mL of sterile water. DMI Time-Series: After 
consuming the glucose solution, subjects were repositioned in the scanner. B0 shimming and structural 
imaging were repeated. Two DMI scans were conducted back-to-back to track any rapid deuterium uptake, 
followed by six additional DMI scans at 20-minute intervals.  
Analysis: Spectra were processed using the OXSA Toolbox [2]. The first step involved combining the spectra 
using WSVD to improve the signal-to-noise ratio. Afterwards, PCA patch denoising was applied [3]. The 
denoised spectra were then analysed using AMARES [4], incorporating an updated prior knowledge file 
tailored to the deuterated species.  

𝑦𝑦𝑛𝑛 = ∑ 𝑎𝑎𝑘𝑘𝑒𝑒𝑗𝑗𝜙𝜙𝑘𝑘𝑒𝑒(−𝑑𝑑𝑘𝑘+𝑗𝑗2𝜋𝜋𝑓𝑓𝑘𝑘)𝑡𝑡𝑛𝑛 + 𝑒𝑒𝑛𝑛

𝐾𝐾

𝑘𝑘=1
 

AMARES is a time-domain fitting algorithm that models the measured MR signal, 𝑦𝑦𝑛𝑛, as a sum of 
exponentially damped sinusoids to fit N collected data points. Each 𝑘𝑘th sinusoid corresponds to a different 
metabolite peak in the spectrum once it undergoes a Fourier transform and has a specific amplitude, 𝑎𝑎𝑘𝑘, 
phase, 𝜙𝜙𝑘𝑘, frequency, 𝑓𝑓𝑘𝑘, and damping factor, 𝑑𝑑𝑘𝑘. 𝑡𝑡𝑛𝑛  is defined as the time from the application of the 
radiofrequency pulse to the collection of the last sampled data point and 𝑒𝑒𝑛𝑛 is complex white gaussian noise. 
Results & Discussion: Results shown are from a single example subject. For each voxel, a spectrum is 
generated (Fig1) and repeated over the time series. By extracting spectral properties such as amplitudes or 
phases, maps of deuterated glucose uptake and the production of downstream metabolites can be produced 
(Fig2). The fits, shown in red, generally agree with the data, but certain dropout regions in the amplitude 
maps deviate from expected trends in healthy volunteers. These regions revealed phase shifts creating 
visible boundaries, and a wave pattern in the baseline. Data was simulated to demonstrate how this phase 
shift can affect the resulting fit, as AMARES may mis-apportion one real signal into two peaks (Fig3). 
Unexpected lactate levels at the beginning of acquisition suggest erroneous fits, potentially due to digital 
filtering artefacts evidenced by an upward tail at the end of the free induction decays (FIDs). Residuals of the 
FIDs relative to AMARES fits showed non-random behaviour, particularly at the dataset's start. To address 
this, a spectrum using only the second half of the FID was plotted (Fig4), offering clearer insights. A phantom 
containing of D2O, d-DMSO, and d-sodium fumarate was tested under the same conditions (Fig5). The higher 
signal-to-noise ratio revealed an oscillating pattern in the residuals, suggesting a long T2 component possibly 
related to deuterium being a spin-1 nucleus, contributing to mis-fitting. This could also be attributed to the 
behaviour seen in the human data. 
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estimation of fractional signal variation due to 
positioning errors. OXSA-AMARES [3] was used to fit 
each voxel to a model incorporating water and fat 
peaks; in the calf, the water signal was modelled as 
a doublet (due to quadrupolar splitting) [4]. To 
produce single measures of signal enhancement 
with reduced sensitivity to FOV-positioning, we 
averaged fat and water signal amplitudes over 
regions-of-interest (ROI=3x3x3/3x5x3 voxels for the 
calf/abdomen) sited relative to the voxel with 
maximum water signal (i.e., over the centre of the 
surface coil). Examples of this are shown in Figure 1.  
Results 
A fat peak is seen in superficial voxels spanning 
subcutaneous fat close to the surface coil in the NA 
images in Figure 1, along with a water peak which 
appears over a wider spatial extent and is 
broadened by quadrupolar splitting in calf muscle.  
A robust fit to the fat signal could only be achieved 
at times >50 days, when the water signal had fallen 
to <10xNA. Figure 2 shows the temporal variation 
of the ROI-averaged fat and water signals. Although 
the fat signal shows significant early enhancement 
(t < 50 days) this tracks the water enhancement 
and is likely due to poor spectral fitting. The 
average fat signal enhancement at times > 50 days 
where fitting was robust is reported in Table 1.  
Discussion 
Fat signal was increased relative to NA in 5 of the 6 
measurements and the increase reached statistical 
significance (P<0.05) in three measurements 
(Figure 3). These results provide encouraging 
evidence that 2H MR can be used to detect the 
increased deuteration of subcutaneous fat 
resulting from lipid turn-over during long-term 
heavy water loading. The main experimental 
challenges were in quantifying 2H signals from fat in 
the presence of large water signals and in 

reproducibly positioning the surface RF coils in repeated experiments. In future work higher field 
could be used to provide better spectral separation of fat and water signals and 3D-printed, 
individualised coil holders would allow more reproducible coil positioning. 
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Figure 2. The temporal variation of the 
averaged water/fat amplitudes (left/right) 
in the abdomen/calf (top/bottom). The 
black line indicates the end of the 28-day 
loading period. The green box indicates 
data acquired at t < 50 days.  Error bars 
derived from the relative error measured 
from repeated experiments at NA. 

Table 1 . Average and standard errors of the 
fat signal enhancement relative to NA. P-
values for single-sided t-test for difference 
from NA are also reported. 

Measuring lipid turnover in human subjects using 2H magnetic resonance and heavy water 
loading 

Daniel J. Cocking1,2, Robin A. Damion1,3,4, Matthew S. Brook4,5,6, Dorothee P. Auer1,3,4, Richard 
Bowtell1,2,4 
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Introduction 
Heavy water (D2O) loading over long periods has 
become a valuable technique for assessing fat 
turnover [1] and hepatic lipogenesis [2]. This 
involves measuring the incorporation of 
deuterium (2H) from heavy water into the 
glycerol moiety and fatty acid chains of 
triglycerides during lipid formation. A typical  
approach requires invasive tissue sampling [1,] 
which restricts the range of tissue sites that can 
be sampled and causes patient discomfort. Here 
we evaluate whether 2H MR in conjunction with 
D2O loading could be used for non-invasive 
monitoring of lipid turnover in human subjects. 
Methods 
2H signals were measured from the calf and 
abdomen in three healthy participants who 
underwent 28 days of heavy water loading.  
Scans were performed on a 3T scanner (Philips 
Achieva) equipped with 2H surface coils (5 cm 
diameter for calf; 12 cm for abdomen). 
Measurements were made before loading, to 
characterise natural abundance (NA) signals, and 
then every ~14 days during/after loading for a 
further 8 sessions.  Anatomical landmarks were used to position the coils over the same region for 
each scan (under the calf/adjacent to the right abdomen near the liver). 1H gradient echo images 
were used for planning 3D-2H-CSI measurements (parameters for calf/abdomen 
FOV:150x150x200/140x140x200 mm3; voxel size:15x15x20/20x20x20 mm3; BW:2000 Hz, TE:1.7 ms; 
Samples:64, Averages:36/48, Tscan:520/420 s). A TR of 50 or 70 ms was used to maximise the signal-
to-noise ratio of the signal from fat whose T1 is ~60 ms (c.f. ~200 ms for muscle water). Before 
loading started, subjects were scanned multiple times with inter-scan repositioning to allow 

Figure 1. 3D CSI spectra plus fits in the calf 
and abdomen, overlaid on 1H GE images. Data 
was acquired from Subject 1 at NA before 
loading (t=0 days); ROI for signal averaging 
for water (blue) and fat (orange), are shown. 
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Discussion: Whereas previous work [4, 5] assumed a 
uniform 129Xe RBC oscillation phase, here we implemented 
a SW to perform many keyhole reconstructions over one 
cardiac cycle to both adjust for, and estimate, oscillation 
phase. Regional phase differences may be caused by 
effects of the cardiac pulse wave, such as variations in 
blood flow velocity with vessel stiffness/compliance. 
Although mean 𝛼𝛼k0 for the CTEPH group was similar to 
that of the healthy group, the oscillation and phase maps 
revealed significant heterogeneity. This may imply a 
haemodynamic response to impedance to flow from 
vascular thrombi and/or microvascular damage. A 
limitation of our method is the requirement for high SNR 
RBC images and clear signal oscillations, which could limit 
its application in diseases with low RBC transfer. 

Conclusions: Sliding window keyhole 
reconstruction of radial dissolved 
129Xe imaging reveals regional phase 
differences in the RBC oscillations 
which are not captured when 
performing Two-Key keyhole 
reconstruction. This regional phase 
information may reflect the 
hemodynamic effect of the cardiac 
pulse wave in the pulmonary 
microvasculature and shows 
potential sensitivity to disease. 
Acknowledgements: Dr Laura 
Saunders, Discovery Medicine North 
(DiMeN) Doctoral Training 
Partnership and the MRC. 
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 Healthy CTEPH p-value 
n (female) 28 (12) 4 (0) - 
Age (years) 38.8 ± 11.1 63.0 ± 7.3 0.0036* 
𝛼𝛼k0 (%) 15 (10-27) 15 ± 5 0.8047 

𝛼𝛼2−Key (%) 14 ± 3 10 ± 3 0.0286* 
𝛼𝛼SW (%) 29 ± 3 33 ± 4 0.0541 
ϕ (rad) 0.27 ± 0.19 0.24 ± 0.13 0.8416 
CV2-Key 1.4 ± 0.3 2.9 ± 0.9 0.0001* 
CVSW 0.66 ± 0.06 0.76 ± 0.01 0.0039* 
CVφ 0.85 ± 0.05 0.92 ±0.03 0.0134* 

Figure 2: α2-Key, φ and αSW maps for (A), 
a healthy participant and (B), a 
participant with CTEPH. 

Table 1: Subject demographics and α mapping results. 
Differences between the groups were assessed with Wilcoxon 
rank sum tests. * indicates a significant (<0.05) p-value. 

 

 

Mapping the amplitude and phase of dissolved 129Xe red blood cell signal oscillations with 
keyhole spectroscopic lung imaging 
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Introduction: The signal from hyperpolarised 129Xe dissolved in the red blood cells (RBCs) is modulated 
by changes in the capillary blood volume over the cardiac cycle [1, 2]. These “oscillations” are sensitive 
to cardiopulmonary disease [3] and can be mapped regionally using a post-acquisition keyhole 
reconstruction [4, 5]. In this work, we employ a sliding window (SW) approach to reconstruct 
additional keyhole projections and estimate and correct for regional oscillation phase (φ).  We apply 
this method to a small group of patients with chronic thromboembolic pulmonary hypertension 
(CTEPH), a disease with blood flow limitation due to vascular occlusion following pulmonary embolism. 
Methods: RBC oscillation mapping was performed retrospectively in a cohort of 28 healthy volunteers 
and four CTEPH patients. 129Xe gas transfer was measured with a 3D radial spectroscopic imaging 
sequence [6] on a 1.5T GE scanner using a 129Xe transmit-receive vest coil and a 0.8–1L dose of 
hyperpolarised 129Xe [7]. Eight healthy subjects underwent three additional scans to assess inter- and 
intra-exam repeatability. The whole-lung RBC oscillation amplitude (αk0) was found from the mean 
peak-to-peak amplitude of the decay-corrected, filtered RBC signal from the centre of k-space over 
the first ~7s of the acquisition. Two keyhole [8] methods were used to perform oscillation mapping: 
1. Two-Key [4]: the k0 data were 
binned according to RBC signal 
amplitude (Fig. 1A) and images were 
reconstructed from the radial spokes 
in “low” and “high” bins (Fig. 1B). The 
oscillation amplitude (α2-Key) was 
found from the difference between 
the resulting “low” and “high” keyhole 
images, normalised by their mean. 
2. SW: multiple keyhole 
reconstructions were performed, with 
the key projections stepped forward 
by one projection per reconstruction 
(Fig. 1C). The oscillation amplitude 
(αSW) was calculated from the 
pixelwise difference between the 
minimum (Smin) and maximum (Smax) 
signal across the N keyhole images, 
normalised by the mean value. φ was estimated by converting the keyhole indices of Smax to phase 
relative to the whole-lung k0 oscillation. 
Results: Subject demographics and oscillation mapping results are shown in Table 1. RBC maps were 
successfully reconstructed for each phase of the SW, revealing regional variation in both oscillation 
phase and amplitude (Fig. 2). The α2-Key maps exhibited areas of physiologically unrealistic negative 
amplitudes, which qualitatively correlated with regions of increased φ and became positive in the αSW 
maps. The oscillation amplitude and phase maps were more heterogeneous (i.e. showed increased 
coefficient of variation, CV) for the CTEPH patients. αSW was repeatable and had a lower 3-scan CV 
(0.07 ± 0.04) than αk0 (0.11 ± 0.04) or α2-Key (0.16 ± 0.05).  

Fig. 1: (A) Radial projections chosen for the high and low 
keyholes. (B) 3D radial k-space: in keyhole reconstruction, 
the high-frequency data (blue) are included from all radial 
projections, but the low frequency data are only included for 
projections that have been selected for the key (yellow or 
purple). (C) The projections selected by the SW for the 1st, 2nd 
and φ = π keyhole reconstructions. 
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Figures  
Figure 1: Experimental set-up to achieve a 
controlled change in sodium concentration in 
the phantom over a 14-minute duration by 
infusing 400 mmol/L saline solution into the 
phantom and stirring throughout to achieve a 
homogenous solution.  
 
 
 
 
Figure 2: Images time series of the mean 
sodium concentration and spatial variance 
from within the phantom during infusion of 
sodium as the 23Na concentration increases 
from 20 mmol/L to 30 mmol/L over 14 mins. 
23Na images collected every 4.4s shown for A) 
raw data before NORDIC and B) after NORDIC. 
Also shown are enlarged images at the start 
(nominal 20 mmol/L) and end (nominal 30 
mmol/L) of infusion. C) Timeseries of the 
signal from the phantom and variance within 
the phantom for raw data and data after 
NORDIC correction using average bottle 
calibration. 
Figure 3: A) Timecourse of the mean 23Na 
concentration measured in the phantom 
during the infusion. This is the computed 
dynamic-by-dynamic 23Na concentration 
calibration using the reference bottles and 
applied to the phantom. Note, the raw data 
has large variance, which is reduced with 
applying a moving average. Using NORDIC 
dynamic-by-dynamic bottle calibration is 
possible with, the lowest variance for the 
moving average with NORDIC. See Table for 
R2 and RMSE metrics. B) Example images at 
start and end of the infusion.  

 
 
 Figure 4: Timecourse of 23Na signal in small 
bottle located at the centre of a large in a large 
phantom. The measured 23Na signal is compared 
to the ground truth. The signal in the large 
compartment and reference tubes positioned 
above remained constant.  
 
 
 
 
Figure 5: A) In-vivo raw running average 
timeseries of change in sodium in the 
gastrocnemius muscle in response to exercise. B) 
1H mDIXON image showing gastrocnemius ROI 
and 23Na images binned over exercise (0:88- 
5:52mins) and recovery (24:56-30:28mins) 
periods. C) NORDIC corrected high temporal 
resolution timeseries showing the change in 
peak sodium on exercise. B) Timeseries of raw 
23MRI calf images collected data before and C) 
after NORDIC. 
 

Using NORDIC with 23Na MRI to study dynamic changes in tissue sodium concentration 
Ben Prestwich1, Rosemary Nicholas1, Daniel Marsh1 and Susan T Francis1 

1Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, United Kingdom 
 

Introduction 
Sodium (23Na) MRI has intrinsically low signal‐to‐noise‐ratio (SNR) due to the low 23Na ion concentration in vivo (15–30 mol/L 
muscle), short relaxation times, and the gyromagnetic ratio being ~ 4 x lower than for 1H [1]. This results in the need for long scan 
times (~10–20 min) and large voxel sizes (e.g. 4 mm isotropic) compared to 1H-MRI and means that any study of dynamic changes 
in 23Na in-vivo is challenging. Recently, the NOise Reduction with DIstribution Corrected (NORDIC) PCA denoising method using 
local low rank principal component analysis was published and shown to provide impressive improvements in image SNR for 
neuroimaging data, e.g. for high spatial resolution Diffusion Tensor Imaging (DTI) [2] and temporal SNR for functional MRI [3] data. 
NORDIC enables higher spatial and temporal resolution data, particularly benefitting data in the thermal noise dominated regime.  
Here, we assess NORDIC denoising for non-proton 23Na MRI data, with the goal of applying this to study dynamic 23Na changes in-
vivo, as an example the change in sodium in the muscle on exercise.  
Methods 
Phantom data has been collected for validation of measuring dynamic 23Na changes, as well as the in-vivo in response to exercise: 
Data Acquisition: All MRI data was collected on a 3T Philips Ingenia scanner, using a 23Na birdcage leg coil (PulseTeq Ltd) to acquire 
23Na MRI scans, and the Q-body coil to collect 1H measures. 23Na MRI data were acquired using a 3D GRE short TR sequence 
(3x3x30mm3, 10 slices, TE/TR=1.26/13ms, FA=46o) for a high sampling rate (4.4s per acquisition) For each scan a final noise image 
was collected with no RF and no gradients. For all acquisitions the ‘SNR Maxima’ and ‘SNR clip factor’ were set to 100 and 0.01 
respectively to improve the data’s dynamic range, both magnitude and phase data were saved. 
Phantom validation: To assess the accuracy of quantifying the change in 23Na concentration dynamically, data was collected of a 
120 mm diameter cylindrical phantom, this was filled with an initial concentration of 20mmol/L. A 50ml 400mmol/L NaCl solution 
was added at a rate of 250ml/hr to the phantom using an MR compatible infusion pump. This increased the sodium concentration 
in the phantom to 30mmol/L in 12-minutes with a stirrer mounted in the phantom ensuring mixing of the sodium solution through 
the infusion period (Figure 1). During the infusion 23Na MRI was continuous acquired. An second phantom experiment was 
performed, for this, the phantom consisted of a small bottle situated inside a larger container, and the 23Na signal of the small 
bottle was changed dynamically by changing the shielding while 23Na MRI was continuous acquired. 
In-vivo data collection: 23Na MRI of the calf muscle was collected in 5 volunteers whilst they performed plantar flexion using an 
MRI-compatible ergometer (Trispect, Ergospect, Innsbruck Austria), Figure 4. First 1H mDIXON scans were acquired to image the 
calf. A 43-minute protocol was then performed during which baseline data was collected for 13 minutes, following by repeated 
plantar flexion exercise at 50% of maximum voluntary contraction for 3.5-minutes, followed by 30-minutes recovery. 
Data analysis: Data analysis was carried out in MATLAB. NORDIC was performed on the MRI data. Linear regression of the 
reference bottles (10, 20, 30, 40 mmol/L) to convert voxel intensity to 23Na concentration, mmol/L was performed and applied to 
the phantom/calf (correction performed both using an average image and dynamically). An ROI was placed in the phantom and in 
the gastrocnemius muscle in the calf and the mean and variance in each region was measured.       
 

Results 
Figure 2 shows the timecourse of the mean signal and spatial variance within the phantom during the infusion. Figure 3 shows the 
timecourse of the mean sodium concentration measured in the phantom during infusion when performing dynamic-by-dynamic 
sodium concentration calibration using the reference bottles. Note, the large variance for raw data, whilst applying NORDIC 
provides high R2 and low root-mean-square-error, particularly using a running average (over 44s). Figure 4 shows the time course 
of the 23Na signal in the small bottle. Figure 5 shows in-vivo raw and NORDIC corrected 23Na MRI calf data collected before, during 
and after exercise. The time course over the gastrocnemius, during exercise (0:88- 5:52mins) and recovery (24:56-30:28 mins) and 
the high temporal resolution timecourse of the NORDIC data to study dynamically the sodium change in the muscle. 
 

Discussion 
This work demonstrates the NORDIC denoising gains for 23Na MRI which is in the low SNR regime dominated by thermal noise. We 
validate on a phantom that it is possible to dynamically quantify sodium concentration by applying NORDIC denoising, and that 
this can be used to study in vivo the spatial and temporal changes in muscle sodium on exercise.  
 

Conclusion 
NORDIC can be used to correct low SNR 23Na MRI data to study spatially localised sodium changes in muscle dynamically. This 
methodology could in future also be applied to 23Na functional MRI brain studies.   
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Fig 1. Example voxel positioning (A-C), spectra (D-F), residuals (G-I) and TARQUIN model fits for total 
creatine (J-L), in the midbrain (A, D, G, J), visual cortex (B, E, H, K) and frontal cortex (C, F, I, L). 
Metabolites shown include tCr = total creatine; MI = myo-inositol; Ch = choline; Glx = glutamate-
glutamine complex; NAA = N-acetylaspartate 

Reliability and repeatability of total creatine measurements in multiple human brain regions 
using 1H-MR spectroscopy 

Jedd Pratt1, James McStravick1, Aneurin Kennerley1, Craig Sale1 

1Department of Sport and Exercise Sciences, Manchester Metropolitan University Institute of Sport, 
Manchester, United Kingdom 

Introduction: Creatine (Cr) serves an important role in supporting brain energetics, particularly in 
metabolically demanding scenarios, such as sleep deprivation, mild traumatic brain injury, neurological 
disease, and ageing [1]. Although existing literature is scarce, emerging data suggest that increasing 
brain creatine concentrations may improve cognitive function during these periods [2]. As brain Cr 
dynamics gain further interest, proton magnetic resonance spectroscopy (1H-MRS) will become 
increasingly used to quantify total creatine (tCr) concentrations. More consideration should be given, 
however, to the inherent sources of error in 1H-MRS, and their effect on the reliability of repeated 
measurements, prior to experimental investigation. This need is driven by large margins of error (up 
to 20%) in repeated 1H-MRS measurements of tCr reported to date [3-5]. Accordingly, we assessed the 
intra- and inter-session reliability and repeatability of 1H-MRS for determining tCr concentrations in 
multiple brain regions (midbrain: MB; visual cortex: VC; frontal cortex FC). 

Methods: Eighteen healthy adults aged between 20 and 32 years (mean age = 25 ± 3years; 50% female) 
were recruited [n=14 intra-session protocol; n=15 inter-session protocol (11 participants completed 
both)]. MR imaging and 1H-MRS (utilising PRESS) were conducted on a Siemens MAGNETOM Vida at 3 
Tesla (T) with a 20-channel head coil. For intra-session analyses, repeated measurements of the MB, 
VC and FC were taken without removing the participant from the scanner. For inter-session analyses, 
repeated measurements were taken from the same regions, but with a brief break between 
measurements where the participant was removed / repositioned on the scanner, new localisers and 
structural scans were taken, and voxels were repositioned. 1H-MRS data were analysed using TARQUIN, 
using water unsuppressed data to quantify absolute tCr concentrations. Voxel fractions of 
cerebrospinal fluid (CSF), grey matter (GM) and white matter (WM) were calculated using 
segmentation. Statistical analyses included paired t-tests, minimum detectable change (MDC), 
Pearson’s correlation coefficient (r), coefficient of variation (CV) and intra-class correlation coefficient 
(ICC). Bland-Altman plots allowed for a visual assessment of the data. 

Results: 174 spectra were acquired, including 84 from intra-session analyses and 90 from inter-session 
analyses (example voxel positioning, spectra, residuals and model fit presented in Figure 1). Voxel 
fractions of CSF, GM and WM did not correlate with differences in repeated measures of tCr 
concentration, thus no corrections were performed. No significant differences were observed in tCr 
concentration between repeated intra- or inter-session measurements in any brain region (mean 
differences=0.1-1.2%). Depending on region, intra-session r values ranged between 0.909-0.985 (all 
p<0.001), and inter-session r values ranged between 0.836-0.858 (all p<0.001). No trends in 
measurement bias were shown for any region. For the MB, VC and FC, intra-session CVs were 1.7%, 
0.8% and 2.1%, ICCs were 0.903 (95%CI=0.727-0.968), 0.979 (95%CI=0.935-0.993) and 0.921 
(95%CI=0.772-0.974) (all p<0.001), and MDCs were 1.2%, 0.6% and 1.5%, while inter-session CVs were 
2.7%, 1.7% and 2.7%, ICCs were 0.835 (95%CI=0.578-0.941), 0.854 (95%CI=0.619-0.948) and 0.847 
(95%CI=0.603–0.946) (all p<0.001), and MDCs were 1.9%, 1.2% and 1.9%. Inter-regional differences of 
up to ~21% in tCr concentration were shown.  

Conclusions: Absolute tCr concentrations can be reliably and repeatably determined using 1H-MRS at 
3T, when inherent sources of error are suitably managed. Differences in tCr concentration larger than 
2% may be discernible from inherent 1H-MRS measurement error, although this margin should be 
established in a centre-specific manner. Future studies are required to establish whether similar 
findings are observed when other analyses packages are used, and when other populations of interest 
(e.g., people suffering from neurological disease or movement disorder) are examined. 
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Discussion 
Compound B complexed with terbium (III) and dysprosium (III) at the metal centre are characteristic 
of a PARAshift contrast agent, with dysprosium (III) exhibiting a larger shift than terbium (III). The 
terbium (III) complex has also shown a distinct change in shift when varying the temperature. Both 
compounds may be utilised to provide independent and specific signals, in addition to the standard 
water signals observed in MRI. Although the shift is adequate, modifying the compound may 
promote a larger shift by, for example, reducing the distance between the proton reporter group and 
the metal centre. However, the compound does not show promise to alter in pH within the expected 
biological range (6-7.5). This highlights the need to modify the compound with an alternative pH 
moiety and/or adapt the molecular design to adjust the amide pKa value. Complexation with other 
lanthanide (III) ions are ongoing and may provide improved properties. 
 
Conclusion 
Overall, we aim to optimise the aforementioned PARAshift agents to detect changes in 
pH/temperature. Once successful, we will test these compounds biologically using in-vitro/in-vivo 
models of ABI and pre-clinical MRI. This will allow us to track changes in progression of pathology 
and evaluate effectiveness of candidate therapeutic interventions. 
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Figure 2 Paramagnetic 1H NMRs of compound B complexed with terbium (III) (a) and dysprosium (III) (b). The compound 
was immersed in the solvent D20. Both spectra were collated at pH 7 and 298K using the Bruker NMR Spectrometer DRX- 
500 MHz (11.7 T. )  

Evaluating the potential of PARAshift contrast agents to image biomarkers for acquired brain 
injury (ABI) 
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Introduction  
Acquired brain injury (ABI), an umbrella term that encompasses stroke and traumatic brain injury 
(TBI) (1), can result in significant fatalities and disabilities. There is a need to increase our 
understanding of the pathophysiology of ABI, to aid more accurate and timely diagnosis. ABI initiates 
a pathophysiological cascade involving, but not limited to, excitotoxicity, axon degeneration and 
apoptotic cell death, resulting in cerebral acidosis. This, in turn, induces changes in temperature and 
pH (2,3), two physiological outputs which are potential biomarkers for ABI. This project will develop 
targeted PARAshift magnetic resonance imaging (MRI) contrast agents to image changes in pH and 
temperature during ABI. PARAshift agents incorporate paramagnetic metal ions that produce rapidly 
relaxing, highly shifted resonances that can directly be imaged (4). PARAshift contrast agents are 
intrinsically temperature sensitive, and we aim to modify the compound(s) to provide pH sensitivity. 
This approach will allow us to multichannel image temperature, pH, and anatomy, providing detailed 
visualisation of pathology. 
 
Methods 
Two pH-sensitive PARAshift compounds were designed and synthesised with varying lanthanides to 
determine which lanthanide provided optimal resonance frequency (figure 1). Here, a reporting tert-
butyl resonance and an amide group were integrated to provide pH sensitivity. This was attached to 
the cyclen based macrocycle structure 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid (DO3A). 
The varying lanthanide (III) ions were later complexed within the compound. A paramagnetic proton 
nuclear magnetic resonance spectroscopy (1H NMR) was first conducted at pH 7 and temperature of 
298 Kelvin (K). The compounds were later immersed in D20 at varying pH’s within a biologically 
relevant range (pH 5-8), and paramagnetic1H NMRs were collected. Temperature paramagnetic 1H 
NMRs were taken of compound B complexed with terbium (III), where the compound was immersed 
in D20 and subjected to temperatures from 303K-315K. All 1H NMRs were conducted using the Bruker 
NMR Spectrometer DRX- 500 MHz (11.7 T). The resonance was expected to shift to a region of the 1H 
NMR paramagnetic spectral window away from the standard region observed from 0–12 ppm. 
 
Results  
Compound A did not show a shift away for the standard region but there was a chemical shift in the 
desired region when compound B was complexed with terbium (III) and dysprosium (III) (figure 2). 
The compound presented in B complexed with terbium (III), exhibited a shift of -6 ppm (figure 2a) 
and when complexed with dysprosium (III), a shift of -20 ppm was observed (figure 2b). The terbium 
complex has also shown to shift in resonance when varying the temperature of the compound, 
exhibiting a shift of 0.13 ppm/K. However, a significant shift was not observed when altering the pH 
of the compound.  
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Figure 1 Compounds synthesised (A) and (B), each compound was complexed with terbium (III) (Tb) and 
dysprosium (III) (Dy) 
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fringe lines that propagate into the extrapolated φ0 (pink arrow Fig. 1b), and from Moire interference 
of aliasing artifacts [13] (green arrow Fig. 1b). The open-ended fringe lines appear in the lower part of 
the brain, where slice-to-slice inconsistencies also appear more pronounced. 
Therefore, we removed a lower section of the brain from φ0 in every volume. The difference between 
median σ reconstructed from the full and cropped φ0  (Fig. 2) shows that artifacts in σ propagate 
upwards towards the middle of the brain but did not affect the upper part of the brain. The width of 
this difference was consistent across subjects and similar to the 20-voxel radius of the integral kernel. 
Conductivity distributions from the cropped φ0 for each subject in cerebrospinal fluid (CSF), gray 
matter (GM), and white matter (WM) are displayed in Fig. 3 with negative conductivity values and 
those > 1.5 times the interquartile range above the third quartile [14] excluded. A t-test between PD 
and HC mean values showed no significant changes (p > 0.05) in  in all three regions. 

Conclusions: Open-ended fringe lines, likely caused by imperfect complex coil combination, represent 
a challenge for EPT reconstruction. We removed the areas most affected by this artifact from the input 
φ0 images to improve EPT reconstructions. In this small preliminary data set, reconstructed 
conductivities presented no significant differences in mean conductivities values in CSF, gray matter, 
and white matter, in Parkinson’s disease compared to healthy controls. As more subjects continue to 
be acquired as part of this study, further work will include investigating the effect of higher-order 
shimming on open-ended fringe lines and evaluating conductivity changes in gray matter sub-regions 
to better understand conductivity changes in Parkinson’s disease. 
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Fig. 3. σ distribution in each PD and HC together with distributions across subjects (A) and mean σ 
values ± standard deviations (B) in PD compared to HC participants. Literature value measured ex-vivo 
in healthy tissue [15] is indicated by the dashed line in each region of  interest, CSF (a), GM (b), and 
WM (c). p-values showing no significant differences are displayed for each region. 
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Introduction: Parkinson's disease (PD) is one of the most prevalent progressive neurodegenerative 
disorder and is characterized by the aggregation of  α-synuclein into structures called Lewy bodies [1]. 
Lewy bodies are mainly found in the substantia nigra (SN) pars compacta but can be present in other 
brain regions. Elevated levels of metal ions, particularly Ca2+, are found in these structures [1,2], due 
to disruptions of calcium homeostasis. Changes in concentration of free iron ions, Fe2+, released from 
ferritin, are also expected in SN [3].  
MRI electrical properties tomography (MR-EPT) reconstructs the tissue electrical conductivity which, 
at high frequencies, is related to the tissue ion content. Hence, it could provide clinically useful 
information for PD. In this study, we used a multiple-echo 2D gradient-echo echo-planar imaging (ME-
GRE-EPI) acquisition to investigate conductivity values in patients with Parkinsons’s disease compared 
to healthy controls (HC). 
Methods: MRI Acquisition: As part of an ongoing study of PD we acquired 2D ME-EPI brain images 
using a sequence with multi-echo capability [4] on a 3T Siemens Prisma, with a 64-channel head coil, 
with 1.3 mm isotropic resolution, matrix size=184x168x126, BW= 1812 Hz/Pixel, FA=90°, 3 TEs, 
TE1/ΔTE/TE5=14.80/24.53/63.86 ms and TR=4034 ms, with multiband 3 and GRAPPA 4 for 70 
volumes. Here, we present 
results from 4 PD participants 
(M/F: 3/1, age: 63.7±7.6 
years) and 6 healthy controls 
(HC) (M/F: 5/1, age: 72.2±3.6 
years) acquired to date. 
EPT pipeline: The phase 
offset at TE=0 (φ0) was 
extrapolated from a non-
linear fit [5] of the complex 
data over all echoes and 
unwrapped [6]. A mask was 
generated using FSL BET [7], 
refined by thresholding [8,9], 
and eroded by 1 voxel to 
reduce brain edge artifacts. Slice-to-slice 
inconsistencies in φ0 were corrected by 
subtracting the median in each axial slice in 
the brain [10]. EPT on masked φ0 maps, used 
the integral approach (differentiation and 
integral kernels: 17 and 39 voxels) with 
magnitude-weighted and segmentation-
based edge preservation [11] using the echo-
combined magnitude [12]. High quality 
structural conductivity maps (σ) were 
calculated by taking the median of positive 
values in each voxel of co-registered EPT 
reconstructions over all 70 timepoints. 
Results and Discussion: All phase data 
acquired so far suffers from open-ended 

Fig. 1. Open-ended fringe lines (pink arrow) and aliasing artifact (green 
arrow) in φ0 (b), create artifacts in the conductivity maps at each 
timepoint (c) and the median conductivity over all timepoints (d). 

Fig. 2. Median conductivity maps reconstructed from 
the whole φ0 (a) and cropped φ0 (b) and the difference 
maps (c) in one healthy control (A) and one PD 
participant (B). 
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Magnitude method: There was very little visual 
difference in conductivity maps between using 
different magnitude-weighting inputs, with 
combined-echo magnitude providing slightly 
better GM-WM contrast. For selection of δ, our 
method of automatically varying δ was optimal in 
reducing noise. 

Preliminary conductivity results in SCA vs HCs: 
The results of applying the optimised pipeline in 
the 10 subjects are shown in Figure 3. Although 
there were no statistically significant differences between groups, these preliminary results suggest that children 
with SCA exhibit greater conductivity compared to healthy controls in both GM and WM, but not in CSF. 
 
 
 
 
 
 
 
 
 

 
 

 

 

Conclusion: Here, we optimised a phase-based EPT pipeline to investigate the effect of SCA on brain tissue 
conductivity, in Tanzanian children at 1.5T. Denoising and field correction were implemented. Optimal 
reconstruction parameters were found to be: kdiff = 15 mm, kint = 25 mm, FSL-FAST segmentation on the T1w 
image, and combined-echo magnitude input with automatically varying δ. This pipeline consistently produced 
high-quality conductivity maps and will now allow investigation of conductivities in the full cohort. 
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Fig. 3(a): Conductivity maps generated using the optimised EPT pipeline. Fig. 3(b): Median conductivity values for each tissue type, 
segmented using FSL-FAST on T1w images. 

(b) (a) 

HC: 

SCA: 

SPM – mag (TE2) SPM – T1w FSL-FAST – T1w 

Fig. 2: Conductivity maps in an axial slice of a representative HC subject 
using different segmentation methods for EPT segmentation weighting.  

 

 

Optimising EPT to Assess Brain Conductivity in Sickle Cell Anaemia at 1.5T 
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Introduction: Sickle cell anaemia (SCA) is a genetic blood disorder that causes haemoglobin to polymerize and 
red blood cells to become sickle-shaped. SCA is known to affect normal neurocognition, and poses serious risks 
such as haemorrhagic or ischaemic stroke [1]. This study aims to assess, for the first time, the effect of SCA on 
brain tissue electrical conductivity (at ~64 MHz). MR Electrical Properties Tomography (EPT) is a non-invasive 
technique for calculating high-frequency tissue electrical conductivity (σ), an intrinsic property determined by 
the concentration and mobility of ions [2]. Phase-based EPT derives σ from the MR transceive phase (φ0), using 
the integral form of the truncated Helmholtz equation [3]. Here, a pipeline for performing phase-based EPT was 
optimised for complex data originally acquired for quantitative susceptibility mapping at 1.5T [4]. 

Methods 
EPT was optimised in a representative sample of 10 Tanzanian children, 5 with SCA and 5 healthy controls (HCs), 
aged 12.4 ± 4.1 years, 7/3 male/female, from a total study cohort of 163 children with SCA and 47 HCs, aged 
12.6 ± 3.9 years. 

MRI acquisition: T2*-weighted multi-echo 3D GRE and T1-weighted MPRAGE were acquired at 1.5T (Phillips, 
Achieva) using either an 8-channel or birdcage RF coil. 3D-GRE sequence parameters were: 5 echoes, TE1 = 4.28 
ms, ΔTE = 4.94 ms, TR = 27.4 ms, resolution = 1.458 x 1.45 8 x 1.5 mm3, bandwidth = 287 Hz/pixel, FA = 15˚. 

EPT: An existing EPT pipeline [5] was optimised as follows. To account for poorer SNR at 1.5T compared to 3T, 
MP-PCA denoising [6] was applied to the raw complex images. iField correction [7] was applied to remove echo-
to-echo linear phase inconsistencies [8]. Complex images were unwrapped using SEGUE [9]. φ0 was estimated 
by extrapolation and unwrapped again using SEGUE. A binary mask was generated from the raw magnitude 
image at TE2 using FSL-BET [10]. Quantitative conductivity maps (QCMs) were reconstructed using 3D quadratic 
fitting with both magnitude- and segmentation-based weighting (MagSeg), for greater edge preservation and 
noise reduction [5].  

Kernel size optimisation: The radius for both the differential (kdiff) and integral kernels (kint) was varied, as 
described in [5], using a conductivity phantom (1mm isotropic resolution, simulated at 128MHz, Sim4Life [11]). 
Mean absolute error (MAE) and error in the CSF were computed between the resulting conductivity maps and 
the ground truth. 

Segmentation optimisation: For segmentation of grey matter (GM), white matter (WM) and cerebrospinal fluid 
(CSF), we compared: SPM [12] on the 2nd echo GRE magnitude image (as this was the only echo that provided 
consistent segmentation), SPM on the co-registered T1-weighted (T1w) image, and FSL-FAST [13] on the same 
T1w image. 

Magnitude weighting optimisation: We compared magnitude echoes 2 and 5 (TE2/5), and the combined-echo 
magnitude [14]. The value of the δ parameter used for magnitude weighting was varied between 0.15–0.65. We 
also implemented a new method of varying δ automatically depending on phase noise levels [15]. 

Results and Discussion 
Denoising: Figure 1 shows that, in general, 
applying MP-PCA denoising resulted in more 
detailed conductivity maps with greater 
contrast.  

Kernel size: Optimal radii were chosen to be 
kdiff = 15 mm and kint = 25 mm, as these 
achieved minimum error while avoiding 
over-smoothing in the reconstructed image.  

Segmentation method: Figure 2 shows that, 
as expected, segmentations using the T1w 
image provide better contrast between tissue types, especially at GM-WM boundaries. FSL-FAST provided 
greater detail and a significant increase (of 0.44 S/m) in median CSF conductivity values compared to SPM. 

With denoising Without denoising Difference 

Fig. 1: Conductivity maps in an axial slice of a representative HC subject reconstructed 
without/with MP-PCA denoising. MP-PCA denoising increased GM-WM contrast in 
some regions (indicated by black arrow). 
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highly variable reconstructed CSF conductivity values. The 
EPT tSNR was very low in the cerebellum likely due to 
residual slice-to-slice phase inconsistencies [9,16].  
In BOLD fMRI (Fig. 1c, Fig. 2a-c), large clusters of positively 
activated voxels are found in the primary visual cortex for 
all subjects. However, the activations found in fEPT (Fig. 1d, 
Fig. 2d-f) are much weaker, and we observed both positive 
[6] and negative activations [5] with large inter-subject 
variation of their location and the size (Fig. 2). 
Nevertheless, in the absence of a visual stimulus (Fig. 1e), 
we found only very few scattered activated voxels in fEPT, 
suggesting that activated fEPT clusters (Fig. 1d, Fig. 2d-f) 
are not due to type 1 error. Inter-subject variation was also 
observed in fEPT reconstructed using T1w magnitude 
inputs, with fewer and weaker activations.  
Conclusions: We characterised and compared the image 
quality and activations of fEPT with simultaneous BOLD 
fMRI. We found a distinctive tSNR distribution for fEPT. 
Our results show that fEPT is noisier and shows larger 
inter-subject variation than BOLD fMRI. Future studies 
are required to optimise fEPT and investigate the 
physiological mechanism underlying the observed 
activations. 
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Fig. 2. Positive (red) and negative (blue) 
functional activations in BOLD fMRI (a-c) 
and fEPT (d-f) in HV2 (a,d), HV3 (b,e) and 
HV4 (c,f). Maximum intensity projections 
of T-statistics (p<0.001) are displayed on 
the the mean echo-combined magnitude 

image over all 70 volumes. 

 

 

Comparing Novel Functional Electrical Properties Tomography (fEPT) with Simultaneous 
BOLD fMRI using Multi-Echo Echo-Planar Imaging 
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Introduction: Phase-based electrical properties tomography (EPT) estimates tissue electrical 
conductivities from MR transceive phase (𝜑𝜑0) via the Helmholtz equation [1]. Recently, EPT has shown 
the potential to detect brain functional activations using the general linear model (GLM) approach [2], 
but the underlying biophysiological mechanisms remain unclear [3-8]. Using conventional EPI-based 
BOLD fMRI as a reference, the few existing functional EPT (fEPT) studies gave inconsistent results and 
often required sequences additional to EPI to measure conductivity changes [3-7]. However, these 
separate sequences and acquisitions may introduce bias and variation, respectively, to the comparison 
between fMRI and fEPT. A recently developed high-resolution multi-echo (ME) gradient-echo EPI 
approach [9] has enabled simultaneous fEPT and fMRI [8], allowing for comparison between fEPT and 
fMRI without sequence-introduced bias or inter-scan variation. Therefore, here we compared the 
image quality and results of fEPT with simultaneous BOLD fMRI in 4 healthy volunteers. 
Methods: Four healthy volunteers (HVs) were scanned using a high-resolution ME GRE-EPI sequence 
[9] at 3T, with a visual stimulus paradigm of an 8 Hz flickering checkerboard alternated with a white 
screen in 15.6 s blocks for 70 volumes. T1w images were acquired using a 1-mm isotropic MPRAGE 
sequence. Within each volume, the magnitude echo images were combined for optimal BOLD contrast 
[10], and the complex data were used to calculate 𝜑𝜑0, as described previously [8]. To minimise noise 
and boundary artefacts in EPT [1], the 𝜑𝜑0 gradient was first estimated by weighted polynomial fitting, 
and the conductivity was then calculated via the surface integral of the 𝜑𝜑0 gradient with magnitude 
and segmentation weighting [11]. To avoid introducing any BOLD fMRI weighting from the magnitude 
signal into the fEPT analysis, the weights for fitting and the tissue segmentations [12] were derived 
from the temporally constant mean echo-combined [10] magnitude images over all 70 volumes. To 
investigate how this magnitude image used for EPT reconstruction may affect the functional analysis, 
the EPT time series were also reconstructed using standard T1w structural MPRAGE image inputs for 
magnitude and segmentation weighting and then analysed identically. 
Functional analysis was performed for the echo-combined magnitude and EPT time series using 
SPM12 [13]. To avoid any bias introduced by preprocessing [14], no filtering or smoothing was applied 
to the time series prior to the functional analysis. For fEPT, voxels with non-physiological negative 
conductivities were excluded during smoothing and model estimation. We performed functional 
analysis using GLM, with the signal response modelled by the canonical hemodynamic response 
function without derivatives [2]. A t-test was used to detect statistically significant voxel-wise 
activations at p<0.001 without 
family-wise error correction [15]. As 
a control for spurious activations, 
ME GRE-EPI data were also acquired 
in one HV without a visual stimulus 
and processed identically. 
Results and Discussion: Fig. 1 
compares whole-brain fMRI and 
fEPT in a representative subject. 
The highest magnitude tSNR is 
found at the posterior brain edges, 
reflecting the RF coil sensitivity 
distribution. In contrast, the EPTs 
showed a more inhomogeneous 
tSNR distribution with the lowest 
tSNR found in CSF perhaps due to 

Fig. 1. Comparison of whole-brain BOLD fMRI and fEPT in HV1. 
Echo-combined magnitude (a) and EPT (b) images, and the 

corresponding tSNR maps (logarithmic scale). Maximum 
intensity projections of T-statistics (p<0.001) showing positive 
(red) and negative (blue) functional activations in BOLD fMRI 
(c), fEPT (d) and fEPT without visual stimulus (e) displayed on 

the mean echo-combined magnitude image over all 70 volumes. 
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Fig. 1. Relative deviation of the measured T2 values from the manufacturer reference T2 values, 

after correction to 22℃, showing the mean bias and Limits of Agreement (LoA). The Bland-Altman 
analysis was performed using the mean T2 values for each vial in each scan (grey circles). The mean 

for each of the 6 vials is plotted for visualisation purposes (triangles). 
 

Discussion: Temperature-corrected multi-session measurements were used to compare 
conventional T2 mapping techniques (DE-TSE and 7-TE MESE) with the iterative model-based 
GRAPPATINI method. GRAPPATINI and MESE both showed good accuracy and precision, but 
GRAPPATINI was ∼3x faster per imaging slice (MESE 9min 14s, 27.7s/slice; GRAPPATINI 6min 57s, 
9.5s/slice). DE-TSE was faster (DE-TSE 4min 12s, 5.7s/slice) but considerably overestimated T2. 
Previous work has demonstrated initial examples of GRAPPATINI in the brain [6] but further studies 
are required, such as evaluations at higher spatial resolutions and comparisons with resolution-
matched conventional methods to explore how phantom results translate to in vivo maps. 

Conclusions: GRAPPATINI demonstrates potential as a precise and accurate clinical tool for fast T2 
mapping. Additional research is needed to assess the methods in vivo, which we are exploring for 
quantitative brain imaging. 

Acknowledgements: This study was supported by researchers at the National Institute for Health 
and Care Research University College London Hospitals Biomedical Research Centre. Siemens 
Healthineers provided support and the GRAPPATINI research application sequence through a 
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Accelerated T2 mapping for clinical applications: a comparison with conventional methods 
in the NIST/ISMRM system phantom. 
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Introduction: Quantitative MRI methods, such as T2 mapping, can increase assessment objectivity in 
comparison to conventional qualitative imaging and have promise in clinical applications. 
Conventional Multi-Echo Spin-Echo (MESE) [1] T2 mapping scan durations are often too long for 
clinical use. Dual-Echo Turbo Spin-Echo (DE-TSE) [2] reduces the total acquisition time by acquiring 
images at only 2 Echo Times (TEs) but compromises accuracy and precision. GRAPPATINI [3] 
accelerates MESE via Generalized Autocalibrating Partially Parallel Acquisition (GRAPPA) [4] and 
Model-based Accelerated RelaxomeTry by Iterative Nonlinear Inversion (MARTINI) [5]. The 
performance of rapid T2 mapping methods must be characterised before clinical use. In this study, 
we compared T2 mapping measurements from DE-TSE, MESE, and GRAPPATINI in a multi-
compartment phantom. 
Methods: T2 measurements were made using DE-TSE, MESE, and GRAPPATINI, scanning a traceable 
NIST/ISMRM system phantom (serial number 130-102) [1] 10 times across 5 sessions (twice in each 
session). The NIST/ISMRM phantom contains vials with MnCl2 solutions of different concentrations, 
and therefore different T2 values. Phantom temperature was measured before and after each 
session. General scan parameters: 3T MAGNETOM PrismaFit scanner (Siemens Healthineers AG, 
Germany), 32-channel head coil, reconstructed voxel size 0.4x0.4x3.0mm, field of view 230x216mm, 
matrix size 512x480, GRAPPA acceleration factor 2, sagittal slices centred on the array of T2 samples, 
slice distance factor 0%. Sequence-specific parameters: DE-TSE: TE1/TE2 30ms/119ms, 44 slices, 
Repetition Time (TR) 7600ms, Acquisition Time (TA) 4min 12s (5.7s/slice), phase resolution 60%; 1 
spinal coil element in addition to the head coil; MESE: 7 TEs (min:incr:max) [24:24:168]ms, 20 slices, 
TR 3530ms, TA 9min 14s (27.7s/slice), phase resolution 60%; GRAPPATINI: 16 TEs (min:incr:max) 
[11.6:11.6:185.6]ms, 44 slices, TR 4240ms, TA 6min 57s (9.5s/slice), phase resolution 100%. 
Voxel-wise DE-TSE and MESE T2 maps were derived from magnitude T2-weighted images, using an 
image ratio calculation for DE-TSE [2] and Auto-Regression on Linear Operations (ARLO) fitting [1] for 
MESE. The first echo time was omitted from the MESE fits to mitigate imperfect spin-echo refocusing 
[4]. The GRAPPATINI sequence is a Siemens research application and provides on-scanner T2 maps 
using an iterative, model-based reconstruction [3, 6]. Central-slice Regions-of-Interest (ROIs) were 
selected for 6 T2 vials, with 22℃ manufacturer reference T2 values: 392.5ms, 277.0ms, 181.5ms, 
92.3ms, 65.7ms, and 45.9ms. Measured T2s were corrected to 22℃ using the mean phantom 
temperature for the session and a linear model derived from manufacturer T2 values for 
temperature range (min:incr:max) [16:2:26]℃. Corrected T2 mean and Standard Deviation (SD) was 
calculated for each ROI and compared with the 22℃ reference values. All fitting and analysis was 
performed in MATLAB (R2024a, MathWorks, USA). 
Results: Phantom temperature distribution across all scans (mean±SD): 23.2℃±0.5℃. Coefficient of 
Variation (CV) range across all 6 vials: DE-TSE: 2.5%-4.4%; MESE: 1.6%-3.2%; GRAPPATINI: 1.5%-
3.4%. Figure 1 shows the relative T2 deviation from the reference value for each of the 6 vials, after 
correcting the T2s to 22℃. Relative Bland-Altman analysis (mean, 95% Limits of Agreement (LoA)): 
DE-TSE 28.9%, LoA 23.1%, 34.8%; MESE -0.5%, LoA -6.9%, 5.8%; GRAPPATINI -2.8%, LoA -12.0%, 
6.4%. 
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models recover lost detail effectively, this does not always translate to improved FA and fiber 
orientation. 
CONCLUSION 
Our work is a preliminary study on the impact of denoising methods on DTI estimates. Further work 
will explore different kinds of phantoms and resolution in the case of crossing fibres. 
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Figure 1 A visual comparison of the results of one gradient orientation in a 60 direction dataset 
Figure 2 The absolute error between the FA of the denoised images and the ground truth for 
various FA values and number of gradient directions presented as probability density functions. 

 

Figure 3 The cosine distance (1 minus the absolute value of the dot 
product) between the FA of the denoised images and the ground 
truth for various FA values and number of gradient directions 
presented as probability density functions 

 

Investigating The Impact Of Denoising Methods On Dti Estimates 

Joshua Mawuli Ametepe1, James Gholam1, Leandro Beltrachini2, Mara Cercignani1, and Derek 
Kenton Jones1  
1School of Psychology, Cardiff University, Cardiff, United Kingdom, 2School of Physics and 
Astronomy, Cardiff University, Cardiff, United Kingdom 
INTRODUCTION 
Diffusion Tensor Imaging (DTI) probes tissue microstructure 1 but suffers from reduced signal-to-noise 
ratio (SNR) due to signal attenuation in diffusion-weighted images. This impacts the estimation of DTI 
parameters like fractional anisotropy (FA) and the tensor orientation 2. Many denoising methods aim 
to improve SNR, but their impact on FA, tensor orientation, and other DTI estimates is not fully 
explored 3. A major challenge is the lack of ground truth images for comparison. This study creates 
ground truth data to evaluate the effectiveness of various denoising algorithms.   
METHODS 
We designed digital phantoms as ground truth for comparisons. This study focuses on one phantom 
made of five bars representing ‘fibres’ (4 voxels thick) crossing at the center of each slice in a 
101x101x101 volume. The bars in each slice have a fixed FA, which varies between slices, and the 
background FA is set to 0. Each voxel has a mean diffusivity of 0.0007 mm²/s 2,4.  
For denoising methods like Patch2Self 5 and MPPCA 6 which need multiple diffusion-weighted 
images, we created a b0 image and simulated DWI datasets with 6, 15, 30, and 60 gradient directions 
using isotropically distributed gradient orientations from a bipolar electrostatic repulsion model 7,8. 
For crossing fibres, we used a multi-tensor approach where the diffusion-weighted signal is a 
weighted sum of signals from multiple tensors9-11.  

𝑆𝑆 = ∑ 1
𝑁𝑁 𝑆𝑆0𝑒𝑒

−𝑏𝑏(𝑔𝑔𝐷𝐷𝑛𝑛𝑔𝑔𝑇𝑇)𝑁𝑁
1 , 

Where, N is the total number of crossing fibres, Dn is the diffusion tensor associated with a particular 
fibre, S is the diffusion weighted signal, S0 is the b0 signal, g is the gradient orientation and b is the b-
value, which was set to 1000 s/mm2 for all images. Rician noise was simulated in the images with an 
SNR or 5 in the b0 image 4,12 .  
This study tested five denoising methods: DDM2 13, Patch2Self 5, MPPCA 6, non-local means 
denoising 14 and total variation denoising 15,16. MPPCA and Patch2Self implementations from Dipy17, 
non-local means from Advanced Normalization Tools (ANTs) 18, and total variation from Scikit-image 
toolbox 19 were used.  
Each method denoised the datasets, and diffusion tensors were computed to obtain FA and principal 
fibre orientations. The DDM2 model rescales images to a range of 0 to 1, so we used inverse min-max 
scaling based on an online repository. This scaling might be inconsistent across volumes, and we have 
contacted the authors for clarification. 
We also found that DiPy's Patch2Self does not denoise b0 images with a b value below the set 
threshold, even when the option to denoise b0 is true. To address this, we set the b0 threshold to 0 
and changed the b value of the b0 image to 0.1. We have contacted a DiPy developer for advice, as 
this might affect our results. 
RESULTS 
Figure 1 shows the denoised output the various denoising methods for one gradient orientation in 
the 60 direction dataset. For four selected FA values in the ground truth (1,0.7,0.4,0.1), the mean 
absolute error in the predicted FA is displayed in Figure 2 as a probability density function. Figure 3 
shows the absolute value of the dot product error in fibre orientations for these selected FA values.  
DISCUSSION 
Our results show that errors decrease with higher FA values or more DWI volumes. While some 
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(vi) for publications on how to define the pathway.  Figure 1 shows that respondents agree with the 
need to improve consensus. 
Context dependency The theme of 
context dependency was frequently 
raised across all topics: (i) phantoms, (ii) 
terminology, (iii) decision making and (iv) 
endpoints (Q 1Ai, 1D, 2Ai, 2Bi, 4Bi and 
7B). Views were expressed strongly 
regarding the uniqueness of each clinical 
situation when integrating IBs into the 
clinical workflow. The nature of this 
integration raised variability in views, 
but most frequently, that the context 
should be developed based on the IBs 
themselves, closely followed by the 
clinical question, availability, and cost.  
Expectations of the IB (Product Profile) 
When considering the product profile [7] 
(Q1Ai, 1D, 2Ai, 2Bi, 2Ci and 7A), opinions 
strongly favoured qMR IBs 
supplementing, rather than replacing existing pathways. Many considered that a specific endpoint of 
an IB in clinical practice would have a staged approach, although this varied when considering IBs 
across patient groups or along a treatment process. For example, in question 2Ci, many stated that 
the ideal situation would be to target clinical translation of an IB for a single situation/patient group 
initially and then, following subsequent phased research/ development, transfer the IB to other 
patient pathways. Respondents often stated conversations required increased input from a larger 
breadth of stakeholders and networks, such as vendors and national/international societies involved 
in qMR. A clear product profile can aid the research design and end translation of a medical test [8], 
but more input from the MRI community would be required to establish clear product profiles for 
individual qMR IBs.  
Our survey demonstrates that, according to a national cohort of the MRI community in the UK, there 
remain unmet needs and challenges in improving the pathway to clinical translation of qMRI IBs. 
Published consensus often addresses the context dependency by a siloed approach, but our results 
suggest that a more standardised, but adaptive approach, would allow a common ground that could 
have larger benefit. A move to a more standardised consensus was observed in recommendations for 
Arterial Spin Labelling (ASL), where a more structured and holistic approach was developed in [3] than 
in [4]. Recent consensus building has developed guidance for a range of IBs in broader contexts [5,6], 
nevertheless consensus methodology is highly variable, and more work is needed to establish the 
more standardised, but adaptive, approach that was suggested by the survey results.  
Conclusion We plan to build on this study by providing a forum for continued action and 
“widening the conversation”. We hope to develop a multifaceted and successful approach to 
addressing the many, and diverse, needs and challenges in translating qMR IBs into the clinic.  
References [1] [1] P. L. Hubbard Cristinacce, et al. MRM. 90, (3) 1130-1136 (2023). [2] Michelle E. Kiger & Lara 
Varpio (2020), Medical Teacher, 42:8, 846-854, DOI: 10.1080/0142159X.2020.1755030. [3] Nery F, Buchanan 
CE, Harteveld AA, Odudu A, Bane O, Cox EF, et al. Magn Reson Mater Physics, Biol Med 2020;33:141–
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N.M., Achten, E., Alberich-Bayarri, A. et al. Insights Imaging 10, 87 (2019). https://doi.org/10.1186/s13244-
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Fig. 1. Consensus building: Answers to Q1Bi, 2B, 3A 
and 3C. 

 

 

Current UK perspectives on the challenges for clinical translation of quantitative MR 
imaging biomarkers. 

Julia E. Markus1, Penny L. Hubbard Cristinacce*2, Harpreet Hyare1,3, and Po-Wah So4 

1 Centre for Medical Imaging, Division of Medicine, University College London, London, W1W 7TY, UK   
2 Quantitative Biomedical Imaging Laboratory, The University of Manchester, M13 9PT, UK     
3 Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, WC1N 3BG, UK   
4 Department of Neuroimaging, Institute of Psychiatry, King’s College London, London, SE5 9NU, UK  
*Presenting author 
 
Introduction An interactive session at the British & Irish Chapter (BIC)-ISMRM Annual Meeting 2022 
Clinical Translation Workshop “Steps on the Path to Clinical Translation” asked attendees to address 
7 areas pertinent to improving clinical translation for quantitative MR (qMR) imaging biomarkers (IBs). 
The conclusions/ further questions that resulted from discussions were developed into a survey. We 
aimed to investigate the UK-based MRI community’s perspectives on major obstacles in clinically 
translating qMR IBs, and what actions could be useful to address them.  
Methods     A REDCap project was used to derive a web-based e-survey and a QR/quick access link 
distributed as an open invitation. The survey, open for 5 weeks, was made available during the 2022 
BIC-ISMRM Annual Meeting and subsequently distributed via communication emails/newsletters to 
the BIC-ISMRM, MR-PHYSICS, British Society of Neuroradiologists (BSNR) and various institutional 
emailing lists. The survey was made of 40 questions covering 7 topics, see [1] and Table 1. Descriptive 
statistics were drawn from multiple choice (MCQ), Likert and agree/disagree questions, and a 
thematic analysis with a deductive approach [1] was performed on free text questions to identify 
themes across topics. Basic occupational demographic questions allowed us to monitor MRI 
community representation.  
Results & Discussion We received 69 responses with completion varying from 27.7–100%. 
Responses were received from imaging scientists (research (64%) and clinical (18%)), clinicians (10%), 
others (8%). Three 
significant themes 
emerged from thematic 
analysis across all free text 
questions. 
Consensus The need to 
build consensus and 
resources dedicated to 
improving the 
standardisation of certain 
aspects of IB development: 
(i) terminology, (ii) decision 
making and (iii) validation 
(Q 1B, 1Bii, 3B, 3D, 4E, 5C, 
and 5D). Views were 
frequently expressed on: (i) 
the format for sharing 
consensus, (ii) what 
consensus building should 
target, (iii) the lack of 
multi-disciplinary 
guidelines, (iv) 
standardisation of 
terminology, and (v) the 
need for action groups and Table 1. Outline the survey questions and detail the question type. 
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Figure 1. Study design.  

Results: There was a significant difference between the %wCV of T2L, NLLS (1.27%) and T2L, BPE 
(2.11%), p = 0.019  (Figure 2.a). There were no significant differences between T2S, NLLS (3.60%) 
and T2S, BPE (3.90%), p = 0.083, and between f,NLLS (10.18%) and f, BPE (6.51%), p = 0.498 (Figure 2.a). 
There were significant positive correlations between fBPE and fNLLS (r = 0.795, p < 0.001, Figure 
2.b), T2L, BPE and T2L, NLLS ( = 0.529, p < 0.018, Figure 2.c),  and T2S, BPE and T2S, NLLS (r = 0.484, p < 
0.031, Figure 2.d). 
 

 
 
Figure 2. Model stability comparison and correlation of Bayesian parameter estimation 
methods (BPE) and Non-linear least squares (NLLS) methods.  

Discussion: The two-compartment model may offer more refined representation of cellular 
structure within breast tumours than single-compartment model. All values of %wCV were less 
than 10%, except for the water fraction from NLLS. There were significant correlations between 
the parameters from BPE and NLLS. 
Conclusion: Bayesian and least squares methods show promise for analysing two-compartment 
breast cancer models, potentially providing more refined estimates of the underlying biological 
process. 
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Bayesian parameter estimation and non-linear least squares fitting for the multi-
compartment analysis of T2 in breast cancer 
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Introduction: Transverse relaxation time (T2) of breast tumours is affected by the local structural 
and biochemical micro-environment and is indicative of associated disease processes [1]. The 
single-compartment model, although commonly adopted for mathematical simplicity and 
computational speed, does not capture the complexity of biological tissue, demanding multi-
compartment (MC) approaches[2]. The non-linear least squares (NLLS) and Bayesian parameter 
estimation (BPE) algorithms have been applied to estimate parameters in MC models in parts of 
human body outside the breast [3]. NLLS allows the estimation of T2 based on minimising the 
sum of squares of errors, suffering from potential overfitting and consequent misinterpretation. 
BPE has been introduced using the constraints imposed by neighbouring voxels [4]. We therefore 
set out to examine the NLLS and BPE algorithms for quantitative T2 maps acquired on a clinical 
scanner from breast tumour specimens.   
Methods: Twenty tumour specimens freshly excised from female patients with breast cancer 
(invasive ductal carcinoma, 10/10 grade II/III) were placed in 10% buffered formalin solution 
immediately after surgery (Figure 1). The study was approved by the North-West – Greater 
Manchester East Research Ethics Committee (Identifier: 16/NW/0221), and signed written 
informed consent was obtained from all participants prior to the study.  
Acquisition: Five repeated quantitative T2 images were acquired from each specimen on a clinical 
3T MRI scanner (Achieva TX, Philips Healthcare, Best, Netherlands), using multishot gradient and 
spin echo (GRASE) sequence, with 24 echo times (TE) from 13 ms to 312 ms at an echo spacing of 
13 ms, FOV of 141 × 141 mm2 and image resolution of 2.2 × 2.2 x 2.2 mm mm2. 
Analysis: Voxel-wise two-compartment analysis was performed in MATLAB (R2021a, 
MathWorks, Natick, USA) using NLLS based on Levenberg-Marquardt algorithm and BPE based 
on a flat prior. The fitting was performed over the regions-of-interest (ROIs) encompassing the 
whole tumour, to compute the short and long T2 components (T2S and T2L) and the restricted 
water fractions (f) in a two-compartment model. T2S and T2L components characterise the intra- 
and extracellular water compartments, respectively [5], with f representing the signal ratio in the 
two compartments [6]. The mean of each parameter was calculated within the ROI for each 
specimen across acquisitions.  
Statistics: Statistical analysis was performed in SPSS statistical software (IBM SPSS Statistics, 
Version 27.0, Armonk, USA) . Within-subject coefficients of variations (%wCV) of the BPE and 
NLLS of the two-compartment parameters were calculated [7], and Wilcoxon tests performed to 
compare the variations in parameters between the two methods. The correlations of f, T2S and 
T2L between BPE and NLLS were performed using Spearman’s correlation test [8]. A p-value < 
0.05 was considered statistically significant. 
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Estimation of Apparent diffusion coefficients of the three major metabolites measured in the 
human brain at 3 T 

Z. Javed1, G. Collier1,2,, N. Hoggard1,  J.M. Wild1,2, 
1Section of Medical Imaging and Technologies, Faculty of Health, University of Sheffield, Sheffield, 
UK 
2INSIGNEO institute, University of Sheffield, Sheffield, UK 
 
 
 
Introduction: Diffusion-weighted proton magnetic resonance spectroscopy (DW-MRS) offers the 
ability to assess the physiological micro-environments of metabolites in the human brain [1], which 
can be indicative of various neurological conditions. In this work a DW-STEAM sequence was 
implemented at 3T and the diffusion characteristics of neuronal and glial metabolites N-
acetylaspartate (NAA), Choline (Cho) and Creatine (Cr) were analysed in phantoms and healthy human 
brains. 
Methods: The vendor sequence, stimulated echo acquisition mode (STEAM) [2], was modified to 
diffusion weighted sequence (DW-STEAM) by applying paired diffusion gradients (represented by 
white pulses in Fig. 1.a) in each of the x, y and z directions. Conventional radio frequency (RF) 90o 

pulses were applied along with slice select gradients (represented by vertical grey lines). A crusher 
gradient (represented by diagonal grey lines) was applied in the read direction (Gy) only to minimise 
unwanted coherences. The b-value measures the degree of diffusion weighting applied, thereby 
indicating the amplitude (G), time of applied gradients (δ) and duration between the paired gradients 
(Δ). 

b=𝛾𝛾2𝐺𝐺12[𝛿𝛿2 (∆ − 𝛿𝛿
3)+𝜁𝜁3/30−𝛿𝛿𝜁𝜁2/6] 

where (γ) is the gyromagnetic ratio and (ζ) is the gradient slope duration. 
The apparent diffusion coefficient was calculated as; 

𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑙𝑙𝑙𝑙⁡[𝑆𝑆𝑚𝑚 (𝑏𝑏2)/𝑆𝑆𝑚𝑚 (𝑏𝑏1)]
𝑏𝑏2 − 𝑏𝑏1

where 𝑆𝑆𝑚𝑚 (𝑏𝑏2)is the maximum peak intensity for each metabolite, m from the spectrum acquired with 
b-value 𝑏𝑏2. 𝑆𝑆𝑚𝑚 (𝑏𝑏1)  is the maximum peak intensity for each metabolite, m from the spectra with b-
value 𝑏𝑏1. 
All MR experiments were performed using a GE 3T Signa PET/MR scanner. A 24 cm inner diameter 
eight channel birdcage volume coil was used as a transmitter and receiver. The sequence was first 
tested using the BRAINO phantom [3] containing the required metabolites at concentrations 
mimicking the human brain. For in-vivo testing, three healthy volunteers were scanned using the 
modified DW-STEAM sequence. Anatomical T1-weighted (T1w) images were initially acquired using a 
FLAIR sequence to position the MRS voxel and the acquisition parameters were kept as follows; 
repetition time (TR):1500ms, effective echo time (TEeff): 35ms, field of view (FOV): 24 x 24 (mm), 
voxel: 20x 20x20 (mm)3, number of averages (NA): 8, number of coils (Nc):8, mixing time (TM):13.7ms, 
spectral width (sw)=5000 Hz, total acquisition time: 2min 12sec. The following diffusion weighting 
conditions were used: b= [378.2,968.2,1512.8,6671.7,9455.3] s/cm2 with diffusion gradients applied 
in three orthogonal directions [5,5,5] mT/m, [8,8,8] mT/m, [10,10,10] mT/m, [21,21,21] mT/m, 
[25,25,25] mT/m in the VOI coordinate system. 
Results: The phantom results produced high diffusivities for all three metabolites due to the absence 
of cellular barriers and metabolic activity in the homogeneous phantom. The DW-STEAM sequence 
was tested on three healthy volunteers. Fig. 1.b shows the plot of the logarithm of the mean 
metabolite intensities versus the b-values. Additionally, the ADC values for every single metabolite 
are also displayed in units of cm2/s. The ADC values obtained are in agreement with literature [4].  
Good quality spectra were obtained for all participants and one representative spectrum is presented 

4. Bretthorst GL, Hutton WC, Garbow JR, Ackerman JJH. Exponential Parameter Estimation (in NMR) Using 
Bayesian Probability Theory. Magn Reson Med. 2005. 

5. McSweeney MB, Small WC, Goldstein JH, Sewell CW, Powell RW. Nuclear magnetic resonance (NMR) 
relaxation characteristics of human breast tissue. Magn Reson Imaging. 1982. 

6. Sabouri S, Chang SD, Savdie R, et al. Luminal Water Imaging: A New MR Imaging T2 Mapping Technique for 
Prostate Cancer Diagnosis. Radiol. 2017. 

7. Barnhart HX, Barboriak DP. Applications of the Repeatability of Quantitative Imaging Biomarkers: A Review 
of Statistical Analysis of Repeat Data Sets. Transl Oncol. 2009. 

8. Barnhart HX, Haber MJ, Lin LI, Lin L. An Overview On Assessing Agreement With Continuous Measurement. 
J Biopharm Stat. 2007. 

 
 

P38



Power Pitch Session 2Power Pitch Session 2

180179 BIC-ISMRM 2024 Annual Meeting Nottingham 11th - 13th September 2024

 

 

Towards phase contrast MRI of stratified multiphase flows: a probe for rheology under 
combined shear and extension 

Richard Hodgkinson1, Steven Reynolds2 
1Department of Materials Science and Engineering, University of Sheffield, Sheffield.  
2Preclinical MRI Facility, Faculty of Heath, University of Sheffield, Sheffield. 

Introduction: A fluid packet may be strained via shearing or extension, and rheology studies a fluid’s 
stress response to such strains. Behaviour can be very different under extensional vs. shear flow for 
complex fluids, making it critical to understand for situations such as polymer processing. Since 
changes to underlying microstructure generate rheological responses, it is a cross-coupling factor in 
kinematically mixed flows, flows with simultaneous shear and extension. Until now there was no 
method to directly and simultaneously probe specific stress responses of fluids under combined 
deformation: changes in full-field data such as velocity/flow pattern1 and birefringence2-4 could 
potentially be attributed to either extensional5, shear6, or time dependant rheology7. A previous study 
by us developed an optical PIV (particle image velocimetry) two-phase flow technique, using an 
immiscible Newtonian oil acting as a shear stress sensor above a non-Newtonian aqueous phase8, 
allowing measurement of shear rheology under simultaneous combination of shear and extensional 
deformation. However, optical techniques limit the variety of materials which may be accessed. Flow 
velocimetry by Phase-Contrast (PC) MRI can examine a wider range of fluids, e.g. opaque suspensions, 
and chemically resolve these. The aim of this project is to establish a MRI method for measuring 
velocity profiles for two contacting, stratified, flowing immiscible fluids, one Newtonian, the other 
non-Newtonian. Here we outline the preliminary develops undertaken in realising this. 

Methods: For development purposes phantoms carrying separate flowing fluids were placed side by 
side. MRI velocimetry was performed using a horizontal bore Bruker 7T, 70/30, MRI scanner running 
Paravision 7.0. Custom pulled glass phantoms (axisymmetric taper in/tapered out constriction from 
26 mm to 4 mm over a length of 100 mm) provided proof of concept extensional flow velocity profiles 
for PDMS silicone oil/water, Figure 1, which was imaged using a standard FLOWMAP sequence. This 
sequence was adapted to provide interleaved chemical shift selective velocity maps, with non-
spatially selective rf-pulse (PW 7.0 ms, BW 600 Hz, FA 90o) alternately applied at the glycerol/water 
resonances (-1.5 ppm wrt water, 0.0 ppm) or silicone oil (-4.55 ppm). Alternating with these 
frequencies, a slice selective excitation pulse was applied (1.16 mm slice thickness; PW 14.0 ms, BW 
300 Hz, FA 30o) and signal acquired at -4.55 or -1.5 ppm. Three flow direction were encoded up to 50 
cm/s; TE/TR 13.1/500 ms, FOV 32x32 mm, Matrix 128x128. Data was post-processed using Matlab.  

Results and Discussion: Proof of principle velocity map images have been measured for the pulled 
glass phantom tubes, successfully resolving the velocity profiles for the two fluids at the narrowest 
point of the tubes, see Figure 1. The polydimethylsiloxane (PDMS) oil has the advantage of a simple 

Figure 1: Velocity map images from the twin tapered phantom containing silicone oil alongside water. 
The in-plane velocity profile at the location indicated by the white dashed line is shown, b. 

 

 

in Fig. 1.c where the metabolites identified include the following: NAA at 2.0 ppm, Cr at 3.0 ppm, Cho 
at 3.2 ppm. 

 
 

 
Fig. 1. (a) The DW-STEAM pulse sequence, (b) Data represent logarithm of the mean metabolite intensities ± 
standard error versus b-values. The calculated ADC values for each metabolite are also indicated, (c) Example of 
an MR spectrum acquired at the lowest value of b=378.2 for a healthy volunteer. The voxel position in the 
prefrontal cortex region is shown in the inset. 

 

Discussion: The estimation of diffusion coefficients for the three major metabolites—N-
acetylaspartate (NAA), creatine (Cr), and choline (Cho)—in the human brain at 3T provides critical 
insights into the microstructural and functional characteristics of neural tissue. Diffusion-weighted 
spectroscopy allows for a non-invasive investigation of the diffusivity of these metabolites, reflecting 
their movement within the extracellular and intracellular spaces. Our findings indicate that NAA, 
predominantly located in neurons, exhibits a more restricted diffusion profile when compared to Cr 
and Cho, which are associated with energy metabolism and cell membrane turnover, respectively. 
This differentiation is crucial for enhancing our understanding of normal brain physiology and can 
serve as a baseline for detecting pathological changes. For instance, alterations in the diffusion 
properties of these metabolites might indicate early signs of neurodegenerative diseases, such as 
Alzheimer's disease, or the presence of brain tumors [5]. Thus, the ability to accurately measure and 
interpret the diffusion coefficients of NAA, Cr, and Cho represents a significant advancement in the 
field of neuroimaging, offering potential for improved diagnosis and monitoring of various 
neurological conditions. 
Conclusions: The results demonstrate distinct diffusion characteristics for NAA, Cr, and Cho, 
contributing to a more nuanced understanding of metabolic processes in the brain. This preliminary 
study validates that diffusion weighted spectroscopy holds potential for enhancing diagnostic 
precision and monitoring the progression of neurological disorders through non-invasive means. 
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Magnetic Resonance Imaging (MRI) as a tool to characterize viscoelastic behaviours of 
syrup free vegan soft candies 

Pelin Pocan1, Jim Hall1, Rob Morris1 
1Department of Physics & Mathematics, School of Science &Technology, Nottingham Trent 
University, Nottingham, United Kingdom 
 
Introduction: Gelatin, which is frequently used as a gelling agent in soft candies, is not preferred by a 
certain segment of the society who have preferred a vegan diet, due to its animal origin. At this point, 
agar-agar obtained from the cell wall of red algae constitutes a very suitable alternative to gelatin [1]. 
Apart from vegan concerns, the use of sweeteners such as sugar alcohols is gaining importance in the 
confectionery industry, as the demand for low calorie products is increasing. Another concern about 
confectionery products is the use of corn syrup, which is frequently used to increase shelf life, increase 
stability, prevent crystallization and reduce cost. Within the scope of this study, the production 
potential of agar-agar-based vegan candies in the presence of different sugars and concentrations, 
without corn syrup, will be investigated and these samples were characterized through MRI 
experiments. For this purpose, agar-agar-based, syrup free vegan soft candies containing different 
types of sugars (sucrose, glucose, fructose) and sweeteners (erythritol) at different concentrations 
(20,30,40,50,60%) were formulated. Since these different types of sugars and sweeteners have 
distinct viscosities, their viscosity changes were tried to be detected through T1 (spin-lattice) relaxation 
time constants obtained through Magnetic Resonance Imaging (MRI). The main objective of this study 
is to explore the power of MRI to monitor the viscosity changes of vegan soft candies containing 
different type of sugar and sweeteners and trying making correlations between their viscosities and 
T1 relaxation times obtained through Magnetic Resonance Imaging (MRI) 
Methods: Agar based vegan soft candies were prepared by considering previous method [1]. 2% (w/v) 
of agar–agar was dispersed in distilled water, heated up to 50 °C, and properly mixed during this 
process. Afterward, different powdered sugars (sucrose (SUC), erythritol (ERT), glucose (GLU) or 
fructose (FRU)) at fixed concentrations (20%,30%,40%,50% and 60%) were added to agar–agar 
dispersion. This final solution again heated up to 95 °C using magnetic stirrer. After reaching this 
temperature (95 °C), mixtures were poured into molds and waited at room temperature for 24 h. This 
process is done and processed separately for all types of sugars. 
For the viscosity measurements, Brookfield DV-II + Pro Viscometer (Brookfield Laboratories, INC, USA) 
was used to determine the viscosities of the agar solutions containing different types of sugars at 
different concentrations.  
For the MRI experiments, 1.5 Tesla clinical MR Scanner (Siemens, Germany) was utilized. Longitudinal 
T1 relaxation times were measured by using IR (Inversion Recovery) sequence with TR (repetition time) 
of 16000 ms and TE (echo time) of 72 ms. 
Mono-exponential fitting was conducted on the relaxation curves by using MATLAB.         
Results: T2 Weighted images of sucrose containing samples can be seen below (Fig.1) Results of the 
viscosities (Fig 2) and T1 relaxation times (Fig.3) obtained through MRI experiments were also shown 
in below. It was found that, there is a strong, inverse correlation between mono-exponential T1 
relaxation times and viscosities of the samples (r= -0.59, p<0.05). 
    
 
 
 
 
 
 

 

 

NMR spectrum, see Figure 2, with a well-defined methylated silicone peak 4-5 ppm downfield from 
water. At &T the glycerol peak in water/glycerol mixture is sufficiently well separated upfield (~3.3 
ppm) for selective excitation without excessively long pulse duration, Figure 2.   

Future steps and challenges: Work is ongoing to develop the flow cell rig with a stable flow of two 
immiscible fluids, where the interface between these passes through the centre of a tapered 
constriction, see Figure 3. Development comprises:  
1. Two-piece dissimilar surface flow cell phantom to control fluid wetting profile (a) 
2. MR compatible flow level control/sensor in flow splitter tank (b) and peristaltic pumps (c) 
3. MR compatible low-cost cameras for remote experiment monitoring 
4. Packaging of system in MR-compatible sled and setup procedure development 
5. Investigate the observation of linear velocity field in static fluid for short TE  
6. Add SPIRAL readout to imaging sequence 
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Figure 2: Straight tube (dia. 12 mm) phantoms were used as a simple benchmark with PDMS silicone 
oil/application representative 18% water: 82% glycerol solution. Two water filled vials (dia. 8 m) were 
included for static fluid checks a) left, localiser image showing slice locations (solid box) and PRESS 
voxels (dashed box) for water/glycerol (orange) and silicone oil (green).; right PRESS spectra. b) 
FLOWMAP images for water/glycerol (top) and silicone oil (bottom). 

Figure 3: Develop of MR-compatible two-phase flow cell rig 
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A pipeline for quantitative histological analysis to validate microstructure imaging through 
diffusion MRI  

Elise Gwyther1, Andrada Ianus2, Beat Jucker3,  Rui V. Simoes4, Rafael N. Henriques2, Tania Carvalho2, 
Noam Shemesh2 ,Derek Jones1,5,, Chantal Tax1,6, Marco Palombo1,5   
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Introduction  
Histology is a recognized gold standard characterization of brain microstructure, essential to validate 
estimates of microstructural characteristics derived from diffusion-weighted MRI (DW-MRI). 
However, due to the challenging comparison between imaging modalities with different resolutions 
and contrasts, qualitative comparisons are often used, neglecting precious information obtainable 
from histology. In this work, we present an automatic histological analysis pipeline which measures 
quantitative microstructural features of brain tissue from histological images and reconstructs 
histological parameter maps for a whole brain slice at the DW-MRI resolution.    
Methods  
Ex-vivo DW-MRI scans of 7 mouse brains (1 healthy control, 3 with induced GL261 cell line gliomas 
and 3 with induced CT2A cell line gliomas) were acquired with a PGSE-EPI sequence: 
TR/TE=3000/20ms, 4 shots, in-plane resolution = 0.1x0.1mm2; more details in[1]. The SANDI[2] 
model was fitted to these scans, producing parameter maps for fsphere, fstick, Rsphere, fball, Dball, Dstick, as 
described in[1]. After scanning, each mouse brain was formalin-fixed, paraffin-embedded, sectioned 
at 4 µm from striatum to caudal hippocampus, and stained with hematoxylin and eosin 
(H&E)(Fig.1). H&E stains nuclei a dark purple and all other tissue a shade of pink. The nuclei were the 
histological feature selected for analysis, as they were robustly distinguishable from other tissue 
components. Nuclei and soma morphology are strongly correlated[3], so measurements of nuclei 
size from histology were related to SANDI estimates of soma radius, Rsphere, according to [4]:  

𝑅𝑅𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒(𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻) = (< 𝑅𝑅5 >
< 𝑅𝑅3 >)

1
2

            (1) 

Where < 𝑅𝑅3 >  and < 𝑅𝑅5 >  are the third and fifth moments of the distribution of nuclei radii.  
The histological analysis pipeline was implemented using .groovy scripts in the software QuPath[5]. 
For each image, the pixel size in µm, and the image height 𝑌𝑌 and width 𝑋𝑋 in number of pixels were 
retrieved. To match the MRI resolution, the tile dimension 𝑡𝑡 in number of pixels was calculated by 
dividing 100µm by the pixel size in µm. Two sets were defined: 

𝐴𝐴 = [0, 𝑋𝑋
𝑡𝑡 ] ∩  ℤ, 𝐵𝐵 = [0, 𝑌𝑌

𝑡𝑡 ] ∩  ℤ 
The cartesian product:           𝑡𝑡𝑡𝑡 ×  𝑡𝑡𝑡𝑡 = {(𝑡𝑡𝑡𝑡, 𝑡𝑡𝑡𝑡)|  𝑎𝑎 ∈ 𝐴𝐴 𝑎𝑎𝑎𝑎𝑎𝑎 𝑏𝑏 ∈ 𝐵𝐵} 
generated a list of coordinates which were used to assign square tiles with area 100µm2  to locations 
in the image. The StarDist[6] deep learning model he_heavy_augment.pb, which utilizes a U-net 
architecture to detect nuclei in H&E brightfield images, was applied in each tile. This created a 
detection object for each nucleus containing an outline of the nuclei, its area in µm2, and other data. 
The list of detection objects was exported. The histological parameter map was reconstructed in 
Python using the nuclei radius in each tile and Eq.1. Fig.1 shows the analysis steps. The histology 
slides were matched to DW-MRI slices manually using the tumor and brain shapes as guide. Tumor 
regions of interest (ROIs) were manually segmented (Fig.2). Linear regression analysis was used to 
examine the relationship between Rsphere(SANDI) and Rsphere(histology) in the ROIs.   
Results   
Fig.2c shows a histological parameter map of Rsphere(histology). Fig.2e shows mean Rsphere (histology) 
against Rsphere (SANDI) in tumor ROIs with a linear regression line (slope=0.259, intercept=4.37, 

 

 

 

 

Fig. 1. Representative T2 weighted Image of sucrose containing agar based vegan soft candies at 
different concentrations (20%,30%,40%,50% and 60%)   

 

 
 

Fig. 2. Viscosities of vegan candies containing different type of sugars (SUC, GLU, FRU and ERT) at 
different concentrations (20%,30%,40%,50% and 60%)   

 

 
Fig. 3. T1 relaxation times of vegan candies containing different type of sugars (SUC, GLU, FRU, ERT) 

at different concentrations (20%,30%,40%,50% 60%) 
 

Discussion: In previous studies different NMR techniques such as Fast Field Cycling (FFC) NMR [2] and 
Time Domain (TD) NMR [3] were utilized to characterise the soft candies. To best our knowledge, it is 
the first study that examines the viscoelastic behaviour of soft candies through MRI technique.  
Conclusions: It was concluded that T1 relaxation times obtained through MRI could be utilized as a 
fingerprint to monitor viscosity changes of syrup free, agar based vegan soft candies containing 
different type of sugars at different concentrations. 
Acknowledgements: Pelin Pocan has received financial support from The Scientific and Technological 
Research Council of Türkiye (TUBITAK) 2219-International Postdoctoral Research Fellowship Program.  
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Pearson correlation coefficient= 0.789, p value= 0.01).   
Discussion and Conclusion  
Despite the different slice thickness between MRI and histology, a significant positive linear 
relationship between the Rsphere from SANDI and histology in tumor ROIs was found, which validates 
the sensitivity of the SANDI model to soma radius. The linear regression line intercept is explained by 
the lower bound on DW-MRI estimates of soma radius[7]. The slope value can be explained by the 
cell volume increasing linearly with nuclei volume. The analysis pipeline can work with other DW-
MRI methods (e.g., different voxel size and microstructure model) and alternative histological stains 
which highlight different features of the tissue, with minimal adaptations, e.g. using a different 
pretrained deep learning model for the segmentation[8][9] .  Here we have introduced a histological 
analysis pipeline which quantitatively analyzed histological images of brain tissue and generated MRI 
compatible parameter maps.  This demonstrates how histology can be used to validate tissue 
microstructure estimates from DW-MRI models.  
Figures

 
Fig. 1: The quantitative histological analysis pipeline. Red squares show the individual tiles applied to 
the image. Red outlines show the detection objects (nuclei). The detection object data was exported 
from QuPath and used to reconstruct the histological parameter map for Rsphere(Histology) in Python 

 
Fig. 2: a) H&E stained histological image; b) Rsphere(SANDI) parameter map for the DW-MRI slice 
corresponding to histology slice in a); c) Rsphere(Histology) parameter map for the segmented tumor 
ROI; d) Rsphere(SANDI); e) Graph showing the mean Rsphere value in the tumor ROI for the SANDI and 
histology parameter maps: each datapoint is associated with a single DW-MRI/histology slice. 
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Introduction: Distinguishing progressive disease (PD) from pseudo-progression (PsP) following 
chemoradiotherapy of high-grade glioma (HGG) has been challenging using conventional MRI [1,2]. 
Dynamic susceptibility contrast (DSC) MRI could provide an insight into neovascularisation and the 
tumour microvasculature [3,4], which potentially could aid early detection of PD. Therefore, the aim 
of this work was to assess the added value of DSC-derived microvascular and oxygen metabolism 
biomarkers, compared to the conventional perfusion parameters, to predict progression in treated 
HGG. 
Methods: This retrospective data analysis was performed under local ethical approval permitting 
analysis of images acquired for clinical management at University College London Hospitals (UCLH). 
Patients with histopathologically proven HGG, who developed new or enlarging enhancing lesions 
after completing standard-of-care concurrent chemoradiotherapy (CCRT) with temozolomide, were 
consecutively identified. Subjects were scanned between 2017 and 2021 using a 3T Prisma (Siemens 
Healthineers, Germany) and 3T Achieva (Philips Healthcare, Netherlands). In addition to the well-
established rCBV and rCBF analysis using two different software packages (Cercare (Cercare Medical, 
Aarhus, Denmark) and NordicICE (NordicNeuroLab, Bergen, Norway)), oxygen extraction fraction 
(OEF), relative cerebral metabolic rate of oxygen (rCMRO2), and capillary transit-time heterogeneity 
(CTH) were also obtained from the Cercare software. Enhancing lesions were segmented manually on 
3D post-contrast T1-weighted images co-registered to the raw DSC time course images by two 
experienced neuroradiologists. To obtain the normalised relative values of rCBV and rCBF (from both 
software) and rCMRO2, tumour ROI values were normalised to the contralateral normal appearing 
white matter in the post-contrast images. Differences in DSC-biomarkers between PD and PsP groups 
were assessed using the Mann-Whitney U test. The ability of these parameters to differentiate PD 
from PsP was assessed by receiver operating characteristic (ROC) curves. Logistic regression was 
carried out to investigate whether the combination of two or more parameters could enhance the 
diagnostic accuracy of the discrimination. 
Results: Thirty patients with HGG were included. Based on clinical-radiological criteria, 19 were 
classified as PD, whilst 11 as PsP (see Table 1). Progressing lesions exhibited significantly lower OEF, 
with a median of 11% [interquartile range (IQR): [5, 35]] compared to that in PsP group (median 46% 
[IQR: [15, 77]]), (p= 0.01, Table 2 and Figure 1). However, the differences in CTH and normalised 
rCMRO2, rCBVCercare, rCBVNodicICE, rCBFCercare, rCBFNodicICE between these groups were not statistically 
significant (Table 2). Moreover, OEF yielded the highest AUC, sensitivity and specificity (0.73, 0.72 and 
0.67, respectively (Table 2). Combining normalised rCBV and rCMRO2 measurements with OEF 
improved AUC and senstivity to 0.82 and 0.83, respectively (Table 2 and Figure 2). 
Discussion: In this study, PD of post-treatment HGG was associated with significantly lower OEF than 
in the PsP group, consistent with a previous study in glioblastoma (GBM) [5], a type of HGG.  Although 
it is known that GBMs typically show severe hypoxia, interestingly, both low- and high grade of glioma 
and peritumoral brain tissue also present with hypoxia [6], and hypoxia-inducible factors are found to 
be overexpressed [7]. In PsP, to compensate for CBF reduction and to maintain neuronal function and 
cellular integrity following the onset of cerebral ischemia, OEF typically increases [8]. The difference 
in rCBV and rCBF between the two groups was statistically insignificant, which was a consistent finding 
for both analytical software packages and can be explained by the fact that hypoxia occurs 
independently of perfusion [9], and tumor oxygenation cannot be inferred from the degree of 
angiogenesis (i.e. CBV) or CBF solely [10]. The reduction in OEF in PD was accompanied by an 
insignificant elevation of rCMRO2 compared to the PsP group (Table 2). This can be explained by the 
theory of the negative correlation between CMRO2 and OEF. In extensive angiogenesis and chaotic 
microvasculature topology, oxygen extraction tends to be less efficient [10]. It is anticipated that 
abnormal capillary bed morphology and shunts associated with neovascularisation could lead to an 
elevated CTH [11,12]. However, Park et el. [5] observed elevated CTH values in PsP compared to that 
in recurrence, whilst this did not reach a significance level in the current study, which is conceivably 
because of the smaller sample size and the heterogeneity in genetics and histological information. 

 

 

Prediction of progressive disease in treated high grade glioma using DSC-derived oxygen 
extraction fraction and microvasculature biomarkers 
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Conclusions: This work showed that OEF has the potential to discriminate between groups of PD and 
PsP, at early post chemoradiation stage of HGG. The combination of OEF, rCMRO2 and rCBV could lead 
to a further improvement in diagnostic accuracy. 
 

Table 1. Characteristics of studied cohort. 
WHO: world health organisation; CCRT: 
concurrent chemoradiotherapy. 

Fig. 2. Receiver operating characteristic (ROC) curves 
of DSC derived OEF and normalised rCMRO2 and rCBV 
and their combination. Area under curves (AUC) 
[95%CI] are in Table 2. 

Fig. 1. A. True progression example. An 
enlarging enhancing lesion in the left 
temporal region, with relatively low OEF 
post CCRT. Follow-up MRI showed a 
marked interval progression in the extent 
and degree of nodular enhancement. B,C. 
Pseudo-progression examples. B. 
Enhancing lesion in the right temporal 
lobe , with elevated OEF post CCRT. The 
lesion seems to resolve in two subsequent 
follow-up exams. C. A peripherally 
enhancing nodule in the supramarginal 
gyrus of the right parietal lobe showed an 
area of somewhat elevated OEF and the 
lesion does appear to have decrease in 
size in follow-up. 
 

Table 2. Differences in DSC-derived 
biomarkers between progression 
and pseudo-progression in high 
grade glioma, and corresponding 
diagnostic accuracy metrics. IQR: 
interquartile range. AUC: area under 
curve; CI: confidence interval; *: 
statistically significant. 
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those with ICC > 0.5 decreased accuracy for the GT model (Acc.=87.1%, 95% CI [77.0-94.0]) but 
increased it for the Autoseg model (Acc.=85.5%, 95% CI [75.0-92.8]). The top five important features 
for classification in the best GT model were the 10th Percentile, RMS, Median, Mean, and Min. When 
the model was trained on GT features but tested on Autoseg features, performance dropped 
significantly (Acc.=60.9%, 95% CI [48.4-72.4]). 
 
Table 1. Demographic characteristics of the cohort 

 Full Cohort Diagnostic Classifier Cohort 
N N=107 N=70 

Sex (M:F) 54:53 32:38 
Age (yrs; Mean(Range)) 6.9 (0.0-16.3) 7.0 (0.3-16.3) 

Diagnoses (n) 25 distinct diagnostic 
classifications 

Medulloblastoma (MB, n=27) 
Pilocytic Astrocytoma (PA, n=31) 
Ependymoma (EP, n=12) 

 
Discussion: The results show that even with modest automated segmentation accuracy, diagnostic 
classifiers built using radiomic features maintain high accuracy. Our previous work found that 
systematic dilation/erosion of manually drawn tumour masks biased DWI-derived radiomic features 
but had little impact on diagnostic classification, especially with feature selection prioritizing feature 
robustness [6]. The current results echo this in a real-world scenario: while segmentation errors 
affected DWI radiomic feature extraction, the diagnostic classifier's performance remained robust. 
However, these results are specific to this downstream task and cohort. It is unclear if they would 
generalise to hold-out test data, where automatic segmentation performance might decrease due to 
differences between training and hold-out datasets. 
 
Conclusions: In the context of a clinical DWI biomarker pipeline, we showed that even a modestly 
performing segmentation algorithm can generate clinically useful ROIs. These perform adequately for 
the purposes of downstream diagnostic classification in pediatric brain tumours, which could further 
benefit clinical implementation. 
 
Acknowledgements: Thanks to the Birmingham Children’s Hospital Brain Tumour Research Group for 
their support; researchers, clinicians, and families of the CCLG-FIG study; and “Help Harry Help Others” 
for funding TM. 
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Automatic Segmentation of Pediatric Brain Tumours using Diffusion-weighted MRI: 
Downstream Performance in a Diagnostic Classifier 
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Introduction: Segmentation of pathological tissue on MRI is crucial for analysing imaging biomarkers 
from brain tumours, such as extracting the apparent diffusion coefficient (ADC) from diffusion-
weighted MRI (DWI) to provide insights into the tumour microenvironment and classify tumour types.  
Manual segmentation by expert neuroradiologists is costly, time-consuming, and prone to inter- and 
intra-rater disagreement [1], making it unsuitable for clinical implementation. Automated deep-
learning approaches offer a promising alternative, demonstrating reasonable performance in adult 
datasets [2] and recent translation into pediatrics [3]. These automated approaches are typically 
evaluated by comparing predicted segmentations against expert-drawn 'ground truth' segmentations. 
However, in clinical scenarios where models are applied to unseen data, ground truth comparisons 
are not possible, highlighting the importance of determining when segmentation performance is 
sufficient for the downstream tasks that utilise these tumour masks. 
This study employed an automated tumour segmentation model using DWI in pediatric brain tumour 
patients. We evaluated the model's performance on two downstream tasks: extracting ADC radiomic 
features and classifying tumour diagnosis using these features. 
 
Methods: Dataset: Pediatric brain tumour patients (n=107, Table 1) were recruited from the 
Birmingham Children's Hospital for the UK Children’s Cancer and Leukaemia Group Functional Imaging 
(CCLG-FIG) Database Study. DWI was acquired clinically before surgical intervention or adjuvant 
therapy. 
Image Preprocessing: Apparent diffusion coefficient (ADC) maps were calculated from diffusion signals 
with B-values of 0 and 1000 s/mm². ADC maps were resampled to 1mm isotropic and intensity-
normalised. Ground-truth ROIs were manually drawn on B0 volumes, excluding oedema and large 
cystic regions. 
Automated Segmentation Model: Automated segmentation used Deepmedic (ver.0.8.4) [4], a multi-
scale 3D CNN with 11 layers. The model was trained using transfer learning and fine-tuning, with post-
processing applied (an approach developed within the lab). Final segmentation masks were generated 
through 4-fold cross-validation, with modest performance on test data, assessed using Dice score, 
comparing overlap of automated and ground truth ROIs (mean Dicetest=.485, median Dicetest=.567). 
ADC Feature Extraction: Using ground truth (GT) and automated segmentation (Autoseg) ROIs, 19 first-
order radiomic features were extracted using PyRadiomics [5], describing ADC values within the ROI 
for each participant. 
Analysis: ADC radiomic feature sets were evaluated using intraclass correlation coefficient (ICC) to 
estimate consistency between the two segmentation approaches. For the diagnostic cohort (n=70, 
including MB, PA, and EP), ADC feature sets were included in a random forest classifier to predict 
diagnostic category, using default parameters. Diagnostic accuracy was estimated with leave-one-out 
cross validation (LOO-CV) for each segmentation approach. Feature importance was estimated using 
the mean decrease in the Gini index. 
 
Results: The consistency in ADC radiomic features between the GT and Autoseg ROIs was generally 
poor (mean ICC=.405, median ICC=.405, range=.155-.741), with only seven features achieving an ICC 
of 0.5 or above. Despite this, the random forest classifier performed well with both GT (Acc.=88.6%, 
95% CI [78.7-94.9]) and Autoseg (Acc.=81.2%, 95% CI [69.9-89.6]) features. Limiting the feature set to 
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selected as optimal for training, having outperformed binary voting (Dicetrain=.944), intersection mask 
(Dicetrain=.904), and union mask (Dicetrain=.814). Model Testing: On test data, the fine-tuned ADC model 
with post-processing performed best (Dicetest=.485), with substantial improvement in the median Dice 
score compared to other models (Dicetest=.567). Only the post-processed ADC model and the 
ensemble outperformed the baseline model (table 1). 

 
Fig. 1. Examples of tumour masks for individual cases with 
high (A) to low (C) segmentation performance, based upon 

Dice score. Arrows indicate areas of prediction error. 

Table 1. Performance of best performing models for 
each modality and for the ensemble (across both 

train and test cohorts, over all folds). 
 

 

 
Discussion: ADC maps outperformed other DWI images and an ensemble that included the ADC map, 
despite high performance on training for all models. This supports studies highlighting the sensitivity 
of ADC metrics to tumour tissue. As the ensemble did not outperform the ADC model, this suggests 
that inclusion of B0/B1000 volumes may be redundant in such a model. While, the best model's DICE 
score was still lower than the 2023 BraTS-PEDs Challenge winning score (0.80 for tumour core using 
typical MR modalities). this study demonstrated that transfer learning and fine-tuning, even with a 
different imaging modality (T2w vs. DWI), improves segmentation performance versus a comparable 
baseline model. 
 
Conclusions: Fast, reproducible, accurate and modality appropriate ROIS are vital in the 
development of advanced radiological assessment in paediatric brain tumours. Here we present 
deep learning model, with cross-modality transfer learning for DWI based ROI generation.  
 
Acknowledgements: Thanks to the Birmingham Children’s Hospital Brain Tumour Research Group for 
their support; researchers, clinicians, and families of the CCLG-FIG study; and “Help Harry Help Others” 
for funding TM. 
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Introduction: Diffusion-weighted MRI (DWI) is valuable for neuroradiological assessment of pediatric 
brain tumours, providing insights into tumour microenvironment and enabling diagnostic 
classification [1]. Extracting biomarkers like apparent diffusion coefficient (ADC) requires tumour 
delineation using regions of interest (ROIs), but manually-drawn ROIs are time-consuming, require 
expert input, and are subject to inter-/intra-rater variability [2], making them impractical for clinical 
implementation.  
Automated segmentation approaches using deep learning have successfully extracted tumour masks 
from conventional MRI (T1w, T2w, T2-FLAIR) [3] with accuracy improving when including DWI [4]. 
However, additional modalities require more resources for processing and inter-modality 
coregistration, which is challenging in presence of pathology/artefacts [5] and may not be appropriate 
due to differing sensitivity to tissue types of each modality.  By exclusively using DWI images, this study 
presents a deep-learning model for automated segmentation of pediatric brain tumours from DWI. 
 
Methods: Data from 107 pediatric brain tumor patients (across ~25 tumour types) recruited from 
Birmingham Children's Hospital to the UK Children’s Cancer and Leukaemia Group – Functional 
Imaging Group (CCLG-FIG) database were used. DWI was acquired during standard care before surgical 
intervention and/or adjuvant therapy. B0 and B1000 images were extracted from DWI, and parametric 
ADC maps calculated. B0/B1000 images were corrected for bias field and Gibbs artifact, resampled to 
1mm isotropic, and intensity-normalised. ROIs were manually-drawn on B0 volumes using 3D Slicer, 
with additional modalities reviewed to ensure tumour inclusion and exclusion of oedema and macro-
cystic regions. ROIs were iteratively refined by TM and reviewed by JN & DGK until consensus.  
Automated segmentation was performed using the Deepmedic package [6], a CNN with 11 layers, 
including normal- and low-resolution pathways, and three fully-connected layers. A model was trained 
for each image set (B0/B1000/ADC), generating three probabilistic tumour segmentations. Two 
models were created, a baseline model trained only on the current cohort data, and a segmentation 
model, pretrained on open-access T2w MRI data of pediatric brain tumours (n=99) [7], and utilising 
transfer learning. For the transfer learning, the final three fully-connected layers were retrained, with 
the remaining layers frozen. Fine-tuning used a smaller learning rate, unfreezing and retraining all 
layers. Probabilistic segmentations of each image set were post-processed through erosion and 
dilation using a 3x3 all-ones kernel, producing binary segmentations. Three runs of transfer-learning 
and fine tuning were run, one for each DWI image (B0/B1000/ADC). Ensembling segmentations from 
all models (B0/B1000/ADC) was tested using four schemas: i) weighted voting, ii) binary voting, iii) 
union mask, and iv) intersect mask. 
All models were evaluated using 4-fold cross-validation (CV). Post-processing decisions were based on 
performance on training data, and final results reported for test data folds. Spatial-overlap between 
segmentations and ground truth ROIs was assessed using cohort average Dice scores (Dice = 2TP / 
(2TP + FP + FN), where Dice = 1 indicates perfect overlap). 
 
Results: Model Training: Model training, across the three DWI images (B0/B1000/ADC), was most 
successful when using a transfer learning plus fine tuning approach-– the models performed better on 
predicting cases in the training data.  Optimal probability thresholds and erosion/dilation steps varied 
between images. Among ensembling schemas, weighted (probability) voting (Dicetrain=.947) was 
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Fig. 1. Models representing balloon cells as seen in histology images from vimentin-stained cortical sections (2 left-
most) and dysmorphic neurons as seen in histology images from Golgi-stained cortical sections (2 right-most). [4] 
 

Fig. 2. Normalized direction-averaged signal vs b-value for the 5 neurons simulated, for a PGSE scheme with 
Δ/𝛿𝛿=45/15ms. Each line represents a TE as listed in the legend (64 –  120ms). 
 

 

Fig. 3. Signal diff. (L), fractional signal diff. (R) in pathology v. healthy tissue across b-values & TEs. (a): FCD-IIa,(b): FCD-IIb. 
 

Fig. 4. Volume fractions that 
minimize the difference between 
actual and simulated signal in the 
patient data. The left panel 
indicates the presence of balloon 
cells, consistent with the FCD-IIb 
diagnosis of the patient. The right 
panel indicates an elevated 
extracellular space fraction, 
consistent with FCD pathology. 

 

 

Enhancing subtle cortical lesion detection and tissue characterization via multi-dimensional MRI 
modelling and optimization 

Eirini Messaritaki1, Kadir Şimşek1, Charlie Air-Rossiter1, Derek K. Jones1, Marco Palombo1  
Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, UK 

 

Introduction: The limited ability of conventional MRI to detect cortical lesions is problematic for patients suffering 
from conditions such as focal cortical dysplasia (FCD). Multi-dimensional MRI allows simultaneous quantification of 
multiple properties sensitive to tissue microstructure but requires long acquisitions [1]. 
We use Monte-Carlo simulations to optimize relaxation-diffusion MRI and enhance detection of cortical lesions. 
We use FCD as an example pathology that is challenging to image [2]. We simulate the multi-dimensional MRI signal 
for healthy neurons [3], and for dysmorphic neurons and balloon cells that comprise the pathology of type-II FCD 
[2,4,5]. We use the simulation results to predict characteristics of the pathological tissue from MRI images of a FCD-
IIb patient, paving the way for the use of MRI scanners as non-invasive microscopes. 
Methods: We downloaded digital reconstructions (swc files) of neurons from the frontal, motor and temporal 
cortices from https://neuromorpho.org [6]. We used some unchanged to represent healthy neurons. We adapted 
others (enlarging the soma and trimming the dendrites in the Trees Toolbox [7]) to resemble balloon cells or 
dysmorphic neurons. We generated meshes representing their boundaries using the Blender software [8]. 
We performed Monte-Carlo simulations using a modified version of Disimpy [9] with the added capability to 
simulate the combined relaxation-diffusion MRI signal accounting for surface relaxivity and T2 effects.  
The phase accumulated by spin j moving inside a neuron under a diffusion-sensitising gradient 𝒈𝒈(𝑡𝑡) after one echo 
time (TE=Kδt) is [10]: 𝜙𝜙𝑗𝑗 = 𝛾𝛾 ∫ 𝑎𝑎(𝜏𝜏)𝒈𝒈(𝜏𝜏) ∙ 𝒓𝒓𝑗𝑗(𝜏𝜏)𝑑𝑑𝑑𝑑𝑇𝑇𝑇𝑇

0 , with 𝑎𝑎 (𝑡𝑡 < 𝑇𝑇𝑇𝑇
2 ) = +1, 𝑎𝑎 (𝑡𝑡 ≥ 𝑇𝑇𝑇𝑇

2 ) = −1. The T2–
magnetization decay is governed by the bulk and the non-uniform magnetization at the boundary of the domain 

[11,12]. Thus, the magnetization of spin j at echo time (TE) is: 𝑀𝑀𝑗𝑗 =  ∏ 𝑒𝑒− 𝛿𝛿𝛿𝛿
𝑇𝑇2,𝑖𝑖 (1 − 𝜓𝜓𝑗𝑗𝑃𝑃(𝑘𝑘))𝐾𝐾

𝑘𝑘=1 , where 𝑃𝑃(𝑘𝑘) = 1 if 

the spin hits the boundary and 0 if not, and 𝜓𝜓𝑗𝑗 = 2
3 𝜌𝜌2

𝛿𝛿𝛿𝛿
𝐷𝐷0

 (𝛿𝛿𝛿𝛿=step length in time 𝛿𝛿𝛿𝛿, D0=diffusivity, 𝜌𝜌2=membrane 

surface relaxivity). The normalized signal of N spins at TE is: 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = ∑ 𝑀𝑀𝑗𝑗𝑒𝑒−𝑖𝑖𝑖𝑖𝑁𝑁
𝑗𝑗=1
∑ 𝑀𝑀𝑗𝑗𝑁𝑁

𝑗𝑗=1
. 

We placed 106 spins inside each simulated neuronal substrate. We simulated a PGSE sequence with 12 b-values (0, 
500, 1200, 2400, and 3000 to 10,000s/mm2 in increments of 1000) and 128 isotropically-distributed gradient 
directions for 2 diffusion timings (Δ/𝛿𝛿=45/15ms, Δ/𝛿𝛿=25/9ms), 7 TEs (64, 70, 80, 90, 100, 110, 120ms) and surface 
relaxivity of 10-7m/s. We ran simulations for healthy neurons, balloon cells and dysmorphic neurons. For each {b-
value, Δ/𝛿𝛿, TE} set, we averaged the signal over the 128 gradient directions and normalized over the b0 signal. 
To identify acquisition parameters that maximally differentiate between healthy and FCD tissue, we calculated 
signal differences Shealthy – Spathol, and fractional signal differences (Shealthy – Spathol)/Shealthy. Healthy voxels comprised 
22% extracellular space and 78% healthy neurons. We simulated 2 pathology cases, both with 27% extracellular 
space [13]: a) 40% dysmorphic neurons, 33% healthy neurons (FCD-IIa), b) 20% balloon cells, 20% dysmorphic 
neurons, 33% healthy neurons (FCD-IIb) [5]. 
To derive characteristics of the pathological tissue, we used data collected from a 36-year-old FCD-IIb patient (b=0, 
200, 500, 1200, 2400, 6000s/mm2, 13/20/20/60/61/61 directions respectively, Δ/𝛿𝛿=24/7ms, TE=59ms). We ran 
simulations for healthy neurons, balloon cells and dysmorphic neurons for those parameters. We created a bank of 
sample signals for different volume fractions of healthy neurons (Fh), balloon cells (Fb), dysmorphic neurons (Fd) and 
extracellular space (Fe), with the extracellular space signal analytically calculated. For each lesion voxel in the patient 
data we calculated the discrepancy score between the measured signal Sm in that voxel and each sample signal Ss 
in the bank: Δ𝑆𝑆(𝐹𝐹ℎ, 𝐹𝐹𝑏𝑏, 𝐹𝐹𝑑𝑑, 𝐹𝐹𝑒𝑒) =  √∑ |𝑆𝑆𝑚𝑚

𝑏𝑏 − 𝑆𝑆𝑠𝑠
𝑏𝑏(𝐹𝐹ℎ, 𝐹𝐹𝑏𝑏, 𝐹𝐹𝑑𝑑, 𝐹𝐹𝑒𝑒) |2𝑏𝑏−𝑣𝑣𝑣𝑣𝑣𝑣 . The values of Fh, Fb, Fd and Fe resulting in the 

lowest value for S in each voxel were deemed to represent the values closest to the ground truth. 
Results: Fig. 1 shows our balloon-cell and dysmorphic-neuron models. They faithfully capture the characteristics of 
those pathological neurons seen via histology [4]. 
The normalized direction-averaged signal was higher for healthy neurons than for pathological ones, across b-
values and TEs (Fig. 2). The absolute and fractional signal differences between the healthy and pathological voxels 
are shown in Fig. 3. Fig. 4 shows the optimal values of Fh, Fb, Fd and Fe for the lesion voxels. 
Discussion: Signal differences peaked at b=2000s/mm2 for both PGSE schemes, allowing differentiation between 
healthy and FCD tissue in the clinic. Fractional signal differences peaked at b=6000s/mm2 and above and were larger 
for FCD-IIb voxels than FCD-IIa voxels, offering a way to non-invasively distinguish between the two types of 
pathology. Our analysis identified the presence balloon cells in the patient data, confirming the FCD-IIb diagnosis. 
Conclusions: Advanced MRI acquisitions offer hope for the detection and differentiation of cortical pathologies. 
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50% were kept (more than 98% for De and f, and 68% for tex). Differences between µGUIDE and NLS 
may be attributed to the more limited precision of NLS, or to the prior distributions not sufficiently 
adapted to the range of expected values in the tissue. In particular, the peak tex<3ms is unreliable 
given Δ>20ms and δ=9ms, and could be due to CSF contamination. The shoulder around 25-30ms is 
likely more robust; the peak tex>125ms could represent voxels with substantial WM partial volume. 

Fig. 1. Fitting results of the NEXI model using µGUIDE, on simulations generated following the extensive ex-
vivo acquisition protocol, and on the NEXI 3T Connectom protocol. 

Fig. 2. Histograms of the NEXI and SANDIX estimates from µGUIDE and Non-linear Least Square. 
 

Discussion: Our results reveal that each protocol exhibits unique strengths. The extended protocol 
allows for the estimation of exchange time in a noise-free scenario, while the Connectom protocol 
demonstrates robustness to noise. 
Conclusion: The estimation of exchange time using the two investigated models in a clinical setting 
proves to be challenging. 
Acknowledgements: MJ and MP are supported by UKRI Future Leaders Fellowship (MR/T020296/2). 
References:[1]Jelescu et al., NeuroImage 2022; [2]Olesen et al., NeuroImage 2022; [3]Jallais et al., arXiv 2024; 
[4]Uhl et al., Imaging Neuroscience 2024; [5]Veerart et al., NeuroImage 2016; [6]Kellner et al., MRM 2016; 
[7]Andersson et al., NeuroImage 2016; [8]Henschel et al., NeuroImage 2020;[9] Avants et al., Insight j, 2009. 
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Introduction: NEXI[1]/SMEX[2] and SANDIX[2] are recent gray matter (GM) microstructure models 
that focus on estimating exchange time, with SANDIX also considering soma fraction and radius. While 
these models aim to represent the underlying GM microstructure, their complexity makes the 
estimation of the model parameters challenging. For a given model, the choice of acquisition protocol 
is crucial, as it allows to tune the sensitivity to specific tissue parameters. However, rich protocol 
acquisitions are unsuited for patients due to very long scan time, as opposed to preclinical 
acquisitions. In clinical settings, where the protocol is less extensive, it becomes necessary to 
characterize its suitability for estimating microstructure parameters of a given model. Bayesian 
inference methods, such as µGUIDE [3], aim to estimate full posterior distributions, which allow to 
quantify the quality of the fitting and highlight degeneracies. This work aims at studying the fitting 
quality of NEXI and SANDIX, given two acquisition protocols used in literature, using µGUIDE. We 
investigate the impact on the fitting of both the acquisition protocol and the noise. 
Methods: Model definitions: NEXI [1] is a two-compartment model with four parameters: exchange 
time between neurites and extra-cellular space tex, intra/extra-neurite diffusivities Di/De, and neurite 
signal fraction f. SANDIX [2] adds a third compartment of impermeable spheres to model soma, with 
soma signal fraction fs and radius rs, making it more challenging to fit. 
Protocols: We considered two Pulsed Gradient Spin Echo protocols: an extensive ex-vivo acquisition 
protocol, similar to the one used to introduce SANDIX [2], and the NEXI 3T Connectom protocol [4], 
feasible for in-vivo human acquisitions. 
Simulated data: Synthetic signals were generated using both models and both protocols, with random 
parameter combinations sampled on biological feasible ranges. Rician noise levels sampled from the 
clinical data were added to the signals, with a median signal-to-noise ratio of 50, to mimic real data 
acquisitions. 106 synthetic signals were used for training µGUIDE. 
Clinical data: Four healthy volunteers were scanned (2 of whom rescanned on a different day). An 
MPRAGE was acquired for anatomical reference (1mm isotropic resolution). Diffusion-weighted 
images were acquired on a 3T Siemens Connectom system using a PGSE EPI sequence with 
combinations of b-values=[1,2.5,4,6,7.5]ms/µm² with [13,25,25,32,65] directions respectively, and 
Δ=[20,29,39,49]ms; δ=9ms, and 15 b=0 images per Δ at 1.8mm isotropic resolution, 
TE/TR=76/3700ms. Total scan time 45’. 
Processing: Multi-shell multi-diffusion time data was preprocessed jointly; steps included MP-PCA 
magnitude denoising [5], Gibbs ringing correction [6], distortion and eddy current correction [7]. The 
cortical ribbon was segmented on the MPRAGE image using FastSurfer [8] and projected onto the 
diffusion native space using linear registration [9]. Parametric maps were estimated using non-linear 
least squares (NLS) and µGUIDE. We extracted three measures from the estimated posterior 
distributions: maximum-a-posteriori; ambiguity and uncertainty [3], which quantify the variance of 
the posterior distribution, hence the confidence in the estimates. 
Results: Fig.1 presents the fitting results of the NEXI model on both protocols, considering noise-free 
and noisy signals. The extensive protocol allows to remove almost all degeneracies and substantially 
reduce the uncertainty of the estimates, but is heavily impacted by noise, as the signal for high b-
values is mostly lost. The fitting quality of the Connectom protocol is more robust to noise, as it relies 
on smaller b-values. However, even when considering a noise-free scenario, this protocol shows bias 
and variance in the parameter estimates. Similar trends are obtained using the SANDIX model. 
Fig. 2 compares the estimations obtained on the cortical ribbons of all the participants using µGUIDE 
and NLS for both models. For µGUIDE, only the estimates with uncertainty and ambiguity inferior to 
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WM areas. Differences with MCMC are slightly larger in SBI_joint than in SBI_classifier, potentially 
reflective of the more explicit model selection used in SBI_classifier and the MCMC. 

We subsequently explored whether these small differences have an effect in probabilistic 
tractography. We used the fibre orientations and their uncertainties estimated by each method to 
reconstruct major white matter bundles. Fig. 3A shows the relevant comparison and the UKBiobank 
average tract atlas [13] as a reference. All methods were able to reconstruct all the bundle tracts 
successfully. Some false positives were observed (see arrows in Fig. 3A), but correlations against the 
UKB average atlas across tracts were reasonable and within the expected range [13]. Interestingly, SBI 
approaches achieved a better performance compared to MCMC (Fig. 3B). SBI estimates increased 
agreement in WM tractography reconstructions for the dataset employed here, against 
reconstructions obtained from better quality data, averaged across 1000 subjects. 

Conclusion: Our results demonstrate the feasibility of using SBI for identifying and estimating fibre 
orientation in dMRI models, mapping calibrated uncertainty and use it subsequently for probabilistic 
tractography. SBI returned similar levels of accuracy and precision to MCMC with ARD priors. With 
orders-of-magnitude speedups in inference and greater flexibility in handling likelihood-free 
scenarios, our results highlight the potential SBI has in quantitative dMRI and modelling. 

Acknowledgements: JP and SS are supported by an ERC Consolidator Grant (101000969), MD, CS and 
JHM by the German Research Foundation (DFG) through Germany’s Excellence Strategy (EXC-Number 
2064/1, PN 390727645) and SFB1233 (PN 276693517), the German Federal Ministry of Education and 
Research (Tübingen AI Center, FKZ: 01IS18039) the Carl Zeiss Foundation and the Else Kröner Fresenius 
Stiftung (Project ClinbrAIn). 
 

Fig.2 – Comparison between the different methods in estimating A) the number of fibres per voxel and mean of 
the volume fraction posterior, B) mean of orientation posteriors (crossings in SLFs area), and C) uncertainty of 

fibre orientation posteriors (high uncertainty – bright, low uncertainty – dark). 

Fig. 3 – A) Maximum Intensity Projections (MIPs) of tracts reconstructed by the different methods. The UK Biobank 
atlas (average of 1000 subjects) is shown as reference. B) Spatial tract correlation with the UKB average atlas. 

Simulation-based inference in diffusion MRI: From uncertainty mapping to probabilistic 
tractography 

J.P. Manzano Patron1, Michael Deistler2, Cornelius Schroeder2, Theodore Kypraios3, Pedro 
Gonçalves2,4, Jakob H. Macke2, Stamatios N Sotiropoulos1 

  

1Sir Peter Mansfield Imaging Centre, University of Nottingham, UK, 2Machine Learning in Science, Excellence Cluster 
Machine Learning, University of Tübingen & Tübingen AI Center, Germany, 3School of Mathematical Sciences, University of 
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Introduction: Uncertainty quantification in diffusion MRI (dMRI) provides a principled way of assessing 
confidence in the results [1], quantifying noise effects [2] and aiding experimental design [3]. 
Furthermore, uncertainty mapping for estimated fibre orientations provides the basis for white matter 
(WM) probabilistic tractography, generally done via bootstrapping [4] or Bayesian inference (MCMC) 
[5]. Simulation-based inference (SBI) [6] has emerged as a data-driven alternative that allows 
likelihood-free and amortized inference, thereby enabling a dramatic speed-up of inference on large 
datasets, while at the same time making it possible to tackle complex models. SBI is based on first 
training an artificial neural network (ANN) on simulated data to learn posterior distributions for 
unseen data (i.e., to amortise inference), avoiding repeated likelihood evaluations or expensive MCMC 
sampling. Recent studies have successfully explored the application of SBI into dMRI microstructural 
models [7,8,9]. Here, we extend these by exploring performance of SBI for mapping uncertainty of 
fibre orientation models and using it in probabilistic tractography of brain WM. 

Methods: We developed an SBI 
framework for fitting the Ball&Sticks 
model [2] (N=2 crossing fibres). As 
shown in Fig. 1, SBI trains a Neural 
Posterior Estimator (NPE) [10,11] using 
synthetic data and learns the mapping 
between observations and the joint 
posterior distribution of the model 
parameters given the data. NPE can 
then be applied to estimate parameters 
and quantify their uncertainty on new 
unseen observations. We implemented 
and evaluated two different approaches: 
1) SBI_joint: a single NPE on both single- and crossing-fibre examples. 2) SBI_classifier: Similar to [9,12], 
using the dMRI signal as input, a classifier first performs model selection and selects which of two 
NPEs trained independently (for N=1 and N=2, respectively) is employed. Both SBI approaches were 
trained with the default implementations in [13], with 6M and 1M samples, respectively. For the 
classifier, we implemented a Multi-Layer Perceptron (4 hidden layers of 256, 128, 64, 32 units, 
respectively, dropout and ReLu activation functions, SoftMax output, Cross-Entropy Loss, Adam 
optimization). We compared SBI against MCMC (with a sparsifying ARD prior on the volume fractions 
to enable online model selection [2]). We also assessed their ability to perform landmark-based proba-
bilistic tractography [14] using data from a single-shell acquisition (50 directions, b=2000 s/mm2) [15]. 

Results and discussion: Fig. 2 shows a comparison of the estimates obtained from MCMC vs SBI, both 
in terms of mean estimates and their precision. Regarding the number of fibres predicted per voxel, 
both SBI_classifier and SBI_joint return similar patterns and rates of crossings to MCMC (~47%, 59%, 
and 51%, respectively). High agreement was also found in mean estimates maps for scalar parameters 
(such as volume fractions, Fig. 2A), as well as for mean 3D fibre orientation estimates (Fig. 2B). 
Similarly, similar patterns in the uncertainty of the estimated fibre orientations (Fig. 2c) were 
reproduced, with the SBI approaches returning slightly higher uncertainty (broader posterior) in some 

Fig.1 – Schematic representation of classical Bayesian 
inference (e.g., MCMC) and Simulation-based  frameworks. 
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requires a 256x256 input matrix; therefore, k-space was resampled 
during reconstruction and then down-sampled using spline interpolation 
[12,13]. Magnitude and complex domain MPPCA (|MPPCA|, MPPCA*), 
as well as NORDIC* were applied. Post-denoising, data preprocessing 
and distortion correction were carried out using an in-house pipeline 
[14] and FSL-eddy [15]. SNR and CNR metrics were obtained using FSL-
eddyQC [16]. To account for noise spatial non-stationarities, noise 
distributions were estimated from inside the brain (rather than 
background) using maximally attenuated CSF signal from the ventricles 
[17]. Noise-floor induced signal rectification was assessed by examining 
the signal attenuation parallel to principal fibre directions in highly 
anisotropic voxels [17].  

Results and Discussion:  Fig. 1 shows a qualitative comparison of b = 
3000 s/mm2 raw magnitude data along with magnitude images obtained 
using the various denoising approaches. Fig. 2 shows the distribution of 
differences (raw minus denoised data) both visually and graphically. The 
positive mean difference distributions in complex MPPCA, NORDIC and 
High ARDL are indicative of noise-floor suppression [3]. Suppression of 
the noise floor is further highlighted in Fig. 3, where the distribution of 
noise inside the brain is plotted. Additionally, Fig. 4 shows signal 
attenuation in the corpus callosum, highlighting signal rectification 
caused by noise-floor suppression. Fig. 5 highlights SNR and CNR gains 

for denoising methods. It is important to point out that 
ARDL performs 2D denoising on individual slices, while 
MPPCA and NORDIC consider all volumes simultaneously 
and perform 4D denoising.  

Conclusion: We found significant gains in dMRI data 
quality from a wide-bore scanner when denoising in the 
complex domain, both for reducing noise-induced 
variance and bias. Complex-domain denoising using deep 
learning (high ARDL) had the most suppression of noise-
floor and performed comparably to MPPCA for SNR and 
CNR gains. NORDIC* denoising had the highest gain in 
SNR and CNR, with comparable signal rectification to high 
ARDL.  
Acknowledgements: FD is supported by a studentship 
funded by GE HealthCare and the University of 
Nottingham. SW, JPMP and SNS are supported by an ERC 
Consolidator Grant (101000969). We would like to also 
thank Gavin Houston and Suchandrima Banerjee from GE 
HealthCare for useful discussions.  

 

 

Figure 3: Noise distribution in 
ventricles highlighting noise floor 
suppression in complex denoising. 

Figure 4: Average signal attenuation in the Corpus 
Callosum. Noise floor suppression in complex 
denoising leads to higher dynamic range. 

Figure 5: Comparison of 
magnitude raw and 
denoised data. MPPCA and 
NORDIC perform 4D 
denoising whereas ARDL 
performs 3D denoising. 

 

 

Comparing Deep Learning and Patch-based Denoising of Diffusion MRI 
Francesco D’Antonio1, Shaun Warrington1, Jose Pedro Manzano Patron1, Jaemin Shin2, Tim 

Sprenger2, Paul S. Morgan1, Stamatios N. Sotiropoulos1 
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University of Nottingham, Nottingham, United Kingdom 

2GE HealthCare 
Introduction: The trade-off between resolution, noise and scan time typically governs acquisition 
choices for MRI and particularly for noise-prone modalities, such as diffusion MRI (dMRI). Patch-based 
denoising approaches, such as MPPCA [1] and NORDIC [2], offer better middle-ground solutions, 
allowing higher resolution and/or SNR/CNR per scan time in SNR-starved acquisitions [3]. Novel 
denoising methods have been recently proposed using deep learning [4,5,6], but comprehensive 
evaluation of their performance for dMRI analysis is lacking.  Previous work has suggested that the 
way and the domain (magnitude/complex) into which denoising is applied can have significant 
implications for subsequent analysis, affecting noise-induced variance [7], bias and true resolution in 
different ways [3]. In this work, we compare magnitude and complex patch-based approaches 
(|MPPCA|, MPPCA* [1] and NORDIC* [2]) with GE HealthCare’s AIRTM Recon DL (ARDL) [4] 
(convolutional neural-network-based) denoising to understand their effects on SNR/CNR and noise-
floor. We use an HCP-style dataset at 1.25mm isotropic resolution and up to b=3000 s/mm2 [8,9] to 
demonstrate how denoising affects dMRI performance in a wide-bore 3T scanner. 

Methods: DMRI data was acquired using an HCP-style sequence [8,9] (1.25mm isotropic, 46 
volumes/shell, two shells: b=1500, 3000 s/mm2, MB=4, TE=88.7ms, TR=4.8s, Homodyne 
Reconstruction [10]) on a GE HealthCare 3T Premier scanner (MR29.2). We developed an offline 
reconstruction pipeline to retain complex data for denoising [11]. ARDL, which operates in the 
complex domain on 2D slices, was applied with low and high denoising weighting on the same data, 
using retrospective reconstruction on the scanner. Data was acquired using a 160x160 matrix. ARDL 

Figure 1: Qualitative comparison of two b=3000 s/mm2 volumes. From left to right: magnitude raw data, magnitude MPPCA 
denoising, complex MPPCA denoising, complex NORDIC denoising, ARDL (complex) on low and high settings. 

Figure 2: Distribution of differences (raw minus denoised data). Higher intensities in the ventricles and positive mode of 
distributions for complex MPPCA, NORDIC and high ARDL indicate noise floor suppression. 
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Effects of image reconstruction on fiber orientation mapping from multichannel diffusion MRI: reducing the noise 
floor using SENSE. Magnetic resonance in medicine, 70(6), 1682-1689. 
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scanner. To validate the pipeline, scanner and offline reconstructions were compared by analysing the 
difference in the magnitude domain. Image noise (captured as the distribution of diffusion-weighted, 
maximally attenuated CSF signal in the ventricles) was analysed for Homodyne reconstructions to 
explore proximity to a Rician distribution. The phase maps for zero-filled partial Fourier and full Fourier 
acquisitions were reconstructed using checkerboard and CAIPIRINHA [13] corrections.  

Results and Discussion:   Scanner and pipeline magnitude 
reconstruction gave almost identical results, as highlighted 
in Figure 3, validating the offline reconstruction. Examples 
of reconstructing phase are shown in Figure 4a and 4b. 
Figure 4c shows the noise distribution of Homodyne 
reconstructed data, validating that the pipeline provides a 
non-skewed Gaussian distribution, as expected (since 
homodyne reconstruction rotates and retains complex 
information into the real channel). Figure 5 showcases 
examples of denoising complex data, enabled by the 
pipeline reconstruction, highlighting the suppression of the 
noise-floor when compared to the magnitude alternative 
(red arrows). The pipeline is open-source and available 
upon request to users with a GE Research Code Sharing 
License (RCSL). 
Conclusion: Complex reconstruction of diffusion 
acquisitions on GE HealthCare scanners is now publicly 
available through the developed pipeline. We validated the 
pipeline by comparing scanner and pipeline magnitude 
reconstruction, showing minimal differences and 

supporting several in-plane and out-of-plane accelerations, as well as denoising options. 
Acknowledgements: FD is supported by a studentship funded by GE HealthCare and the University of 
Nottingham. SW and SNS are supported by an ERC Consolidator Grant (101000969). Thank you to 
colleagues from GE HealthCare Jaemin Shin, Tim Sprenger, Gavin Houston and Suchandrima Banerjee 
for their advice and support. 
 

Figure 3: Magnitude percentage differences between pipeline and scanner reconstruction. a) 2mm isotropic, ASSET=2, zero-
filled reconstruction. b) 1.3mm isotropic, MB=4, Homodyne reconstruction.  

Figure 4: Examples of complex reconstruction. a) Phase from 2mm isotropic MB=4 data. b) Phase from 2mm isotropic MB=4 
ARC=2 data. c) 1.3 mm MB=4 homodyne reconstruction showing gaussian noise in the ventricles. 

Figure 5: Denoising examples using 1.3mm iso, 
MB=4, b=3000s/mm2. Top: scanner recon with 
magnitude denoising. Bottom: complex denoising 
from pipeline recon showing superior noise floor 
suppression (red arrows). 

 

 

End-to-end Complex Reconstruction and Denoising Pipeline for GE Diffusion MRI Acquisitions 
Francesco D’Antonio1, Shaun Warrington1, Paul S. Morgan1, Stamatios N. Sotiropoulos1 
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Introduction: The use of complex MRI data has seen a 
resurgence over the last few years due to their application in 
the training of convolutional neural networks (CNN) and their 
improved denoising outcomes compared to magnitude data 
[1,2]. CNNs trained on complex data show superior 
reconstruction to magnitude-trained CNNs in terms of 
normalised RMS and SNR [1,3,4]. Additionally, denoising 
complex diffusion data improves SNR, CNR and reduces noise-
floor effects compared to denoising magnitude data [2]. 
Reconstructing complex data in diffusion MRI acquisitions is 
not available as standard from many scanner manufacturers, 
making magnitude denoising and training the only widely 
available option. In this work we developed a scalable offline 
reconstruction pipeline for diffusion acquisitions on GE 
HealthCare scanners which uses raw data from individual coil 
elements and returns both complex and magnitude data. The 
pipeline has built-in capabilities for dMRI denoising, using 
MPPCA [5,6] and NORDIC [7] algorithms, as well as options to 
modify the reconstruction steps. We tested the equivalence of 
the offline and scanner reconstructions in the magnitude 
domain. 

Methods: We developed an end-to-end python pipeline 
for complex reconstruction by building upon the C++ 
Orchestra SDK available through GE HealthCare’s 
WeConnect website. The pipeline takes as input 
ScanArchive.h5 files and outputs DICOMs and denoised 
NIfTI files (either magnitude or complex). Compared to 
default Orchestra, our workflow allows: i) Proper 
reconstruction of multiband acquisitions; ii) Proper 
indexing of dMRI volumes and slices for all 
combinations of in-plane and out-of-plane 
accelerations; iii) Accounting for phase encoding 
direction and creation of bvals and bvecs files; iv) 
Optional flags to modify the reconstruction (such as 
gradient non-linearity correction, high-order eddy 
current correction, complex/homodyne reconstruction, 
see Fig. 1). Figure 2 highlights examples of how the 
proposed pipeline addresses challenges faced by the 
default Orchestra SDK. Reconstruction of diffusion MRI 
data is supported for both in-plane and out-of-plane 
accelerations. Data using SENSE-like acceleration [8] 
(ASSET factors 1 and 2), GRAPPA-like acceleration [9] 
(ARC factors 1 and 2), multiband (MB) [10,11] (1 and 4), 
and partial Fourier (using the Homodyne method [12]), 

were acquired and reconstructed offline, using the developed reconstruction pipeline, and on the 

Figure 1: Offline reconstruction and 
denoising pipeline workflow. Python 
wrapper steps are in blue, C++ 
reconstruction in orange and steps which 
can be optionally included are unfilled. 

Figure 2: Examples of corrections performed by the 
pipeline (right) with respect to the C++ Orchestra SDK 
(left): correct slice indexing (top), multiband 
reconstruction (middle) and phase encoding direction 
(bottom).  
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Towards quantifying Gray Matter “micro-connectivity”: the measurable impact of 
dendritic spines on metabolite diffusion  
Kadir Şimşek1,2 and Marco Palombo1,2 - 1Cardiff University Brain Research Imaging Centre (CUBRIC), 
School of Psychology, Cardiff University, Cardiff, United Kingdom; 2School of Computer Science and 
Informatics, Cardiff University, Cardiff, United Kingdom 
Introduction: The brain gray matter (GM) exhibits highly heterogeneous and complex microstructures, 
that can be probed by diffusion-weighted MRS (dMRS) in-vivo1–4. Several works have already investigated 
the effect of cell body size/density5,6; cell processes branching6–8, undulation9, beading10 and orientation 
dispersion7,11 on dMRS measurements.  
However, only a few works12,13 have investigated the potential effects of secondary structures like 
dendritic spines. Dendritic spines play a crucial role in synapse development and plasticity in both healthy 
and pathological conditions14–16. But it is still unclear what the impact of dendritic spine is on metabolites 
dMRS signal and whether we can measure it in typical human acquisitions. Here we aim to answer these 
questions by investigating the impact of dendritic spines density on dMRS measurements using numerical 
simulations.  
Methods:  
Spiny Dendritic Segments: Skeletons for ten spiny branches were built on MATLAB R2022a (MathWorks) 
involving functions from the Trees-Toolbox17 and then surface meshed using Python Blender API v2.79.  
The geometric properties of the substrates are documented in Fig.1. Notably, any of these features can 
be changed arbitrarily, but here we focused on spine density, 𝜎𝜎, and purposely varied only that. Moreover, 
to investigate the impact of undulation and beading in addition to spine, we also added undulation and 
beading with period [0-8] and amplitude [0-3]μm, respectively. 
Diffusion Simulations & Data Analysis: All diffusion Monte-Carlo simulations were performed using 
DisimPy18 with periodic boundary conditions. The number of spins 106 and time steps 2000 were 
determined by the Monte-Carlo19,20; intra-branch diffusivity was 0.35μm2/ms (typical value for N-acetyl-
aspartate, NAA21). We simulated 15 different pulsed gradient schemes with combinations of 8 gradients 
separations(Δ= [10, 25, 35, 55, 85, 160, 235, 310] ms), two gradients (𝛿𝛿= [3, 15] ms), 128 directions and 
b-values up to 25ms/μm2.  

To characterize the hindering/restricting effect of spines on metabolites diffusion, we used a modified 
astro-sticks model (mAS)4,22,23. This model is based on randomly-oriented sticks with effective intra-stick 
axial diffusivity 𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒(𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 𝐾𝐾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 𝑏𝑏) = 𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(1 − 𝐾𝐾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃), where 𝜃𝜃 is the angle between 
the branch direction and the diffusion gradient direction, 𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the metabolite intra-stick apparent 
axial diffusivity, 𝐾𝐾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  is the metabolite intra-stick apparent axial kurtosis, accommodating non-Gaussian 
diffusion due to spines hindering/restriction22,23. The numerical integration yields the corresponding 
powder-averaged signal13,24,25: 𝑆𝑆/𝑆𝑆0 = ∫ 𝑒𝑒−𝑏𝑏𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃𝑑𝑑(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)1

0  
Results: Fig.2 reports the sensitivity analysis for spine detection for ideal and realistic acquisitions. Fig.3 
shows the impact of undulation and beading. 
Discussion & Conclusion: For changes in 𝜎𝜎 from the typical value 1μm-1 observed in pathologies like 
essential tremor (~-25%)14 and autism (~+50%)15, 𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  & 𝐾𝐾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  from the mAS model show measurable 
changes for the ideal acquisition at 𝑡𝑡𝑑𝑑=9ms. For the pulse scheme used in clinical human studies13,24, only 
changes in 𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  remains measurable, while changes in 𝐾𝐾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  requires SNR>100 to be measurable.  
Noteworthy, undulations and beading overall lead to further decreasing  𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  and increasing  𝐾𝐾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  up 
to ~+-10% for realistic values of beading amplitude (1-2μm) and undulation period (0-4).   
This study suggests that metabolite diffusion as measured by dMRS can be sensitive to spine density 𝜎𝜎 
and that 𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  & 𝐾𝐾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  from the mAS model can be promising imaging markers of GM ‘micro-
connectivity’ in healthy and diseased brain. 
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Diffusion in dendritic spines: impact on permeative exchange estimation with time-
dependent diffusion-weighted MRI  
Kadir Şimşek1,2 and Marco Palombo1,2 - 1Cardiff University Brain Research Imaging Centre (CUBRIC), 
School of Psychology, Cardiff University, Cardiff, United Kingdom; 2School of Computer Science and 
Informatics, Cardiff University, Cardiff, United Kingdom 
Introduction: Time-dependent diffusion-weighted MRI 
(dMRI) can probe exchange in complex biological tissues1–4. 
While it is expected that different exchange mechanisms 
contribute to the time-dependent signal5,6, measurements are 
often primarily interpreted in terms of transcytolemmal water 
exchange. The Neurite Exchange Imaging (NEXI)3 and the 
Standard Model with Exchange (SMEX)2 are two recent 
examples of model-based approaches to estimate exchange 
in brain tissue. Both NEXI and SMEX assumes that the only 
exchange mechanism leading to the measured time-
dependent dMRI signal is permeative exchange between intra 
and extra-neurite compartments.  
The aim of this work is to underscore the importance of 
considering diffusion-mediated exchange when interpreting 
model-based estimates of exchange in complex 
microstructures such as the brain Gray Matter (GM).  We 
hypothesize that water diffusing within spiny dendrites in the 
GM, without crossing the cell membrane, can originate a time-
dependent signature which is indistinguishable from permeative exchange (Fig.1A); and use Monte-Carlo 
simulations with a basic model of spiny dendrite (Fig.1B) to validate it and evaluate the impact of different 
spine densities on NEXI/SMEX estimates.  
Methods: Spiny Dendritic Meshes: Skeletons of spiny dendritic branches for two sets of substrates were 
built on MathWorks MATLAB 2022a involving functions from the Trees-Toolbox7 and then surface meshed 
using Python Blender API v2.79.  Set I: ten spiny branches (𝜎𝜎=[0, 2.25] μm-1) for investigating the exchange 
effect of diffusion in spines without undulation and/or beading. Set II: 16 spiny branches (𝜎𝜎=1μm-1): 4 
undulation periods (𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝=[0, 2, 4, 8]) x 4 beading amplitudes (𝐴𝐴𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏=[0, 1, 2, 3] μm).  
Diffusion Simulations & Data Analysis: DisimPy8 was employed in all simulations. The number of spins 
106 and time steps 2000 were determined by the Monte-Carlo convergence9,10. Five different pulsed 
gradient schemes, combinations of three gradient separations (𝛥𝛥= [10, 25, 35] ms) and two gradient 
durations (𝛿𝛿= [3, 15] ms) were used with 128 directions and diffusion-weighting b up to 7ms/μm2. Periodic 
boundary conditions were used for intra-branch diffusion simulations with diffusivities 2μm2/ms (typical 
value for intra-neurite water2,11). 
For a fair comparison with NEXI/SMEX biophysical modelling, we simulated the total signal 𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡   arising 
from a dMRI voxel as the weighted sum of intra and extra-neurite signals, 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  and 𝑆𝑆𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 , 
respectively: 𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 0.7𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 0.3𝑆𝑆𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 . 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  is derived from our simulation in spiny 
dendrites at different spine densities and/or undulations, while 𝑆𝑆𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺  is mono-exponential decay with 
diffusivity of 1 µm2/ms (Fig.3,4). We assumed 70% intra-neurite signal fraction. 𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  was fitted using 
NEXI model3 to estimate the exchange time (𝑡𝑡𝑒𝑒𝑒𝑒 ) for all simulated conditions. 
Results: Fig.2A illustrates exemplary spiny branches featuring only undulation and only beading the 
exchange and presents the modelled diffusion signal from a  dMRI voxel for a fair comparison with 
NEXI/SMEX biophysical models. Fig.2B reports 𝑡𝑡𝑒𝑒𝑒𝑒  estimations as a function of 𝜎𝜎 while Fig.2C presents 

Fig.1: A. Permeative exchange & diffusion-
mediated exchange with no permeation, due to the 
presence of spines. B. The tunable basic model of 
spiny dendrites we developed to control spine 
morphology and density. 
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Figure 1: The changes in  𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  & 𝐾𝐾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  with 
respect to the case of no undulation and beading 
for 𝜎𝜎=1μm-1, obtained from undulated and 
beaded spiny branch simulation estimates.
𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  & 𝐾𝐾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  percentage differences are 
shown for ideal (top) and clinically feasible 
(bottom) pulse schemes.  

Figure 3: Illustration of spiny dendritic segments. 
The geometric properties are reported in the figure. 

Figure 2: Spine sensitivity analysis: A hundred diffusion 
signals with different signal-to-noise (SNR) levels were 
generated. The mean 𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  & 𝐾𝐾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  and their 
corresponding standard deviations are shown as a 
function of 𝜎𝜎 in the figure (A: ideal gradient scheme; B: 
clinically feasible gradient scheme). At the bottom of  
each panel, the change in intra-stick diffusivities and 
kurtosis, 𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  & 𝐾𝐾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, are presented with correspind 
error for typical changes [±25%, ±50%] in 𝜎𝜎=1μm-1 due 
to pathology14–16 
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Subjective craving and brain response to drug-related cues in former drug addicts: An 
fMRI study 

Elza A. Othman1, Nor A.A Mohd Nawawi1, Fairuz Mohd Nasir1, Kamarul A. Abdullah1, Aini I. Abd 
Hamid2, Wan M.A. Wan Mohd Yunus3, Ahmad N. Yusoff4, Mazlyfarina Mohamad4, Hamzaini Abd 
Hamid5, Nor S. Abdul Wahab5, Mohammad F.I.L Abdullah6, Mohd N. Baharudin7, Vincent P. 
Giampietro8 
 
1School of Medical Imaging, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Terengganu, 
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Introduction: Drug addiction has emerged as a pervasive global issue affecting individuals, families, 
and societies across the world. From affluent nations to developing countries, the prevalence of drug 
addiction continues to rise, posing significant burdens to public health and socioeconomic stability [1]. 
In an effort to curb drug addiction, authorities have established various rehabilitation programmes to 
help cease cravings among drug addicts [2]. Despite these efforts, the relapse rate continues to 
skyrocket. A plausible assumption derived from the current literature is that rehabilitation 
programmes may not have been effective in reducing neural activity in brain areas associated with 
the reward pathway [3-4]. As such, it was hypothesised that exposure to drug-related cues may evoke 
neural activation in brain areas associated with drug cravings in former drug addicts (FDAs) after 
completing rehabilitation programmes, thus leading to relapse. To test the hypothesis, this study was 
performed to examine the brain activity of FDAs towards drug-related cues and its relationship to the 
level of subjective craving. 
Methods: A cross-sectional study was conducted involving 20 FDAs (mean abstinence period of 6.20 
± 3.79 years) and 23 gender-matched healthy controls (HCs). Participants were recruited for the study 
via purposive sampling. The FDAs were individuals who had completed the community-based 
rehabilitation programmes operated under the National Anti-Drug Agency (NADA). All participants 
performed a 16-minute functional MRI (fMRI) experimental task inside a 2.89 Tesla Siemens Skyra MRI 
system, where they viewed a series of drug-related cues interleaved with baseline images presented 
in a block-design paradigm. The drug-related cues were obtained from the Methamphetamine and 
Opioid Cue Database (MOCD) [5]. Participants’ subjective drug craving scores were acquired using a 
visual analogue scale (VAS) before and immediately after the fMRI scans. The fMRI data were pre-
processed and analysed in Statistical Parametric Mapping (SPM12). Individual data were analysed 
using fixed-effect analysis (FFX) to obtain individual brain activation maps. Random-effect analysis 
(RFX) was later performed to generate within-group (one-sample t-test) and between-group (two-
sample t-test) brain activation maps. The number of activated voxels (NOV) was correlated with the 
level of subjective craving scores using a Spearman rank correlation analysis. The statistical 
significance level was set at P < .05. 
Results: Whole-brain analysis showed significant (PFWE < .05) activity in brain regions associated with 
visuospatial attention and visual processing in both groups when participants viewed the drug-related 

estimated 𝑡𝑡𝑒𝑒𝑒𝑒  as a function of undulation 
period when there is no membrane 
permeability. Fig.3 illustrates simulated 
diffusion signals of spiny dendritic 
branches in the case of only beading.  
Discussion & Conclusion: The 
estimated 𝑡𝑡𝑒𝑒𝑒𝑒  values (3-60 ms) for spine 
densities typically observed in healthy 
cortical GM (0.5–1.5 µm-1) are in very 
good agreement with both in-vivo and ex-
vivo estimates from rat GM2,3 and 
human12.   
The time-dependent signal from diffusion 
within impermeable spiny dendrites is 
indistinguishable from permeative 
exchange. Our findings can contribute to 
a more insightful interpretation of 
exchange estimates using dMRI, 
underscoring the importance of 
cautioning when inferring exchange 
estimates as indicators of membrane 
permeability only. 
Finally, we acknowledge that the simulated spiny dendrites 
are oversimplified. Other microstructural features, such us 
undulations and beading could also confound the 
interpretation of exchange mechanisms. Indeed, adding 
undulations lead to shorter exchange times when 
estimated with NEXI for realistic undulation periods 0-4 
(Fig.2). In contrast, Fig.3 shows that beading leads to a 
different time-dependence of the direction-averaged 
signal, indicating more restriction to the diffusion, as 
previously reported13. 
Future work will investigate whether it is possible to 
disentangle permeative from diffusion-mediated 
exchange, and how sensitive and specific our 
measurements can be to spine-induced diffusion-
mediated exchange (e.g. with respect to undulations and 
beading).  
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Fig.2: (A) Modelling the total signal arising from a dMRI voxel as the 
weighted sum of intra and extra-neurite signals, 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  (our simulations) 
and 𝑆𝑆𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 (mono-exponential decay with diffusivity of 1 µm2/ms), 
respectively. In the bottom, exemplary spiny branches for undulation only 
and beading only cases. (B) the estimates of exchange time are reported as 
a function of spine density for both narrow and fat pulse cases. (C) The 
estimated 𝑡𝑡𝑒𝑒𝑒𝑒  times for the case of only undulated spiny branches are shown 
as a function of undulation period for short pulse condition. 

  

Fig. 3: Simulated diffusion signals of beaded substrates 
do not indicate intra-compartmental (i.e., from spines 
to dendritic branch) exchange due to increasing signal 
amplitudes with increasing diffusion time. This 
outcome highlights beading is only introduce a 
restriction to the molecular diffusion as reported in the 
literature13. 
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Fast (<100ms TR) 3T fMRI unravels the dynamics of visual perception: investigation of 
travelling waves in binocular rivalry. 

Rowan Huxley1, Oliver Mundell2, Aneurin J Kennerley2, Elisa Zamboni1 
1School of Psychology, Faculty of Science, University of Nottingham, Nottingham, UK 
2Institute of Sport, Department of Sport and Exercise Sciences, Manchester Metropolitan University, 
Manchester, UK 
Introduction: Understanding the mechanisms of visual dominance and suppression in the human 
brain is crucial for insights into various neurological and psychiatric conditions. When different visual 
stimuli are presented to each eye, the brain does not merge them into a single image, but instead 
experiences binocular rivalry, where conscious perception alternates between the two stimuli [1]. The 
dynamic changes in perceptual alternations during binocular rivalry have potential as biomarkers for 
disorders such as schizophrenia [2], autism [3], and ADHD [4]. Additionally, in strabismus (eye 
misalignment), one eye becomes dominant and suppresses the input from the weaker eye, which can 
lead to reduced neural representation and function in the affected eye over time [5,6]. A deeper 
understanding of these cognitive processes and neural mechanisms can aid in early diagnosis and 
monitoring of disease progression and offer insights into how visual competition affects conditions 
like strabismus and amblyopia. Previous research suggests that these perceptual changes may 
manifest as travelling waves across the visual field [7]. In this process, the suppressed image initially 
appears in one location and then gradually becomes dominant. Typically, these changes are triggered 
by abrupt contrast shifts between the images [8]. This study employs fast (<100ms TR) functional MRI 
at 3T t detect phase shifts in response onset across different parts of the visual field (Fig.2), aiming to 
characterise visual stimuli properties involved in binocular rivalry and perceptual dominance 
fluctuations. Understanding these mechanisms can unravel how to the brain processes conflicting 
sensory information and resolves perceptual ambiguities.   
Methods: Data acquisition was performed on a Siemens 3T MAGNETOM Vida system using a 64-
channel head/neck coil at the Institute of Sport, following approval by the Science and Engineering 
ethics review board at Manchester Metropolitan University. Functional scans used a T2* gradient-
recalled-echo pulse sequence (TR/TE=100/23ms, FA=15, pF=6/8, bandwidth=1520 Hz/px, 
FOV=188mm, effective inplane resolution = 2 x 2 mm, 10mm slice thickness). A retinotopic map (GE-
EPI:52 slices, 2.5mm iso, TR/TE=1000/30ms) was acquired to identify the grey matter voxels that 
corresponded, retinotopically, to the stimulus annulus presented in the main experiment. Whole-
brain T1-weighted structural images (0.8mm isotropic) were acquired using standard MP2RAGE. 
Paradigm: Rival stimuli comprised radial annulus patterns with varying radial and angular cycles to 
create one concentric grating and one radial grating, each covering 9 degrees of visual angle. The 
stimuli were presented at the same location on the screen, but distinct colours allowed each grating 
to be seen by only one eye through red-cyan anaglyph glasses (Fig.1). Trials began with the concentric 
grating shown for 30ms, followed by the radial grating, which ensured that the radial grating became 
the conscious percept. After 480ms, the contrast in a small region of the concentric grating at the 
annulus’s top was abruptly increased for 75ms. This pulse typically initiated a perceptual travelling 
wave, causing the concentric grating to emerge into consciousness while the radial grating was 
suppressed. Participants pressed a key when the traveling wave reached a marked area at the bottom 
of the annulus, after which the stimuli were removed, and a blank screen was shown for 9s before the 
next trial. 
Data analysis: Retinotopic mapping data identified the V1 region representing the stimulus annulus 
(Fig.3A). Main experimental session data were pre-processed (head motion correction, slice timing 
correction, high pass filtering). The average timecourse for each voxel within the V1 region was 
extracted and fitted to a sinusoidal function to estimate phase and amplitude, which corresponded to 
the time-to-peak and response amplitude of the fMRI response to the travelling wave stimuli.  
Results: Using the eccentricity map, the V1 voxels representing the stimulus annulus were identified 
(Fig.3A). The polar angle map pinpointed the top region where the contrast change triggered the 

 

 

cues. These regions were the inferior occipital gyrus (IOG), middle occipital gyrus (MOG), occipital pole 
(OCP), calcarine cortex (Calc), inferior temporal gyrus (ITG), occipital fusiform gyrus (OFuG), fusiform 
gyrus (FuG), and thalamus proper. However, a direct comparison through a two-sample t-test did not 
reveal any brain areas significantly differentially activated between groups at a stringent threshold of 
PFWE < 0.05. Figure 1 illustrates the brain activation pattern in the FDA group and the HC group during 
the fMRI task (drug > baseline). Additionally, the Spearman rank correlation analysis revealed no 
significant correlation between brain activation and craving scores in both groups. 

              
Fig. 1. Whole-brain analysis demonstrates significantly activated brain areas (PFWE < .05) for the FDA 

group (left panel) and the HC group (right panel) during the visual fMRI task (drug > baseline). 
 

Discussion: Both FDAs and HCs showed a significant increase in brain activities in areas associated 
with visuospatial attention and visual processing when viewing drug-related cues. A detailed 
inspection of these brain areas indicates that they were not directly involved in drug cravings. This 
finding suggests that the increased activations were due to participants' actively viewing the visual 
drug-related cues during the fMRI experiment and were not due to heightened levels of craving. 
Additionally, the non-significant fMRI results between the FDAs and HCs indicate that the brains of 
the FDAs were not significantly evoked by the drug-related cues, suggesting that the FDAs may have 
recovered from drug addiction. This is further supported by the non-significant correlation between 
the NOV and subjective craving score.  
Conclusions: This study provides new evidence that the brains of FDAs do not show significant 
responses to drug-related cues, implying that they may not be affected by visual drug-related cues 
upon completing rehabilitation programmes. This finding contradicts current evidence that increased 
activations in FDAs lead to relapse. Future works are warranted to address factors that may contribute 
to this discrepancy.  
Acknowledgements: The authors thank the Ministry of Higher Education (MOHE) for providing 
funding support for this Fundamental Research Grant Scheme project 
(FRGS/1/2022/SKK06/UNISZA/02/2). 
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Fig. 2. (A) Experimental design: dashed line trials where left and right hemispheres are stimulated 

simultaneously (flickering checkerboard; 2s ON, 26s OFF). Solid line trials where the left hemisphere 
(right hemifield) is stimulated 1000ms before the right hemisphere. (B) Mean response to 

stimulation of the right (blue) and left (red) visual hemifield. Dashed lines for both hemifield 
stimulated simultaneously. When the hemifields are stimulated 1000ms apart, there is a clear delay 

in the peak response, further affected by the stimulation of the left hemifield. Bottom: Lissajous 
plots for the zero- (left), and the 1000ms delay condition (right). (C) Activation map and ROIs used 

for data in (B). 
 

 
Fig. 3. (A) Surface representation of V1 mapping overlaid onto eccentricity map. The region in purple 

shows the retinotopic presentation of the annulus used in the main experiment.  (B) Example of 
average timecourses of grey matter voxels included in the ROI. These show a shift in time their 

maximum amplitude, suggestive that the delay in travelling wave can be measured via fast fMRI. (C) 
heatmap showing distribution of estimated phase (i.e., time delay) for each grey matter voxel within 

the ROI during trials that elicited a change in dominance (travelling wave). 
 
 

Discussion: This study explores perceptual dominance and suppression states in the form of travelling 
waves during binocular rivalry, providing insights into visual awareness processes. Fast fMRI enables 
measurements of onset changes across V1’s cortical surface during the travelling wave experience. 

 

 

travelling wave (Fig.3A). The average timecourse for voxels in this region during trials showed a slight 
delay in time-to-peak (Fig,3B, C), with an onset time variance of 2.7s ±0.6s, consistent with Lee et al. 
(2005)[9]. 
 

 
Fig. 1. Experimental Design. Low contrast, concentric grating and high contrast radial grating are 
presented while participants wear red-cyan anaglyph glasses to ensure that only one stimulus is 
processed by one eye. The third column (green) gives a representation of what the participant 

perceives at each trial. The concentric grating is suppressed following presentation of the radial 
grating, the change in contrast at the top of the concentric grating generates a change in 

dominance/suppression. This results in a travelling wave spreading along the annulus. Participants 
press a key when the wave reaches the black nonius at the bottom of the annulus. 
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A Bio-engineered BOLD Alternative for High-Resolution Brain Function Mapping 
Elizabeth Jane Fear1,2, Antonella Antonelli1, Passant Abdalla1, Simon Benedict Duckett2,  

Mauro Magnani1, and Aneurin James Kennerley2,3 

1. Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy 
2. Centre for Hyperpolarisation in Magnetic Resonance (CHyM), Chemistry, University of York, York, 
United Kingdom 
3. Sport and Exercise Science, Institute of Science, Manchester Metropolitan University, Manchester, 
United Kingdom 
Introduction:  We have developed a next-generation, safe, personalised iron-based contrast agent 
(CA) for enhancing cerebral blood volume (CBV) weighted functional MRI (fMRI). Our novel method 
encapsulates superparamagnetic iron oxide nanoparticles (SPIONs) in red blood cells (RBCs), to 
overcome rapid removal by the reticuloendothelial system (RES) and improves the stability of the CA 
in blood circulation. Here we present preclinical validation using human Ferucarbotran®-loaded RBCs 
for mapping brain function based on cerebral blood volume (CBV) changes in a rat model using 7T 
fMRI. Our method mirrors the contrast of free SPIONs in preclinical fMRI, offering functional sensitivity 
at cortical laminar resolutions, giving an advantage over routine Blood Oxygenation Level Dependent 
(BOLD) measures. Our approach provides a non-BOLD alternative for high-resolution brain function 
mapping, promoting further development for long-term assessments in animal and human models. 
Methods: Contrast Agent Preparation: Ferucarbotran® (Meito Sangyo) was encapsulated into human 
RBCs (using 11.2 mg Fe/ml of 70% haematocrit loaded solution) using a patented hypotonic dialysis 
method (Fig 1 A).[1][2] The T1 longitudinal relaxation time of the Ferucarbotran®-loaded-RBCs at 44% 
haematocrit were measured at 9.4T (Avance-400 NMR, Bruker) to determine iron concentration. 
Transmission Electron Microscopy (TEM) was used to confirm entrapment of the SPION within the 
RBCs and to evaluate morphological changes. 1.5 ml of human Ferucarbotran®-loaded-RBCs at 44% 
haematocrit were used for injection into non-recovery rat models.  

Figure 1. Encapsulation methods and fMRI experimental set up (A) Schematic representation of the 
SPIONs loading into RBCs by hypotonic dialysis and isotonic resealing. (B) Preclinical fMRI set up 
showing the positioning of the imaging plane, RF volume transmit coil, RF head receiver coil, femoral 
artery and veins cannulated to monitor blood pressure and infuse the CA, breathing tube for 
ventilation and delivery of medical air/CO2 for hypercapnia respiratory challenge and the positioning 
of the electrodes for electrical whisker stimulation.  
 

Imaging: Pre-clinical MRI measurements were made at 7 Tesla (Bruker BioSpec 70/30, 310mm bore). 
Urethane anaesthetized rats were artificially ventilated and cannulated for monitoring arterial blood 
pressure and intravenous infusion (Fig 2 B).  BOLD and IRON fMRI data were acquired in the coronal 
plane with a GE-EPI readout (TR/TE=1000/12ms, 64*64, FOV=30mm, slice thickness=2mm, FA 90°). 

 

 

This understanding of binocular rivalry mechanisms can enhance our grasp of how the brain resolves 
visual discrepancies and prioritises stimuli, which is crucial for diagnosing and treating conditions like 
amblyopia and other sensory integration disorders [6]. Additionally, abnormalities in binocular rivalry 
could indicate early signs of neurological disorders, such as Alzheimer’s and schizophrenia [2]. This 
research thus holds potentials for advancing diagnostic methods and developing treatments for these 
conditions. 
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fQSM versus fMRI: A Comparative Analysis of Activations in Veins 

Jannette Nassar1, Oliver C. Kiersnowski1, Patrick Fuchs1, Karin Shmueli1 
1 Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom 

Introduction: Functional quantitative susceptibility mapping (fQSM) detects blood oxygenation changes 
related to neuronal activation “upstream” of the magnitude signal, offering a complementary perspective 
to conventional fMRI. FQSM reveals the blood susceptibility changes that underlie conventional Blood 
Oxygenation Level Dependent (BOLD) activation: fQSM is based on a linear dependence of susceptibility on 
blood oxygenation, unlike the non-linear dependence of conventional BOLD fMRI based on the signal 
magnitude [3, 4]. Therefore, fQSM may improve the localization of neuronal activity [1, 2], and detect less 
activation in large draining veins [4]. Hence, here, we aimed to investigate whether fQSM is less affected by 
signals arising in venous vessels than fMRI. 

Methods: Image acquisition: We acquired 70 multi-echo 2D GRE EPI volumes in 7 healthy volunteers, age 
27.7 ± 3.8, using a 3T Siemens-Prisma system with a 64-channel head coil, with 1.3 mm isotropic resolution; 
GRAPPA=4; MB=3; partial Fourier 6/8; TE=14.8, 39.33, 68.86 ms; TR=4034 ms; TA = 6 min 15 s [5]. To maximize 
the BOLD signal, we employed a standard visual stimulation paradigm, with a conventional block design. The 
stimulation consisted of a (black and white) checkerboard flickering at 8Hz in 15.6 s blocks alternating with 
rest blocks of 15.6 s. 

Data processing steps included the generation of brain masks using FSL BET [6] on the second echo 
magnitude images, followed by single-voxel erosion. For magnitude-based fMRI, multi-echo magnitude 
images were combined using T2*-weighted echo summation [7]. QSMs were calculated for each volume by: 
non-linear fitting of the complex data [8]; Laplacian phase unwrapping [9]; intra- and inter-slice background 
field removal with 2D+3D V-SHARP[18,19]; and dipole inversion using non-linear total variation 
regularisation (FANSI,  = 2x10-4) [11]. 

Functional Analysis: We used SPM12 [12, 13] for fMRI and fQSM analysis [14]. Spatial pre-processing 
involved (1) rigid-body realignment of the echo-combined magnitude images to the first image in the time-
series to correct for motion. The resulting transformations were then applied to the corresponding absolute 
susceptibility maps. (2) Spatial smoothing with a 4-mm FWHM Gaussian kernel to enhance SNR and 
statistical power [15]. A general-linear model (GLM) was reconstructed with a regressor for the visual 
stimuli. Significant activations were identified by thresholding t-score maps to create fMRI and fQSM 
activation maps using a threshold of p<0.05 with Family Wise Error (FWE) correction and no restriction on 
minimum cluster size. 

A mask to highlight highly paramagnetic venous vessels was computed by thresholding at the 99th 
percentile of the susceptibility distribution. An axial maximum intensity projection (MIP) of the venous 
vessel mask is shown in Figure 1c. The number of activated voxels detected by fQSM and fMRI were 
compared, specifically focusing on those within the venous vessel regions. We calculated the percentage of 
venous vessel voxels that were activated in fQSM v. fMRI. 

Results & Discussion: As shown in Fig. 2a, fMRI generally shows higher brain activation than fQSM, and 
there is significant variability in the number of activated voxels among the volunteers for both methods. 
Figs 1f, g and 2b show that there were fewer activated voxels in the venous vessels region and a lower 
percentage of activated venous voxels with fQSM compared to fMRI in all subjects. This suggests that fQSM 
activations are less contaminated by venous voxels. A major limitation of this study is the creation of the 
venous mask by thresholding the QSM distribution which clearly includes non-vascular strongly 
paramagnetic structures (Fig 1c). Future work will involve more sophisticated vessel masking [16, 17, 18]. 

 

 

BOLD fMRI (pre-CA injection) signal changes to whisker stimulation (16s, 1.2mA, 5Hz) and respiratory 
challenge (increased end-tidal FiCO2 <10%) were acquired.[3] Following BOLD fMRI measurements, 
injection of the encapsulated cells (1.5 ml) was completed in 0.5 ml stages and Structural GE images 
(256*256, FOV 30mm, 9 slices, 1 mm thick) were captured for assessment of baseline blood volume 
fraction[4] to aid quantification of CBV-fMRI measures.  Hypercapnia and whisker stimulation were 
repeated, and IRON fMRI measurements were acquired.  Percentage changes in CBV were calculated 
using both the pre-CA (BOLD) and post-CA (IRON)-injection measurements. 
Results: TEM confirmed the presence of a homogeneous distribution of iron oxide within the RBCs 
with no cell morphological changes. NMR confirmed Ferucarbotran® concentration encapsulated in 
the RBCs as 11.27 ± 2.79 mM of Fe. fMRI data were obtained following injection of 1.5 ml of 
Ferucarbotran®-loaded-RBCs to i) estimate baseline blood volume fractions in rat brain and ii) validate 
CBV weighting of fMRI signals (Fig 2A). CBV response is maximal in layer-IV of the cortex, unlike BOLD 
signals localized to superficial cortical layers (Fig 2B). We observed peak CBV responses of 37.1 ± 12.8% 
to respiratory challenge and 9.4 ± 1.3% to whisker pad stimulation. 

 
Figure 2. fMRI measures in response to somatosensory whisker stimulation (16s, 1.2mA, 5 Hz). (A) 
Representative signal maps overlaid on GE structural scans.  EPI time series (TR/TE = 1000/12ms) of 
positive BOLD signal (red), negative signal with iron (blue) after injection of Ferucarbotran®-loaded 
RBCs and calculated percentage CBV change. (B) Cortical depth profiles showing BOLD signal (red) 
weighted to the surface of the cortex due to large draining veins and CBV signal (black) found much 
deeper in layer IV of the cortex. 
 
Discussions/Conclusions: Here we introduce an innovative BOLD replacement for safe, personalised 
iron-based contrast agent (CA) empowered functional Magnetic Resonance Imaging (fMRI). Utilising 
advanced red blood cell (RBC) encapsulation technology, we developed a biocompatible super-
paramagnetic CA. This CA was validated using fMRI in a preclinical rat model, demonstrating its 
capability to map cerebral blood volume (CBV) in response to respiratory challenge and 
somatosensory stimulation. This approach provides a non-BOLD alternative for high-resolution, layer-
specific mapping of brain function. Future longitudinal validation will find application in measuring 
CBV as a biomarker for brain disorders including stroke and neurodegenerative diseases.  
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Assessing somatotopic organisation of focal hand dystonia using 7T fMRI 
1Michael Asghar, 1Daisie Pakenham, 1Lauren Gascoyne, 1Denis Schluppeck, 2Rosa Sanchez-Panchuelo, 

3George O’Neill, 4Miles Humberstone, 1Paul Glover and 1Susan Francis. 
1Sir Peter Mansfield Imaging Centre, University of Nottingham, 2University Hospitals Birmingham 
NHSFT, 3Wellcome Centre for Human Neuroimaging UCL, 4Nottingham Trust University Hospitals. 

 
Introduction: Focal Hand Dystonia (FHD) is a movement disorder that affects the hand. Treatment is 
with BoNT-A(Botox)[1], which is injected into the nerve to allow temporary relief from cramp. It is not 
understood how this affects sensorimotor maps. Here, we use 7T fMRI to investigate whether 1) there 
are any differences in cortical maps between healthy controls (HC) and FHD patients, and 2) there are 
any differences in the cortical response in FHD patients between ~30 days (BTX, peak effect) and ~100 
days (NoBTX, minimal effect) after BoNT-A[2]. 
 
Methods: 6 FHDs (ages:54(11.2), mean(std)) and 6 age-matched HCs underwent a behavioural session 
and 7T fMRI. Behavioural tasks: Temporal discrimination, amplitude thresholding on both hands, 
spatial acuity grating orientation task (GOT) on the affected hand using domes with different spatial 
frequencies. Reproducibility of behavioural tasks was tested on a separate cohort of 10 HCs.  
fMRI: a) Travelling wave (TW) somatosensory digit mapping (Both hands, D1-D5, 4s/digit, 20s/cycle, 8 
cycles, 1 pair of forward/reverse, 1.25x1.25x1.25mm3 voxels, 48 slices, TR2s); b) Cued digit tapping 
motortopy task separately on dominant (HC) and affected (FHD) hand (parameters as TW, participants 
wore an accelerometer glove to confirm digit movements);  
Analysis: fMRI data were distortion corrected (FSL-TOPUP). Structural data were segmented in 
Freesurfer and used for registration and flat maps. Fourier and pRF analysis of the somatosensory and 
motortopy data was performed producing maps of digit-phase maps and pRF size respectively. Digit-
phase maps were compared to a template somatosensory probabilistic atlas [3] with central tendency 
(CT) (1=perfect overlap between subject and atlas digits) and Figure of Merit (FoM) scores (finds the 
digit specificity from the CT overlap matrices) calculated for these. 
 
Results: Behavioural: FHDs had raised spatial acuity thresholds (Mean HC (std): 1.87 (0.19), Mean BTX 
(std): 2.96 (0.93), Mean NoBTX (std): 3 (0.88); one-way ANOVA p<0.05), but no other differences 
between groups. Reproducibility coefficient of variation (CoV) was similar to previous literature [4]. 
fMRI: (i) Digit Mapping: TW sensorimotor maps showed no visual abnormalities in FHD (PA) compared 
to HCs. Somatosensory and motor maps showed strong overlap (DICE) in all groups and when 
compared to the probabilistic atlas central tendency (CT) values were close to 1. For the non-dominant 
hand, the PA NoBTX group had better digit representation to the atlas compared to the non-dominant 
hand of the HCs, as measured by the FoM. The HC FoM values are in-line with the leave-one-out 
validation values performed on the probabilistic atlas. (ii) pRF size: In all groups, the pRF sizes followed 
typical trends: increase from D1-D4, and smaller for D5, with larger pRF sizes in Brodmann areas (BA) 
1 and 2 compared to 3a and 3b [5]. Motor task pRF sizes were larger than for the somatosensory task. 
Non-dominant hands showed larger pRF sizes compared to the dominant hand for BTX and HV groups. 
For the dominant hand, there were no differences in pRF size between HCs, BTX and NoBTX groups for 
the somatosensory and motor task. For the non-dominant hand, BTX had larger pRF sizes than HV 
(p<0.05, ANOVA), and BTX had larger pRF sizes than NoBTX group (p<0.05, ANOVA).  
 
Discussion: Raised spatial acuity in FHD was consistent with literature [6]. Lack of blurring in the digit 
maps between groups and visits indicated that digit organisation was preserved in this group of FHD 
patients compared to HCs, with the BoNT-A treatment having little effect on this metric. Both FHD and 
HC participants fit well to the probabilistic atlas, as supported by normal somatotopy seen at individual 
level in FHDs. When looking at D1-D4 pRF size trends were similar across all groups, D5 being smaller. 
Motor pRF sizes were larger than somatosensory pRFs, which is supported in the literature [7]. In the 
dominant hand, there was no difference in pRF size between any groups (HC, PA BTX, PA NoBTX); 
consistent with normal TW somatotopy seen. It is of interest that in the non-dominant hand, BTX 

Figure 1. (a). Distribution of QSM values 
in the brain mask, showing the 99th 
percentile threshold used to compute the 
venous vessel mask, in one volunteer. 
MIPs of the QSM map and the vein mask 
are shown in (b) and (c) respectively, and 
MIPs of the fMRI and fQSM activations in 
(d) and (e) respectively. The MIP of the 
fMRI and fQSM activations overlaid on a 
MIP of the vein mask are shown in (f) and 
(g), respectively. 

 

 

Figure 2. (a). Number of 
activated voxels in fMRI 
vs fQSM in all seven 
volunteers, (b) 
Percentage of activated 
vessels in fMRI vs fQSM. 

 

Conclusions: In this first study to employ multi-echo fQSM, in all seven volunteers, fQSM had fewer activated 
voxels in veins than conventional fMRI, indicating that fQSM is more localized and less contaminated by 
activations in large veins. 
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fMRI reveals pain-like responses in a patient with pain insensitivity due to rare genetic 
mutation of FAAH-out gene. 

Michael Asghar1, Francis McGlone3, David Finn6, Duncan Hodkinson1, Warren Moore2, Oleg Favorov4, 
Devjit Srivastava5, Susan Francis1, Andrew Marshall2. 
1SPMIC University of Nottingham, 2University of Liverpool, 3Liverpool John Moores University, 
4University of North Carolina at Chapel Hill, 5Department of Anaesthesia, Raigmore Hospital, 
Inverness, 6University of Galway. 
 
Introduction: MRI provides a tool to study complex brain changes. Here, a case study is presented of 
a unique pain free subject (PFS) with congenital insensitivity to pain, lack of anxiety, and faster wound 
healing, who had co-inheritance of a microdeletion in a pseudogene FAAH-OUT and FAAH 
polymorphism, leading to enhanced endocannabinoid signaling[1]. Quantitative sensory testing 
revealed hyposensitivity to noxious thermal and mechanical stimuli. Aim: To understand how these 
genetic and perceptual alterations were expressed in the brain, PFS underwent 3T and 7T MRI 
measures of their responses to sensory and pain stimuli.  
Methods: PFS underwent 3T and 7T MRI on the same day. Heat pain threshold was at a ceiling level 
for the MEDOC PATHWAY system (50C). 3T MRI: fMRI: 1) Heat pain task on the thenar (MEDOC, 23s 
ON, 8s OFF2 runs; 2) C-tactile (CT) brushing task (6 scans, 2 runs at 0.3cms-1, 3cm-1, 30cms-1 brush 
stroking velocity applied to the hairy skin of the hand dorsum (fMRI acquisitions: 2x2x2.5mm, 48 slices, 
TR1s, 5mins). 1mm isotropic structural MPRAGE and T1 mapping data was also collected. 7T MRI: fMRI: 
1) Heat pain task on the thenar (2 runs, as above 5mins), and 2) Travelling wave (TW) digit mapping 
(Left hand, D1-D5 4s ON, 12 repeats per scan, 1 pair of forward and reverse (fMRI acquisition 
1.25x1.25x1.25mm, 34 slices, TR2s). rs-fMRI, PSIR and MRS (ACC, OCC, Insula). Analysis: fMRI data 
were distortion corrected (FSL-TOPUP) and corrected for thermal (NORDIC [2]) and physiological 
(RETROICOR[3]) noise. Structural data were segmented in Freesurfer and used for registration and flat 
maps.  3T and 7T heat pain data were analysed with a GLM in SPM12, producing maps of heat pain 
response. Heat pain maps were moved to flattened space to assess the alignment with nociresponsive 
Brodmann area 3a[4]. PFS’s heat pain responses were compared to a neurological pain signature 
pattern map (NPS); this process finds the dot product of the NPS and the input heat pain response[5]. 
The NPS in PFS was compared to a group of healthy subjects (n=7, 2 female, age=29.9(5.1) (Mean, 
(STD)) collected with the same experimental setup and scan protocol. C-tactile (CT) data were analysed 
in SPM12, producing activation maps for each stroking velocity. Fourier and pRF analysis of the digit 
mapping data was performed, producing digit-phase coherence maps, and measures of pRF size. Digit 
maps were compared to a template somatosensory probabilistic atlas[6]. 
Results: The heat pain fMRI response at both 3T and 7T in PFS was typical (Fig1), with heat pain regions 
(primary & secondary somatosensory cortex (S1, S2), insula, anterior cingulate (ACC), thalamus, 
amygdala, middle frontal gyrus) activated in fMRI [4]. NPS scores for PFS were within the normal range 
as compared to healthy subjects. Nociresponsive 3a was activated by heat pain. Digit mapping showed 
a typical somatotopic arrangement in S1 (Fig2). When compared to the probabilistic atlas, central 
tendency values were close to 1. Behaviourally, PFS showed a typical inverted U-shaped velocity 
preference to CT targeted brushing. The brushing task activated typical regions implicated in this form 
of touch[7]. 3cms-1 produced the weakest response compared to the other velocities.  
Discussion: PFS shows typical responses to heat pain stimulation, including activation of S1, S2, 
Cingulate, OFC, Amygdala and Insula, all implicated in a pain connectome. There were no differences 
in NPS scores of PFS compared to healthy subjects, reinforcing PFS’s normal cortical, as opposed to 
behavioural, heatpain responses. Digit maps of PFS do not show any strong deviations or abnormalities 
and follow the typical somatotopy of D1-D5 as validated against a probabilistic atlas. CT responses do 
not show strong preference for the 3cms-1 condition; there is no evidence of preferential DPINS (dorsal 
posterior insula) activation with CT targeted touch. 

exhibited larger pRF sizes than HCs and NoBTX groups. This suggests that the pRF analysis captures an 
increase in pRF size which occurs alongside treatment. 
 

Conclusion: There was no large-scale blurring of digit somatotopy in FHDs, at a participant level or 
when compared to a probabilistic atlas. pRF mapping indicated there were no differences between 
HCs, PA BTX and PA NoBTX groups in the dominant hand. The non-dominant hand showed changes in 
digit representation and pRF size. 
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Figure 1: A) Experimental setup for somatosensory task; 
B) Setup for the motor tapping task, shown with 
accelerometer glove; C) Spatial acuity grating 
orientation task (GOT); D) Results for GOT showing 
patients (PA) have larger thresholds than controls (HC).  

Figure 2: A) Travelling wave somato and motor maps for 
an example BTX patient, and somatosensory pRF map 
for the dominant (right) hand. B) pRF sizes are shown 
for somatosensory i) non-dominant, ii) dominant, and 
iii) motor tasks.  

Figure 3: A) Figure of merit (FoM) plots shown for all 
controls (HC) and patients (PA). The FoM is a metric of 
how well each digit is represented when comparing 
overlap with the probabilistic atlas. B) Central tendency 
(CT) matrices for each group – comparing each subject 
digit to the probabilistic atlas digit. The blue boxed 
matrix shows the central tendency calculated from a 
leave one-out validation procedure from a healthy 
subject included in the probabilistic atlas. 
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Abnormal Resting State Network Connectivity in Sickle Cell Anaemia  
Mitchel Lee1, Fenella Kirkham2, Karin Shmueli1 
1Medical Physics and Biomedical Engineering, University College London, London, UK 
2Developmental Neurosciences, Institute of Child Health, University College London, London, UK 
 
Introduction: Sickle cell anaemia (SCA) is a severe genetic blood disorder resulting from inheritance 
of two abnormal sickle beta-globin genes [1]. SCA causes deoxygenated haemoglobin to become rigid 
and polymerised, resulting in vaso-occlusion and haemolytic anaemia. Secondary complications are 
widespread, including in the brain, with a large burden of cognitive issues and chronic pain. 
Independent component analysis (ICA) is a popular framework for investigating the properties of 
large-scale resting state networks in the brain, with abnormal connectivity being observed in several 
networks of the brain across various diseases and physiological states [2]. Spatially constrained ICA is 
a technique that can combine data-driven network discovery with established knowledge of functional 
brain organisation to robustly estimate brain networks [3].  
Previous work investigating resting state brain function in SCA is inconclusive, with studies finding 
both increases and decreases in connectivity between various regions/networks, using a wide range 
of analysis techniques [4-6]. Here, we aim to investigate network-scale functional connectivity 
changes in SCA using spatially constrained ICA. 
Methods: 36 SCA patients (aged 8-64 years, mean age 23 years, 15 male) and 16 healthy controls (HCs, 
aged 10-64 years, mean age 18 years, 12 male), recruited for the Prevention of Morbidity in Sickle Cell 
Anaemia (POMS) study [7], were imaged at 3T with a 6.2 minute single-echo EPI resting state scan 
with parameters: TR = 1.24s, TE = 26ms, 2.5 x 2.5 x 3 mm resolution, matrix 80 x 80 x 40, and a T1 
weighted structural MPRAGE image with 1mm isotropic resolution. 
Functional and structural data were pre-processed with a standard pipeline including geometric 
distortion correction, slice timing correction, outlier detection, direct segmentation and MNI-space 
normalization, 8mm FWHM Gaussian smoothing, and denoising, all implemented in the CONN toolbox 
[8]. Subject-level networks were obtained from the pre-processed functional data using a spatially 
constrained ICA method (MOO-ICAR [3]) implemented in the GIFT toolbox [9]. MOO-ICAR jointly 
optimises for the spatial independence of components (ICs) and for the spatial similarity to a chosen 
network template, to obtain subject-level ICs. Group-level components were obtained by taking the 
mean of each component across all patients and HCs. Using a template by Allen et al. [10], 28 ICs were 
estimated, corresponding to sensorimotor (6 ICs), basal ganglia (1 IC), auditory (1 IC), visual (6 ICs), 

Figure 1: Maps of the group-level resting state networks estimated using ICA. For each network, the 
constituent ICA components are shown in different colours. MNI coordinates of peak activation are 
shown for each network. 

 

 

Conclusion: PFS displays typical cortical responses to heat pain stimulation, in contrast to perceptual 
hypoalgesia. Although the neurobiological basis for the insensitivity to pain remains enigmatic, deeper 
understanding of FAAH-based analgesia could open new opportunities for the treatment of pain.  
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Figure 1: A: Heat pain response of PFS in typical pain regions, with insula regions highlighted. B: Neurological pain 
signature dot products (from combining template pattern map with heat pain contrast maps from SPM12), for PFS 
(yellow), and healthy subjects for heat pain task at 3T and 7T. Red = thermode on hand, Blue = thermode on inside of 
forearm. C: Heat pain response in native space, on a flattened patch of corte overlaid are the digit map outline, and 
Brodmann area 3a from the Freesurfer segmentation. D: CT Tactile velocity maps at 3 velocities of brush stroking.  

Figure 2:  A: Digit mapping in native space, 
on a flattened patch of cortex. Overlaid are 
the digit map outline, and Brodmann area 
3a from the Freesurfer segmentation. B: 
Comparison of digit map with the 
probabilistic atlas. Central tendency 
shows how well the subject’s digits match 
with the atlas. 1 = perfect overlap. Figure 
of Merit (bottom right) penalises poor 
representation and degeneracy, by 
operating on the CT values. 
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Real-time quantification of brain metabolism during neuronal stimulation in healthy 
volunteers using hyperpolarised [1-13C] pyruvate MRI. 

Sébastien Serres1,2, James T. Grist3,4,5, Robin A. Damion6,7,8, Jan A. Paul6, Sheila Hirst6,7,8, Sarah Wolfe6, 
Peter G. Morris6, Dorothee P. Auer6,7,8 
 
1School of Life Sciences, University of Nottingham, Nottingham, UK 
2The David Greenfield Human Physiology Unit, University of Nottingham, Nottingham, UK 
3Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK  
4Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, UK 
5Department of Radiology, Oxford University Hospitals, Oxford, UK 
6Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK 
7Mental Health and Clinical Neuroscience, School of Medicine, University of Nottingham, 
Nottingham, UK 
8NIHR Nottingham Biomedical Research Centre/Nottingham Clinical Research Facilities, Queen’s 
Medical Centre, Nottingham, UK 
 
Introduction: The development of hyperpolarised-13C MRI (HP-13C MRI) had enabled the real-time 
imaging of cellular metabolism in the brain by following the conversion of HP-[1-13C] pyruvate into [1-
13C] lactate and [13C] bicarbonate (1). Two recent studies have used either 13C-MR spectroscopy (2) or 
13C spectral spatial imaging (Uthayakumar et al 2024 ISMRM) to assess brain metabolic changes during 
functional activation and have shown contradictory results on how pyruvate is metabolised in the 
brain during neuronal activation. The aim of this study was to re-evaluate the metabolism of HP-[1-
13C] pyruvate in the brain using a visual stimulation and a highly sensitive 13C spectral-spatial imaging 
sequence to accurately measure brain metabolism response to neuronal activity. 
Methods: Three age- and BMI-matched healthy young subjects (2 males and 1 female, aged 19 to 29 
years) were each injected twice with HP-[1-13C] pyruvate (0.43 ml/kg over 15 seconds) on two separate 
days. Stimulus and control HP-13C MR scans were performed at 3T using a modified 3D echoplanar 
sequence with B1 and B0 map correction and flip angles set to 5° for pyruvate, 15° for lactate, and 60° 
for bicarbonate, with an isotropic resolution of 4.5 cm³ (Grist et al., 2024, under review). During the 
stimulus scan, participants viewed an 8 Hz flashing checkerboard, while no stimulus was applied during 
the control scan. A minimum of two days separated the two HP-13C scans, and 3D T1-weighted images 
were acquired at 3T for anatomical co-registration. On a separate day, arterial spin labelling (ASL)-MRI 
was performed at 3T with and without the same visual stimulus to measure cerebral blood flow (CBF). 
For image analysis, anatomical T1-weighted images were aligned in the Montreal Neurological 
Institute (MNI) space for cortical atlas parcellations, and regions of interest (ROIs) were extracted for 
the whole cortex, including the visual cortex. MNI ROIs were used to calculate signal intensities in the 
visual and non-visual cortices of 13C-pyruvate, 13C-lactate, and 13C-bicarbonate images. Signal 
intensities in the visual cortex were normalised to the rest of the cortex, and lactate/pyruvate and 
bicarbonate/pyruvate signal ratios in the visual cortex were obtained for both stimulus and control 
scans. A similar approach was used to analyse ASL-MRI, with FSL used to calculate CBF maps (3). All 
data are presented as mean ± SEM. Statistical analysis was conducted using a paired t-test to compare 
data between stimulus and control groups, and an unpaired t-test was used to identify differences 
between visual and non-visual cortices. 
Results: An increase in basal CBF in the visual cortex was observed during stimulus (~20%), confirming 
increased metabolic demand in response to visual stimuli. Dynamic acquisition of HP-[1-13C] pyruvate 
MR images of the whole brain revealed 13C labelling of lactate and bicarbonate, catalysed by cytosolic 
lactate dehydrogenase and mitochondrial pyruvate dehydrogenase, respectively, with a much-
improved signal-to-noise ratio than previously (Fig 1) (1). There was a trend towards an increase in 
the bicarbonate/pyruvate ratio in the visual cortex after stimulation, but this was not statistically 
significant (p=0.109, N=3, Fig 2). No significant change in the lactate/pyruvate ratio was found 

 

 

default mode (5 ICs), attention (6 ICs) and frontal (4 ICs) networks. The estimated group-level ICs were 
imported into CONN as ROIs, and functional connectivity estimates between each pair of ICs were 
calculated as the Fisher-transformed bivariate correlation coefficient. Differences in connectivity 
between SCA patients and controls were assessed at the cluster (groups of network-network 
connections) level, applying the Functional Network Connectivity [11] approach to the pre-defined 
networks of ICs, with a joint significance threshold of p < 0.05 on individual connections and false 
discovery rate corrected p-FDR < 0.05 on clusters. Age and sex effects were regressed out of all 
comparisons as confounds of no interest. 

Results: The group-level resting state networks extracted by ICA are shown in Figure 1. Figure 2 shows 
the results of the comparison between SCA and control network connectivity. Five clusters of 
significantly increased connectivity in SCA were identified. Increased connectivity was observed 
between the frontal and attention networks (cluster A), within the attention network (cluster B) and 
within the frontal network (cluster C). Increased connectivity was also found between the default 
mode and frontal networks (cluster D), and between the auditory and attention networks (cluster E). 
Discussion: The direction of changes in functional connectivity can be difficult to interpret, particularly 
in chronic conditions such as SCA, where it has been suggested that increases may represent a 
compensatory mechanism to preserve brain function [4]. Decreased structural connectivity, reflecting 
disruption to white matter pathways, has been observed in a previous study [12] that included 
subjects from this work among others. Increased functional connectivity in the context of white matter 
integrity loss has been theorised to be a consequence of reduced functional segregation of the brain 
[13], with more diffuse activation in the resting state. Future work will consider clinical associations 
with these observed connectivity changes, particularly measures of pain burden and cognition, to 
further improve our understanding of functional network disruption in SCA. 
Conclusions: We used independent component analysis to investigate changes to network level 
resting-state functional connectivity measures in a cohort of sickle cell anaemia patients, finding 
increased connectivity compared to controls within and between several resting state networks. 
References 
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[2] Lee MH, Smyser CD, Shimony JS. AJNR Am J Neuroradiol. 2013;34(10):1866-1872. 
[3] Du Y, Fu Z, Sui J, et al. Neuroimage Clin. 2020;28:102375 
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Figure 2: Connectome rings showing 5 clusters of significantly increased network connectivity in SCA. 
Networks are labelled on the central ring: FRONT – frontal network, ATTN – attention network, DMN 
– default mode network, AUD – auditory network. For each cluster, significant component-to-
component connections are highlighted based on significance. 
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Structural Connectivity Differences In White Matter Tracts Of NGF Carriers with Pain Insensitivity 
Arnas Tamasauskas1, Irene Perini2, India Morrison2, Andrew Marshall1 

1 University of Liverpool, 2 Linköping University 

Introduction: The research of pain and nociceptive reactions of people with Nerve Growth Factor 
(NGF) mutations has revealed congenitally reduced density of C-nociceptor afferent fibres in the 
peripheral nerve system, but the impact of these gene mutations on whole brain connectivity has not yet 
been explored. 

Methods: This study utilised Diffusion Tensor Imaging (DTI) and T1-weighted scans of a group of 
11 R221W heterozygous carriers, who have impaired pain and temperature perception, and 11 gender-, 
age-, and education-matched healthy controls. DTI scans were acquired using single phase encoding. For 
preprocessing, Synb0, was utilised to synthesize reverse phase encoding from T1 scans. Whole-brain Voxel-
based Tract-Based Spatial Statistics (TBSS) and Fixel-based group comparison analyses were performed to 
examine different metrics of white-matter structure and integrity. Significance thresholding (p<0.05) was 
applied to Fixel FD, FC and FDC metrics, which were then registered to a John Hopkins University (JHU) 
ICBM-DTI-81 white-matter labels atlas using FSL Linear Image Registration Tool. Additionally, these tracts 
were converted to Voxels and used for Region of Interest (ROI) specified Probabilistic Second-order 
Integration over Fibre Orientation Distributions (iFOD2). 
Results: TBSS analysis showed no significant differences between the R221W carrier group and healthy 
controls in fractional anisotropy (FA), mean diffusivity (MD), and Radial Diffusivity (RD). Fixel-based group 
comparison between R221W carriers and healthy controls showed significant microstructural fibre density 
(FD), and fibre density and cross-section metric (FDC) reductions in specific white matter tracts in midbrain 
and pons (p < 0.05) (Figure 1), but no significant differences in fibre cross-section (FC). JHU atlas-based 
White-matter investigations provided specificity in identifying tracts with significantly reduced FD and FDC 
of R221W carrier group as compared to healthy controls. These affected tracts were: the middle cerebellar 
peduncle, corticospinal tract, medial lemniscus, and inferior and superior cerebellar peduncles. Some 
minimal but significant (p<0.005) FD and FDC differences were seen in: corona radiata, as well as slight FD 
differences in external capsule, and slight FDC differences in internal capsule and uncinate fasciculus. 
Voxel-based iFOD2 analysis supported significant difference findings in FD and FDC populations in the 
midbrain, pons, cerebellum, and parts of temporal and occipital cortices. (p < 0.05) (Figure 2). 

 
Figure 1: Fixel Fibre Density, and Fibre Density 

and Cross-Section Significant Tracts 

  

Figure 2: Significant Fixel Fibre Density tracts 
represented through Probabilistic Second-order 
Integration over Fibre Orientation Distributions 

 

 

between stimulation and control scans in the visual cortex, with only one individual showing a 
response to the task. The bicarbonate/lactate ratios were consistently higher in the visual cortex 
compared to the rest of the cortex, although this change was not significant (p=0.15, N=3, Fig 3). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Discussion: Pyruvate dehydrogenase flux (indicated by 13C-bicarbonate labelling) was consistently 
higher compared to lactate dehydrogenase flux (indicated by 13C-lactate labelling) in the visual cortex 
compared to the rest of the cortex. We therefore hypothesise that visual cortical regions possess a 
higher oxidative metabolism than in the rest of the brain. However, we also cannot exclude that there 
may be a residual stimulation of the visual cortex regions even without stimulus (2). Notably, 13C-
bicarbonate signal increased with visual stimulation while 13C-lactate did not, as demonstrated by 
improved 13C spectral-spatial imaging. This finding suggests that neuronal activation associated with 
visual stimulus is supported by oxidative metabolism, as shown previously (2, 4). Further repeats are 
warranted to reach statistical significance (effect size=1.3, N=8 with a power of 95%). 
Conclusion: The metabolism of HP-[1-13C] pyruvate during visual stimulation appears to be supported 
by oxidative metabolism, but further investigations are needed to explore the mechanisms behind this 
signal change. This finding has implications for future clinical studies, as brain metabolism tends to 
rely more on non-oxidative pathways with aging and in disease. 
Acknowledgements: This work was supported by a Life Cycle charity award.  
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Fig 1: 13C-metabolite maps show a higher SNR when using our 
modified 13C spectral-spatial imaging scan (B) vs a standard 
method (A).  

Fig 2: (A) Experimental design. (B) T1-weighted 
images with MNI ROIs and 13C-metabolite 
maps. (C) Graphs showing lactate/pyruvate 
and bicarbonate/pyruvate ratios in the visual 
cortex in both control and stimulus conditions, 
respectively. 

Fig 3: (A) T1-weighted images with MNI ROIs and 13C-
bicarbonate/ 13C-lactate maps with or without stimulus. (B) 
Graph showing changes in ROI signal in both visual cortex 
and the rest of the cortex (non-visual). 
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Analytical and deep-learning models predict distinct alterations in brain structure-function relation in 
psychosis patients 

Qing Cai1,2, Vanessa Hyde1, Hannah Thomas1, Carolyn McNabb1, Pedro Luque Laguna1, Krish D. Singh1, Derek K. 
Jones1, Eirini Messaritaki1 

1Cardiff University Brain Research Imaging Centre, Cardiff, UK.  2Tiangong University, Tianjin, China. 
 

Introduction: Diffusion MRI (dMRI) allows mapping of the white-matter tracts of the human brain and of their 
characteristics (myelination, axonal diameter, etc.) which underlie brain functional connectivity (FC). FC can be 
measured with milli-second precision via magnetoencephalography (MEG). Here we use two models, one analytical 
and one based on deep-learning, to predict MEG-measured FC (mFC) from structural connectivity (SC) for healthy 
participants (HPs) and psychosis patients. We investigate how the brain structure-function relationship is affected by 
psychosis, employing a participant-specific analysis. 
Methods: Data: Data were collected from 101 HPs (18–35 years, 54 female) and 5 psychosis patients (18–35 years, 3 
female). dMRI data were acquired on a 3T Connectom scanner (300mT/m) with a single-shot spin-echo EPI sequence 
in A>P and P>A phase-encoding directions [1]. A>P data comprised 6 shells: 200/500/1200/2400/4000/6000s/mm2 with 
20/20/30/61/61/61 gradient directions respectively, and 13 images at b=0s/mm2. P>A data comprised 30 gradient 
directions at 1200s/mm2 and 3 images at b=0s/mm2. T1-weighted images were acquired with a MPRAGE sequence. 
McDESPOT data [2] were acquired with a T1-weighted 3D SPGR sequence, a SPGR-IR sequence and a SSFP sequence. 
Ten-minute MEG resting-state data were acquired on a 275-channel CTF radial gradiometer system at 1200Hz. 
Preprocessing: dMRI data were corrected for thermal noise, signal drift, susceptibility distortions, motion and eddy-
current distortions, gradient non-uniformity and Gibbs ringing [3,4]. Anatomically-constrained tractography was 
performed [4,5] with 20 million streamlines. T1-weighted images were parcellated, using FreeSurfer [6,7], into the 84 
regions of the Desikan-Killiany atlas [8]. McDESPOT data were motion-corrected and a 3-compartment model [2] was 
fitted to derive pools representing myelin water, intra/extra-cellular water and cerebrospinal fluid. MEG data were 
down-sampled to 600 Hz, filtered with a 1Hz high-pass and a 150Hz low-pass filter and segmented into 2-s epochs 
[9,10]. Epochs exhibiting large head movements or other artefacts were rejected from further analysis. Data were 
source-localized using Fieldtrip with a LCMV beamformer [11,12]. 
Connectivity: SC matrices were constructed with the Desikan-Killiany atlas areas as nodes and the white-matter tracts 
joining them as edges [13]. Five SC matrices were derived for each HP and patient, each with a different microstructural 
metric as edge weight: number of streamlines connecting the brain areas (NS), tract mean fractional anisotropy (FA), 
inverse mean radial diffusivity (iRD), mean myelin water fraction (MWF) and mean restricted signal fraction (FRt).  FC 
matrices were derived from MEG data [10] with the Desikan-Killiany atlas areas as nodes and correlations of the Hilbert 
envelope of the beamformer time-series as edges. Four FC matrices were constructed for each HP and patient, one for 
each frequency band of the MEG data (delta: 1–4Hz, theta: 4–8Hz, alpha: 8–13Hz, beta: 13–30Hz). 
FC prediction: Two methods were used to predict the mFC from the SC: a) an analytical model that combines the 
shortest-path-length (SPL) and search-information (SI) communication mechanisms [14] and b) a deep-learning model 
based on a Graph Multi-Head Attention Autoencoder that captures complex relationships in connectivity data. For the 
analytical model (SPL-SI), the data of each HP and patient were passed through it. The deep-learning model was trained 
on the HP connectivity matrices and tested using 5-fold cross-validation; patient connectivity matrices were then 
passed through the HP-trained model to predict the patient FC. 
Statistics: For each FC-predicting model, correlations were calculated between predicted FC and mFC for each HP and 
patient, in each frequency band, for each microstructural metric. The distributions of correlations of HPs were 
compared to those of patients with 2-sample t-tests. p-values were corrected for multiple comparisons. 
Results: Both models gave very good predictions of the mFC for HPs (boxplots, Fig. 2,3) across frequency bands and 
microstructural metrics. They predicted the alpha- and beta-band FC better than the delta- and theta-band FC. Myelin-
weighted SC matrices provided better predictions than NS-weighted ones (p<0.004). The SPL-SI algorithm (Fig. 2) 
predicted the delta-band FC in patients more accurately than in HPs (p<10-12 across edge weights); the opposite was 
true in the alpha and beta bands (alpha:p<0.007 for FA and iRD; beta:p<0.004 for FA, iRD, MWF and FRt). The deep-
learning model predicted FC in HPs more accurately than in patients across frequency bands and microstructural 
metrics (p<10-15; Fig. 3). 
Discussion: The SPL-SI model better represents communication between brain areas in the delta band for psychosis 
patients than HPs; the opposite is true for the alpha and beta bands. The deep-learning model distinguishes HPs from 
psychosis patients, providing a way to classify participants based on the brain structure-function relation. Our work 
provides additional multi-faceted evidence on the existence of aberrant FC in psychosis [15]. 
References: [1] Koller et al., NeuroImage, 2021, 225:117406. [2] Deoni et al., Magn. Reson. Med., 2013, 70:147. [3] Jenkinson et 
al., NeuroImage, 2012, 68:782. [4] Tournier et al., NeuroImage, 2019, 202:116137. [5] Smith et al., NeuroImage, 2015, 26:1558. [6] 

 

 

Discussion: While Voxel-based statistics did not indicate any significant structural white matter 
differences, Fixel-based FD and FDC findings suggest reduced intra-axonal volume in the spinothalamic 
and corticothalamic tracts of R221W carriers. This would indicate that the reduction of C-nociceptor 
afferent nerve density of R221W carriers is not constrained to the periphery, but is also present in parts 
of the brain. Particularly, brainstem pathways to the cerebellum and deep brain structures appear to have 
the most fibre density and cross-section reduction. However, the differences are not constrained to the 
brainstem as some differences are present in tracts located in occipital and temporal lobes. Fixel-based 
analyses provided a more detailed investigation of fibre orientations than TBSS, but iFOD2 provided 
additional support for significant difference findings in fibre density and cross-section when converted to 
voxel-based metrics. 

Conclusion: Carriers of genetic mutations that reduce NGF may result not only in reduced density of C-
nociceptor afferent fibres in the peripheral nerve system, but also in structural integrity of white matter 
tracts. These results contribute to the understanding of how the spinocortical tracts and the cerebellum 
are implicated in pain networks. Further ROI TBSS, Fixel-based and Voxel-based analyses are needed to 
investigate the differences in intra-axonal volume and crossing-fibres of specific brain regions. 
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Altered cognitive and neurovascular profiling in Long Covid 
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Introduction: Despite the acute phase of the SARS-CoV-2 pandemic subsiding, Long Covid (LC) 
remains a significant challenge, affecting an estimated 10-30% of non-hospitalized and 50-70% of 
hospitalized COVID-19 cases in the UK [1,2,3,4]. LC is characterized by symptoms such as fatigue, 
anxiety, depression, and attentional deficits, which suggest underlying neurobiological changes 
impacting higher processing regions like the prefrontal cortex. Additionally, approximately 80,000 
individuals in the UK are currently unable to work due to LC-related symptoms [5]. This study aims to 
investigate the neural correlates of LC through comprehensive cognitive tasks and multiparametric 
imaging techniques. 

 
Methods: Fifteen participants diagnosed with Long Covid (LC) and fifteen healthy controls 
participated in this study. Each participant underwent functional magnetic resonance imaging (fMRI) 
using a BOLD-sensitive EPI sequence on a 3T Siemens MAGNETOM Vida MRI System, using a 64-
channel head/neck coil. The imaging parameters included a repetition time (TR) of 1000 ms, an echo 
time (TE) of 23 ms, 3.0mm slice thickness 192mm FoV, bandwidth of 1834Hz/px, and a flip angle of 
70 degrees. The Eriksen Flanker task, programmed with PsychoPy [6], was presented on an MRI-
compatible LCD screen (Nordic Neuro Lab). Briefly, the Eriksen Flanker task involves the presentation 
of a central target stimulus flanked by adjacent distractors. The feature of the target (e.g., 
orientation) can either be congruent or incongruent with that of the distractors. Congruency here is 
randomised and participants responded by pressing the left or right keys of an MRI-compatible 
mouse to indicate the direction of the centrally presented target (fig 1). Inter-stimulus interval in our 
study was randomised to between 8-12 seconds. Each session lasted 10 minutes. Data analysis was 
performed using FMRIB Software Library (FSL) [7] with preprocessing and generalized linear 
modelling to investigate BOLD signal changes associated with task performance across groups. 

 

 

 

 

 

Dale et al., NeuroImage, 1999, 9:179. [7] Fischl, Cereb. Cortex, 2004, 14:11. [8] Desikan et al., NeuroImage, 2006, 31:968. [9] 
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Fig. 2: Correlations between 
mFC and predicted FC for the 4 
frequency bands and the 5 
microstructural  metrics, when 
the predicted FC is derived via 
the SPL-SI model. Boxes: 
distributions of correlations for 
HPs. Green markers: 
correlations for the psychosis 
patients. Black dots: statistically 
significant differences (after 
multiple comparison correction) 
between the correlations for 
HPs and those for psychosis 
patients. There are significant 
differences in the delta, alpha 
and beta band. 

Fig. 3: Correlations between 
mFC and predicted FC for the 4 
frequency bands and the 5 
microstructural metrics, when 
the predicted FC is derived via 
the deep-learning model. Boxes: 
distributions of correlations for 
HPs. Green markers: 
correlations for the psychosis 
patients. Black dots: statistically 
significant differences (after 
multiple comparison correction) 
between the correlations for 
HPs and those for psychosis 
patients. There are significant 
differences in all frequency 
bands. 

Fig. 1: Histograms of the edge 
weights for the SC matrices weighted 
with the 5 different microstructural 
metrics. The histograms show 
distinct distributions for the 5 edge 
weights. 
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These results enable exploration of brain regions involved in processing congruent/incongruent 
stimuli, as well as understanding how congruency level affects the motor response, both in terms of 
action planning and executing. By implementing a group-level analysis and leveraging the contrast 
between the two groups (LC vs healthy volunteers), differences in activation/inhibition patterns of 
relevant networks and brain regions such as the default mode network (DMN) and the dorsolateral 
prefrontal cortex will be examined. These data will be further enriched by integrating, in a 
multimodal and multiparametric fashion with blood-based assays measurements to establish 
participants thrombogenic profile.  

Discussion:  This study will provide vital insight into the understanding of the pathophysiological 
factors driving LC progression and will be further augmented by assessing the type and severity of LC 
symptoms in according the modified C19YRS scale [8]. As such, we work towards delineating putative 
subgroups of people living with LC as well as better informing the interplay between microbial 
infection and long-term health complications generally. These findings can ultimately lead towards 
better clinical trial and therapeutic intervention design for conditions that place considerable 
socioeconomic burden on global healthcare systems. Future investigations could expand upon the 
current study by incorporating assessments of physical fatigue through standardized testing 
protocols; exploring vascular space occupancy alongside assessments of neurovascular function and 
neurometabolic performance. Additionally, correlations with blood assays to investigate 
inflammatory markers and haemostatic profiles in LC participants compared to controls, could 
provide further insights into the neurobiological mechanisms underlying cognitive impairments and 
their association with systemic inflammation. These multidimensional approaches aim to advance 
our understanding of the complex pathophysiology of LC and inform targeted interventions for 
improved clinical management. 
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Results: This study investigates neural activation patterns during the Eriksen Flanker task using fMRI 
in individuals with Long Covid (LC) and healthy controls. Preliminary data in a healthy cohort (fig 2) 
shows that reliable responses across visual, attentional, and sensory-motor networks to the overall 
flanker task can be detected with our scanning parameters.  

 

Fig.1. Representation of flanker stimuli shown in the Eriksen Flanker task experimental paradigm showing 
both congruent and incongruent conditions.  

Fig.2. Activation maps showing significant (p<0.05) clusters in response to different flanker conditions.  (A) BOLD 
response to eyes-open resting state condition. (B) BOLD signal in response to incongruent and (C) congruent flanker 
tasks. (D) Activation map showing significant clusters for incongruent vs congruent contrast. Cluster Z score range: 
3.1-11.6. 
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Ghostbusting: Body motion correction at standing position in 0.5 T Upright scanner 
Laura Bortolotti, Katherine Sewart, Eleanor Church, Olivier Mougin, Paul Glower, Richard Bowtell, 
Penny Gowland; 
Affiliation: SPMIC, University of Nottingham (UK) 
 
Introduction: Open MRI scanners enhance patient comfort and enable the study of physiology in 
natural postures. Unlike conventional supine MRI, which tends to restrict motion, the upright position 
in open MRI imposes fewer constraints on body movement. However, upright body MRI poses several 
challenges, including increased bulk-body motion, respiratory motion, and internal organ movement. 
Here, early results on retrospective motion correction (RMC) of shoulder MRI are presented. 
Methods: The optical tracking camera was cross calibrated to the scanner reference frame [2]. Three 
subjects were scanned using a Multislice Fast Spin Echo sequence (FOV = 390 x 300 mm, 1.4 x 1 mm/px, 
TE = 116 ms, TR = 4104 ms) while standing facing the scanner coil, leaning against padding with the 
shoulder at the isocentre. The volunteers were instructed to keep their shoulder still, which was also 
secured to the torso with a sling to reduce involuntary rotator cuff movements (Figure 1.a). This 
configuration prevents the markers from being occluded during motion [3] and allows translation 
movements by stepping to the side, but it unconstrained other movements (e.g. respiration, being 
restless). K-space image data were then retrospectively motion corrected (RMC) for translations only 
using motion tracking data and the Python nufft function included in the sigpy library [4]. 
Results: Application of the RMC technique successfully restored the anatomical details sharpness. This 
is clearly visible in the shoulder joints. Overall, the motion related artefacts were ameliorated (Figure 
1, b). Comparing the free-motion image with the motion corrected image, the details of the shoulder 
structure were restored, and effect of motion reduced. However, the presence of artefacts in the 
phase encoding direction confounds the motion corrected results and prevents a direct comparison 
with the ground truth image (rest). 
 

a. Set-up 

 

b. Motion Correted shoulder scan (axial) 

 
 

 
Figure1: (a) MoCo set-up. The figure shows the patient sandwiched between the open MRI scanner coils to make the 
shoulder clearly visible to the VDUO optical camera. (b) results for one subject for (approximately) pure translation along 
z. Residual artefacts on the image are due to an interaction between phase-encoding and system instability. Data show 
the translations along z axes in the scanner reference frame (on different scales in each case). 

 
 
Discussion: The resulted corrected images display several residual artefacts. The predominant one is 
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2022 Sep;94(9):4253-4264. doi: 10.1002/jmv.27878. Epub 2022 Jun 1. PMID: 35603810; 
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Measuring Quantitative Cortico-Medullary Gradients in Ex-Vivo Renal Tissue 
Alexander J Daniel1 and Susan T Francis1 

1Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, United Kingdom 
Introduction: Key to the analysis of renal MRI studies is the reporting of quantitative measures in the 
cortex and medulla. This is often performed using manual regions-of-interest (ROI) which are difficult 
to define. The Twelve Layer Concentric Object (TLCO) method was proposed by Pruijm et. al1 as an 
alternative to ROI analysis when studying blood oxygenation level dependent (BOLD) R2* renal maps. 
TLCO uses two user-delineated boundaries to generate twelve equidistant layers between the renal 
pelvis and surface, the average R2* in each layer is calculated, from which R2*outer, R2*inner, and R2*slope, 
representing cortex, medulla and cortico-medullary difference is computed. The TLCO software 
requires a single slice, coronal oblique acquisition. However, a recent renal BOLD consensus survey2, 
highlighted that the need for oblique coronal images for TLCO was not always the preferred 
acquisition. This and the limitation of TLCO being a single slice analysis method motivated this work 
on 3DQLayers, a 3D quantitative-depth-based method for multiparametric data. We use 3DQLayers 
to study kidneys declined for transplant imaged ex-vivo and compare to manual ROIs. 
Methods: Data was acquired using the ADMIRE protocol3 with data collected on 15 ex-vivo kidneys 
that were retrieved, but later declined for transplant. These kidneys were then scanned using a 
multiparametric MRI protocol on a 3T Philips Achieva scanner. 
The process of generating layers is outlined in more detail in Daniel et al4. Briefly, a binary mask 
generated automatically from whole-kidney structural images is converted from a voxel-
representation (Fig. 1a) to a smooth surface-mesh-representation (Fig. 1b), the distance from the 
centre of each voxel in the mask to the surface of the mesh is then calculated producing a depth map 
(Fig. 1c). As the tissue adjacent to the renal pelvis is not representative of the medulla, it is excluded 
from layer-based-analysis. This is achieved by automatically segmenting the pelvis then calculating the 
distance from each voxel to the surface of the pelvis as above (Fig. 1d). Voxels closer than a specified 
threshold, here 5mm, are excluded from the depth map (Fig. 1e). Finally, a layer image is generated 
by quantising the depth map to a desired layer thickness (Fig. 1f), here 0.5mm. 
The layers can be applied to any quantitative map by resampling the layer image to the same space as 
the quantitative map. Voxel-wise measures within each layer are calculated. Measurements of 
quantitative parameters in the outer and inner layers can be produced as in Pruijm et al1. Finally, a 
measure similar to R2*slope is calculated by performing a linear regression between a voxels quantitative 
value and depth, (Fig. 1g). Unlike TLCO, the slope here is fully quantitative as they are calculated based 
on depth rather than layer numbers of arbitrary thickness.  
3DQLayers was applied to T1, T2, T2*, ADC and Magnetisation Transfer Ratio (MTR) maps to determine 
the median of the outer 20% and inner 45% of layers, these were compared to the median of the 
cortex and medulla generated from tissue ROI labels. These ROI labels were produced from a T1-
weighted anatomical using a Gaussian mixture model followed by manual correction. The slope of 
each parameter for the central layers was also calculated and compared to the cortical-medullary 
ratio. The Pearsons correlation coefficient was used to assess the strength of the relationship between 
layer-based measurements and tissue-based measurements. 
Results: Figure 2 shows depth profiles from a representative kidney. Figure 3 shows the relationship 
between layer-based measurements and tissue-based measurements. A significant correlation 
between outer layers and the cortex, and inner layers and the medulla was shown across all mapping 
techniques. A significant correlation between cortico-medullary ratio and layer gradient was shown 
for T1, T2, T2* and MTR mapping. 
Discussion: The ADC acquisition of the ADMIRE protocol is relatively low SNR due to small amount of 
diffusion in cold, ex-vivo tissue; this underlies why no significant correlation was observed between 
cortico-medullary ratio and the layers gradient. 3DQLayers calculates gradients as a function of depth 
of the tissue, this allows for a more principled comparison of large and small kidneys. If normalisation 
for kidney size is desired, gradients could be normalised by total kidney volume rather than the radius 
of the slice imaged as in TLCO.  

 

 

by phase-encoding ghosting. Residual motion artefacts would be due to rotations, residual respiratory 
motion happening in the 1.5 min of the scan (leading on shoulder movements, torso expansion, 
oscillations) and voluntary body motion (restless). The unconstrained body motion prevents the use 
of the respiratory gating tool previously implemented [4]. 
Conclusions: Shoulder MRI in a standing position was successfully retrospectively motion corrected 
by tracking the rigid body motion of the shoulder whilst it was rigidly coupled with the torso. 
Reproducibility of the results over subjects was proved. Future work will focus on incorporating 
rotations, field inhomogeneities and gradient nonlinearities into the Motion Correction technique. 
 
References 
Reference: [1] Zaitsev M et. al.(2015) “Motion artifacts in MRI: A complex problem with many partial solutions”; [2] Bortolotti et 
all (2023), “Optical camera calibration to implement various marker-based motion correction techniques in open geometry 0.5 T 
upright scanner”; [3] Bortolotti et all “Evaluation of body motion at various patient position in a 0.5 T Upright scanner”;[4] Ong et 
al “SigPy: A Python Package for High Performance Iterative Reconstruction”; [5] Bortolotti et all “Effect of respiratory motion on 
gated torso MRI in an upright 0.5 T scanner with seated and standing subjects”. 
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3D Kidney Segmentation using Transformers on DIXON-MRI 

Authors: Ajo Joseph Thomas1, Kywe Kywe Soe1, Kanishka Sharma2, Joao Dos Santos Periquito1, 
Bashair Al-Hummiany3, David Shelley3, Andrew Forbes Brown4, Jonathan Fulford4, Angela Shore4, 

Nicolas Grenier5, Maria F. Gomez6, Kim Gooding4, Steven P Sourbron1.  
1University of Sheffield, Sheffield UK, 2Antaros Medical AB, Mölndal Sweden, 3University of Leeds, 

Leeds UK, 4University of Exeter, Exeter UK, 5University of Bordeaux, Bordeaux France, 6Lund 
University Diabetes Centre, Malmö, Sweden. 

Introduction: Transformers such as UNETR are a novel class of deep learning architectures for medical 
image segmentation [1]. Our first results have shown that transformers provide promising results on  
single opposed-phase MRI but also indicated substantial mismatch with ground truths [2]. Combining 
the 4 individual Dixon MRI series (in/out-phase, fat & water) could maximize yield in AI outputs.  
Aim: To determine the optimal series of images for 3D kidney segmentation on DIXON-MRI with 
Transformers & compare AI segmentation outputs between the overall 15 possible models. 
Methods: Study Subjects - This study used 80 consecutive baseline MRI studies from the ongoing 
multi-centre iBEAt study on diabetic kidney disease [3]. Data Acquisition - MRI were acquired on 3T 
Siemens and centralized in an XNAT database. Post-contrast DIXON scans were acquired using data 
preparation scripts. Ground truths (GT) were defined by a nephrologist (>3 years’ experience). Model 
Training - UNETR in MONAI (monai.io) was trained and validated over 25,000 iterations using 72 cases 
and tested in 8 new cases. These were performed (x15 possible arrangements) using the 4 individual 
DIXON-MRI. Data Analysis - DICE scores were used to select the optimal model and statistical analysis 
including paired t-test and F-test with significant differences defined at p<0.05. 
Results: Figure 1 and figure 3 show the distributions of all 3 metrics in more detail and figure 2 
illustrates the result of 3 individual cases. The optimal model (mean ± sd DICE score 98 ± 1%) used 3 
DIXON series (in/out-phase + water). It was more accurate than the in-phase model (DICE 83 ± 14%, 
p=0.014), but not significantly different from the out-phase model (DICE 95 ± 7%, p=0.21). On average, 
the volume error of the optimal model (-0.35%) was not significantly different from the in-phase (-
12.2%, p=0.20) or the out-phase model (-7.15, p=0.55). However, volumes of the optimal model (SD 
1.72%) were significantly more precise than the in-phase (SD 24.6%, p<0.001) and the out-phase 
model (SD 11.8%, p=0.04). Errors in kidney compactness were not significantly different between 
optimal (-2.3% ± 6.5%) and in-phase (1.7% ± 4.8%, p=0.08) or out-phase (-1.2% ± 3.4%, p=0.73) models. 
Discussion: Most accurate results are obtained with 3 DIXON channels, in contrast to findings in a 
recent study using CNNs, which found best performance on DIXON in-phase alone (DICE 90.2% ± 3.4% 
[4]). Multiple channels are beneficial, however, not statistically significant on this small test dataset.   
Conclusion: Transformers with multi-channel DIXON images (in/out-phase + water) are optimal and 
substantially more precise than solutions using only a single in- or opposed-phase image.  
References 
[1] Hatamizadeh, A. et al. (2022) ‘UNETR: Transformers for 3D Medical Image Segmentation’, in 2022 
IEEE/CVF WACV. 2022 IEEE/CVF WACV, Waikoloa, HI, USA: IEEE, pp. 1748–1758.  
[2] Sharma, K. et al. (2024) ‘3D Kidney Segmentation in MRI using Transformers’, in. ISMRM 2024, 
Singapore. 
[3] Gooding, K.M. et al. (2020) ‘Prognostic imaging biomarkers for diabetic kidney disease (iBEAt): 
study protocol’, BMC Nephrology, 21(1), p. 242.  
[4] Inoue, K. et al. (2023) ‘The utility of automatic segmentation of kidney MRI in chronic kidney 
disease using a 3D convolutional neural network’, Scientific Reports, 13(1), p. 17361. 

 

 

Conclusions: 3DQLayers has been used to measure renal cortico-medullary gradients in ex-vivo tissue 
across quantitative MRI measures and shown to have a significant correlation with tissue ROI based 
techniques. 3DQLayers could be used to decrease user variability in analysis and increase the rate at 
which large datasets can be analysed by minimising the need for manual masking. This technique is 
readily applicable to in-vivo renal multiparametric MRI data, and will be applied to the UK-wide 
Application of Functional Renal MRI to improve assessment of chronic kidney disease (AFiRM) study. 

 
Figure 1: An outline of the pipeline for layer-based analysis of ex-vivo renal MRI data. Here layers are 

shown at 2.5mm thickness for illustrative purposes, data was processed with 0.5mm thick layers. 

 
Figure 2: Example quantitative maps and associated depth profiles. Uncertainty shading shows the 

95% confidence interval of each layer. 

 
Figure 3: Agreement between tissue label-based analysis methods and layer-based analysis methods 

and the Pearsons correlation coefficient. p-value of * < 0.05, ** < 0.01 and *** < 0.001.  
Acknowledgements: This work is funded by Kidney Research UK Grant KS_RP_002_20210111 
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Measurement of in vivo T2* of inhaled perfluoropropane gas and its dependence on lung 
microstructure. 

Dominic Harrison1,2, Mary Neal1,2, Pete Thelwall1,2 

1Newcastle Magnetic Resonance Centre, Newcastle University, Newcastle upon Tyne; 2Translational and 
Clinical Research Institute, Newcastle University, Newcastle upon Tyne 
 
Introduction: Pulmonary T2* measurements are sensitive to lung microstructure due to their 
dependency on magnetic susceptibility differences at boundaries between air and tissue at the 
mesoscopic level. These cause localized field gradients, where signal from MR-detectable nuclei within 
these gradients experience rapid de-phasing and thus exhibit a short transverse relaxation rate 
(T2*)[1]. Therefore, pulmonary T2* measurements are sensitive to structural changes associated with 
lung physiology (e.g., depth of inspiration) or pathophysiology (i.e., structural change associated with 
disease) and may allow for early detection of diseases such as emphysema, cystic fibrosis, and chronic 
bronchitis. Our research focuses on 19F-MRI of inhaled perfluoropropane (PFP) to assess lung 
ventilation properties, and the assessment of lung microstructural influences on relaxation properties 
of this MR-visible gas. Previous T2* measurements of inhaled PFP have either lacked spatial 
information[2] or high confidence[3], and our experience with T2* mapping highlighted challenges due 
to low confidence in measured T2* from 19F-MRI data with relatively low SNR. Therefore, we employed 
image selected in vivo spectroscopy (ISIS)[4] to acquire spatially-localised T2* measurements with high 
SNR. A slice selective 1D-ISIS sequence was used for spatial localisation of signal from PFP, 
accommodating its rapid in vivo T1 relaxation (T1 ~ 12.4 ms)[5]. These spectroscopic data show the 
sensitivity of inhaled PFP’s T2* to microanatomical change at different inhalation depths in healthy 
volunteers, as well as provide an accurate localized T2* measurement for validation of 19F-MRI T2* 
mapping. 

Methods: Scans were performed on a Philips Achieva 3T using a 
Rapid 19F transmit/receive chest birdcage coil. Spectra were 
acquired into 64 datapoints over an 8 kHz bandwidth, 50 mm slice 
thickness and NSA = 124, with a total acquisition time of 5s. The 
healthy volunteer was recruited under local research ethical 
approval and instructed to inhale a 79% PFP/ 21% O2 gas mixture. 
Three deep inhalations were performed prior to initial scanning 
for sufficient wash in of the fluorocarbon gas. The first scanning 
session involved four consecutive 1D-ISIS scans acquired from the 
peripheral 5cm of the right lung (Figure 1) at maximum inhalation, 
maximum expiration, under free breathing, and at tidal volume. 
The second scanning session acquired two 1D-ISIS scans within a 
single breath hold at max inhalation, located at the lung periphery 
and main airways respectively (Figure 1). T2* was calculated by 
fitting a decaying exponential function (Equation 1, where So is 
initial signal, t is the sample time and C is noise) to the ISIS time 
domain data. 

𝑆𝑆(𝑡𝑡) =  𝑆𝑆𝑜𝑜𝑒𝑒
−𝑡𝑡

𝑇𝑇2
∗⁄ + 𝐶𝐶 

Results: Average SNR was 122.2 ± 57.2 (SD). The T2* of inhaled PFP in the peripheral region of the right 
lung was 1.9 ± 0.3 ms (95% CI) at maximum inhalation and free breathing, 1.7 ± 0.3 ms at minimum 
inhalation and 1.8± 0.1 ms at tidal volume inhalation. The T2* of the inhaled PFP in regions 

Figure 1 Central slice of a 1H-MRI 
survey scan of our healthy volunteer 
at maximum inspiration, showing 19F-
MR ISIS slab locations in regions of 
lung periphery (yellow) and major 
airways (red). 

 

Acknowledgements: 
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grant agreement no. 115974. Healthy Lifespan Institute (HELSI), University of Sheffield. EPSRC. 

 

Fig. 1. O = opposed-phase, I = in-phase, F = fat, W = water. (a) DICE scores for test case evaluations in all 15 UNETR output 
models. The figure has a truncated x-axis for clarity. (b) Box plots showing the relative volume errors as a clinical endpoint 

for all 15 models.  

 
Fig. 2. Bland-Altman showing volume against difference for GT v 3 models. Outliers are highlighted: case 3 (orange), case 4 

(purple), case 5 (green). 

 

Fig. 3. Comparison of kidney mask outputs between Ground truth (GT) and 3 models. Heatmap shows volume % errors for 
each test case. Case 3 (yellow) shows significant mask underestimations (red arrows) by opposed-phase and in-phase 

models. Similarly, in case 4 (purple with blue arrows) and case 5 (green with yellow arrows) by in-phase (I). 
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Monitoring diabetic kidney disease progression with DTI and tractography 
Joao Periquito1, Kanishka Sharma1, Kywe Soe1, Bashair Alhummiany3, Jonathan Fulford2, David 
Shelley3, Kim Gooding2, Angela Shore2, Michael Mansfield4, Maria Gomez5, Steven Sourbron1 
 

1The University of Sheffield, Sheffield, UK 
2The University of Exeter Medical School, Exeter, UK 
3The University of Leeds, Leeds, UK 
4Leeds Teaching Hospitals NHS Trust, Leeds, UK 
5The University of Lund, Sweden. 
 
Introduction: Progression of diabetic kidney disease (DKD) is currently monitored with clinical markers 
eGFR (estimated glomerular filtration rate) and UACR (urine albumin-creatinine ratio). Unfortunately 
these only respond in advanced stages of the disease, when the management options for reducing the 
rate of decline are more limited. A wide array of novel blood- and urine biomarkers have been 
proposed to pick up disease progression earlier, but these have so far failed to deliver in patients [1]. 
Previous studies have shown that diffusion tensor imaging (DTI) and tractography may act as early 
indicator of DKD, correlate with pathological measures of fibrosis and predict the decline of kidney 
function in chronic kidney disease [2-7]. The aim of this study was to identify DTI biomarkers that may 
be sensitive to changes over a relatively short 2-year time frame in early stage DKD. 
Methods: Data acquisition: Thirteen type 2 diabetic patients with eGFR greater or equal to 30 
mL/min/1.73m2 were scanned two times during a two-year period on MAGNETOM Prisma 3T MRI 
(Siemens Healthcare GmbH, Erlangen, Germany) using the MRI protocol of the iBEAt study [8]: free-
breathing single-shot EPI readout (TE=70ms, TR=5100ms, GRAPPA=2, 30 slices) with a pulsed-gradient 
spin-echo (PGSE), consisting of two diffusion-weighting shells (number of directions) of b = 100 s/mm2 
(24 directions), 600 s/mm2 (122 directions) with 3 non-diffusion-weighted volumes (~ 0 s/mm2). All 
patients arrived fasted (>8hrs) and were provided with standardized meal and fluid prior to the MRI 
scan. Image processing: Images were processed using DIPY open-source python library, in two 
different ways: (1) Using reconst.dti function library from DIPY: mean diffusivity (MD), fraction 
anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), sphericity, planarity and linearity were 
calculated from the DWI images. (2) Tractography: fibres were reconstructed using a deterministic 
(deterministic maximum direction getter) and a probabilistic fibre tracking (probabilistic direction 
getter) algorithm from DIPY tracking function library. A minimum FA threshold of 0.10 and a maximum 
turning angle of 55° between two adjacent voxels were used. Fibre lengths were extracted from the 
two tracking methods. Image analysis: Whole kidney ROIs were placed over the left and right kidney 
for baseline and follow-up scans. For each of the 9 parameters 20 metrics were extracted: mean, 
standard-deviation, median, minimum, maximum, percentiles (2.5%, 5%, 10%, 25%, 75%, 90%, 95% 
and 97.5%), inter-quartile range, range, 90% range, coefficient of variation, heterogeneity, kurtosis, 
and skewness, leading to a total of 180 biomarkers to be evaluated. A pairwise t-test was performed 
to identify the biomarkers that change between baseline and follow-up. For biomarkers with p<0.05, 
errors in individual measurements were estimated from a prior repeatability study in healthy 
volunteers, and applied to determine whether the changes in individuals are consistent with 
measurement uncertainty. 
Results: Figure 2 shows the relative mean change for each of the 180 biomarkers along with its 95% 
confidence interval; the cohen-d coefficient that reflects effect size for each biomarker; and the p-
value of the pairwise t-test. 46 biomarkers showed a significant change over the 2 years, with mean 
changes that reach over ½ of a standard deviation and cohen-d effect sizes up to 0.6. Figure 3 displays 
the top 25 significant biomarkers ranked by the mean change, along with their uncertainty estimates. 
The figure highlights individual changes that are consistent with real tissue progression. 
Discussion: The results suggest that DTI picks up microstructural changes over 2 years, a potentially 
significant finding considering clinical changes in this population of relatively early stage DKD are 
expected to be small. Tensor shape biomarkers planarity and sphericity accounted for 7 of the 10 most 

predominantly containing 
central airways was 2.3 ± 
0.3 ms at max inhalation 
and 2.0 ± 0.3 at the lung 
periphery in scan session 
2. Figure 2 shows all ISIS 
scan time domain data 
and exponential fits. 

Discussion: The observed 
change in PFP’s T2* over 
the respiratory cycle 
reflects a sensitivity to 
change in pulmonary 
physiology and 
microstructure. 
Measurements of T2* of 
lung periphery at max 
inhalation show close agreement from each scanning session, demonstrating repeatability in our 
protocol for an identical slice selection and breath hold regime. Measured T2* across the major airways 
was shorter than anticipated, likely caused by the large volume of interest (VOI) spanning multiple 
generations of the tracheobronchial tree, reducing the mean T2*. This limitation arises from our 
decision to employ slice selective ISIS due to the short T1 relaxation of in vivo PFP. However, calculated 
SNR shows sufficient signal to further reduce VOI slice thickness, potentially mitigating the reduction 
of mean T2*. These data provide the ability to discriminate physiological/structural pulmonary change 
in a measurement with high SNR and narrow confidence intervals, and therefore could highlight PFP 
19F-MRI’s potential for early detection of microstructural alterations arising from lung disease. 

Conclusion: Our data demonstrate that spatially localised 19F-MRS measurements can be used to 
measure the T2* of inhaled PFP, and that T2* is sensitive to change in lung microstructure at different 
inhalation depths and to regional differences in lung structure. Measurement of the T2* of inhaled PFP 
has potential to report on microstructural changes due to lung pathology and may allow for early 
detection of lung diseases. This technique will also contribute to the development of our 19F-MRI T2* 
mapping by providing accurate localized measurements for which to validate our T2* maps. 
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apparent diffusion coefficient at 1.5T and at 3T. Magnetic Resonance in Medicine, 2021. 
85(3): p. 1561-1570. 

4. Ordidge, R.J., A. Connelly, and J.A.B. Lohman, Image‐selected in Vivo spectroscopy (ISIS). A 
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Figure 2 Plotted signal decays and fitted curves for: A) maximum inhalation localized 
at the lung periphery, B) minimum inhalation localized at the lung periphery, C) tidal 
volume inhalation localized at the lung periphery, D) repeated max inhalation 
localized at the lung periphery, E) max inhalation localized at the major airways, and  
F) free breathing localized at the lung periphery. 
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Lipid composition during neoadjuvant chemotherapy of breast cancer through chemical 
shift-encoded imaging 

Sai Man Cheung1,2, Kwok Shing Chan2,3, Nicholas Senn2, Ravi Sharma4, Trevor McGoldrick4, Tanja 
Gagliardi2,5, Ehab Husain6, Yazan Masannat7, Jiabao He1,2  
1Newcastle Magnetic Resonance Centre, Translational and Clinical Research Institute, Faculty of 
Medical Sciences, Newcastle University 
2Institute of Medical Sciences, University of Aberdeen 
3Massachusetts General Hospital, Boston, United States of America 
4Department of Oncology, Aberdeen Royal Infirmary 
5Radiology Department, Royal Marsden Hospital, London 
6Pathology Department, Aberdeen Royal Infirmary 
7Breast Unit, Broomfield Hospital, Mid and South Essex NHS Foundation Trust 
 
Introduction: Breast cancer is the most common cancer among women, with age-adjusted annual 
incidence of 205 per 100,000 [1]. An imbalance of monounsaturated, polyunsaturated and saturated 
fatty acids (MUFA, PUFA, SFA) has been shown in the peri-tumoural adipose tissue adjacent to breast 
tumour [2]. Novel chemical shift-encoded imaging (CSEI) provides a rapid mapping of lipid composition 
in the breast, and may serve response monitoring of neoadjuvant chemotherapy (NACT) for stratified 
treatment. We therefore hypothesise that there might be a difference in lipid composition in the peri-
tumoural region and the whole breast between good and poor responders after one cycle of NACT. 
Methods: Seventeen patients (age 46 – 58 years) with invasive ductal carcinoma participated in the 
longitudinal study to undertake MRI scan at Baseline and after Cycle 1. Patients with a tumour size 
larger than 2 cm on mammography and have not had 
hormonal therapy prior to chemotherapy were eligible. Miller-
Payne system was used to assess pathological complete 
response for good responder [3]. The study was approved by 
the London Research Ethics Committee (ID: 17/LO/1777), and 
written informed consents were obtained from all the 
participants (Figure 1).       
Lipid Composition Mapping All images were acquired on a 3 T 
whole-body clinical MRI scanner (Achieva TX, Philips 
Healthcare, Best, Netherlands). Lipid composition images 
were acquired from the diseased breast in all participants 
using a 2D CSEI sequence [4,5] with 48 echoes, initial echo time 
of 1.14 ms, echo spacing of 1.14 ms, repetition time of 60 ms, 
reconstruction matrix of 96 × 96, reconstruction pixel size of 
2.5 × 2.5 mm2 and slice thickness of 5.0 mm.     Figure 1. Study design. 
Data Processing Image analysis was conducted in MATLAB (R2020a, MathWorks Inc., Natick, MA, 
USA). The maps of the number of double bonds in triglycerides were computed from raw data, before 
subsequent calculation of quantitative maps of MUFA, PUFA and SFA as a fraction of the total amount 
of lipids [4,5]. The boundary of tumour was delineated on the first echo of lipid composition images, 
with reference to anatomical and diffusion weighted images. The peri-tumoural region was defined as 
a growth of 15 mm (6 voxels) concentric ring surrounding the tumour boundary. The whole breast was 
defined to contain only adipose and fibroglandular tissue, and excluding the tumour. Adipose voxels 
with lipid signal over 60% of total signal were extracted from lipid composition maps. The mean lipid 
composition from the regions-of-interest was subsequently computed for each lipid constituent. 
Percentage change in lipid composition was calculated as: [Cycle 1 – Baseline] / Baseline × 100%. 
Statistical Analysis All statistical analysis was performed in the R software (v3.6.3, R Foundation for 
Statistical Computing, Vienna, Austria). Wilcoxon signed rank paired tests were performed for 
comparison of lipid composition in the peri-tumoural region and the whole breast between Baseline 

 

 

substantial changes, and 5 biomarkers related to MD appear in the top 25. The largest significant 
change in tractography markers is associated to the deterministic model – heterogeneity of the fiber 
length distribution. Considering the small sample size and the large number of biomarkers screened, 
these findings should be treated as hypotheses that are to be validated in the larger population. Data 
collection for this larger study is underway and more conclusive testing of these hypotheses is 
expected in the course of 2024.  
Conclusions: DTI biomarkers show strong changes in early-stage diabetic kidney disease over 2 years, 
a time frame where clinical biomarkers are typically stable. This indicates that DTI picks up subclinical 
changes in renal microstructure, a finding that may have significant implications for clinical practice if 
confirmed in the larger population. 
 

Figure 1: Calculated DTI maps. 

 

 
Figure 2: Relative changes from baseline to follow-up scan. 

 

 
Figure 3: Scatter plot (baseline vs follow-up) of the top 5 significant biomarkers with the largest relative mean 
change. 

–
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Investigating live human sperm metabolism during hyperactivation and the acrosome 
reaction using 13C-NMR 

Evie Gruszyk1, Allan Pacey2, Steven Reynolds1 
1School of Medicine and Population Health, Faculty of Heath, University of Sheffield, Sheffield. 
2School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 
Manchester 

Introduction: In addition to capacitation, hyperactivation and the acrosome reaction are key events 
that must occur for successful fertilization1. It remains unclear what the energy demands for these 
events are and the role of glycolysis or oxidative phosphorylation in supplying ATP to drive this. 13C-
NMR can identify multiple simultaneous biochemical pathways utilised by live sperm using isotopically 
labelled substrates2. In this study, we investigated live human sperm energy metabolism during 
hyperactivation and the acrosome reaction. 

Methodology: Washed sperm (n=11) were incubated with 13Cu-glucose at 37°C for eight-hours and 
the metabolic conversion by sperm measured by 13C-NMR. First, capacitation was initiated by Human 
Serum Albumin and bicarbonate for 4 hours and subsequently stimulated for either hyperactivation 
(8 mM caffeine) or the acrosome reaction (10 µM progesterone, 5 µM Prostaglandin E1 and 30 mM 
ammonium chloride). Hyperactivation was determined using CASA (Compute Aided Sperm Analysis) 
and the acrosome reaction using fluorescent staining, Pisum sativum agglutinin. Lactate and 
bicarbonate NMR integrals were normalised by vital sperm concentration, see Figure 1. Statistical 
analysis used the Wilcoxon test and date is presented as mean ± SEM.  

Results: Hyperactivation (n=11, 0.1±0.1% to 28.1±5.9%, p<0.001) and the acrosome reaction (n=11, 
6.04 ± 1.4% to 9.7 ± 1.1%, p=0.017) were significantly induced in human sperm. There was significantly 
more lactate produced during hyperactivation (Arbitrary units (a.u.): 1.3±0.1x107 to 1.9±0.2x107, 
p<0.001) and the acrosome reaction (a.u.: 9.8±0.8x106 to 1.2±0.1x107, p<0.001). Significantly, less 
bicarbonate was produced during the acrosome reaction (a.u.: 3.1±0.5x105 to 1.6±0.2x105, p=0.03) in 
human sperm, however there were no differences in bicarbonate production during hyperactivation. 

Conclusions: The increased lactate production during hyperactivation and the acrosome reaction 
suggests glycolysis dependency for these processes without a reliance on oxidative phosphorylation. 
The bicarbonate production measured during hyperactivation suggests oxidative phosphorylation is 
occurring at a background level.  

References 
1. Alasmari, W., Barratt, C. L. R., Publicover, S. J., Whalley, K. M., Foster, E., Kay, V., Da Silva, S. M. & 

Oxenham, S. K. 2013a.  Human Reproduction, 28, 866-876.         
2. Reynolds S, Calvert SJ, Walters SJ, Paley MN, Pacey AA. Reprod. Fertil. 2022, 3(2), 77–89.  

Figure 1: 13C-NMR spectrum from human sperm (~50 M/mL) incubation with ~9 mM 13C6-glucose. 
Spectra were acquired at 9.4T with a 13C{1H} inverse-gated pulse sequence (SW = 239 ppm, NA = 
4096, AQ = 0.5 s, D1 = 2 s, TD = 24036, FA = 16°). The spectra were processed using a 5 Hz 
exponential line broadening. The urea signal (δ = 165.5 ppm) was used as a reference. 

 

 

and Cycle 1. Wilcoxon rank sum tests were performed for comparison of percentage change in lipid 
composition between good and poor responders. Statistical significant finding was determined by p < 
0.05. 
Results: The histopathological findings of the patient cohort are 
shown in Table 1.  
Baseline and Cycle 1 In the peri-tumoural region, there was no 
significant difference at borderline in MUFA (p=0.055) at Cycle 1 
compared to Baseline. There was no significant difference 
(p=0.073) in PUFA between Baseline and Cycle 1. There was no 
significant difference at borderline in SFA (p=0.055) at Cycle 1 
compared to Baseline (Figure 2). In the whole breast, there was no 
significant difference in lipid composition between Baseline and 
Cycle 1 (Figure 2).                       Table 1. Patient demographics. 
Good and Poor Responders There was no significant difference in percentage change in lipid 
composition in the peri-tumoural region and the whole breast between good and poor responders 
after one cycle of NACT (Figure 3).  

Figure 2. Longitudinal change in lipid composition. Figure 3. Difference in lipid composition. 
Discussion: There was no significant difference at borderline in MUFA, PUFA and SFA after the first 
treatment cycle, showing a complete treatment induced lipid normalisation might not occur at an 
early phase of NACT. However, the insignificant difference at borderline might show a difference in 
response in a larger cohort, even though it did not reach the statistical threshold to be significant as a 
primary force in this study. There was no significant difference in the percentage change in lipid 
composition between good and poor responders, however the cohort size is small and further studies 
are warranted to unravel lipid regulation during tumour regression and subsequent treatment induced 
normalisation in patients with breast cancer undergoing NACT. 
Conclusions: There was no significant difference in percentage change in lipid composition in the 
breast between good and poor responders after one cycle of neoadjuvant chemotherapy, and peri-
tumoural lipid composition might not be early predictive marker of pathological complete response. 
Acknowledgements: The authors would like to thank Dr Matthew Clemence (Philips Healthcare 
Clinical Science, UK) for clinical scientist support. The project was funded by Friends of Aberdeen and 
North Centre for Haematology, Oncology and Radiotherapy (ANCHOR), NHS Grampian Endowment 
Research Fund and Tenovus Scotland. 
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Discussion:  
 The higher MT amplitude of breast and thigh at 1hour could be attributed to the muscle content, in 
which the MT give a higher value in the muscle compared to the other organs4. However, P-C1 (soy 
protein) does not contain muscle and has a higher MT value. This could be explained by the higher 
fibrous structure of soy protein which is similar to or slightly superior to the fibrous structure of chicken 
breast5. In terms of T1& T2, the increase of T1&T2 values in the samples compared to the baseline 
could be due to the high dilution factors used in the experiment. This was considered as a limitation 
of the study and will be further investigated with a semi-dynamic model. Similarly, change in T1 could 
be taken into account for a more accurate quantification of the MT pool size. 
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Figure 1. MT amplitude of chicken and plant-based chicken soup samples by different digestion time. 
Error bars represent SD, and the asterisks on bars indicate to differences, determined with the two-way 
ANOVA test (ρ < 0.05). (****): (P ≤ 0.0001); (***): (P ≤ 0.001); (**): (P ≤ 0.01); (*) :(P ≤ 0.05). 

Table 1: T1&T2-values of chicken and plant-based chicken soup samples by different digestion time. 
Data are presented as mean ± standard deviation (SD) of two replicates  

 
T1 T2 

Samples Baseline 1h 2h Baseline 1h 2h 
Breast 2.18±0.03 3.12±0.19 3.10±0.16 0.15±0.003 0.34±0.07 0.31±0.05 
Thigh 1.73±0.06 3.08±0.13 3.04±0.14 0.32±0.01 0.52±0.04 0.41±0.03 
P-C1 1.05±0.06 2.73±0.06 2.65±0.07 0.15±0.05 0.38±0.03 0.29±0.02 
P-C2 1.17±0.03 2.53±0.09 2.34±0.01 0.25±0.05 0.28±0.01 0.25±0.005 

 

Conclusion:  

MT, T2 and T1 can be applied to monitoring the in-vitro gastric digestion of chicken and chicken 
analogues. These finding will be extended to monitoring dynamic in-vivo digestion of chicken and 
chicken analogues as well as semi-dynamic in-vitro digestion models. This will be a guide for further 
studies to monitor the digestibility of different types of protein both in-vitro and in-vivo. 

References: [1] Benders, S. et al., 2019. Physical sciences reviews, 4(10), p.20180177. [2] Brodkorb, 

André, et al., 2019. Nature protocols 14.4: 991-1014. [3] McAuliffe MJ. et al., 2001. Ieee computer-based medical 

systems (CBMS), 381-386.  [4] Boss, A et al., 2006. Journal of Magnetic Resonance Imaging, 24(5), pp.1183-

1187.  [5] Chiang, J.H. et al., 2019. Food Structure, 19, p.100102.   

Using Magnetisation Transfer Ratio, T1 and T2 to monitor the in-vitro gastric digestion of chicken 
and plant-based chicken analogues 

May Alotaibi 1,2, Olivier Mougin3, Molly Muleya1, Andrew Salter1, Penny Gowland3, Sally Eldeghaidy 1,3 
and Caroline Hoad 3, 4 

1Division of Food, Nutrition & Dietetics, School of Biosciences, University of Nottingham, LE12 5RD, 
UK; 2Clinical Nutrition Program, Department of Health Sciences, College of Health and Rehabilitation 
Sciences, Princess Nourah Bint Abdulrahman University, Riyadh, Kingdom of Saudi Arabia; 3Sir Peter 
Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham 

NG7 2RD, UK; 4 NIHR Nottingham Biomedical Research Centre (BRC), Nottingham University Hospitals 
NHS Trust and University of Nottingham, Nottingham, UK. 

Introduction: 
Monitoring the breakdown of food during gastrointestinal digestion is critical for understanding how 
the structure of food influences nutrient bioavailability and bioaccessibility. Magnetic Resonance 
Imaging (MRI) allows for the non-destructive and spatially resolved assessment of alterations in the 
multi-scale structural characteristics of food1. In-vitro digestion models are commonly used, however 
it remains challenging to validate these models with in-vivo observations, and MRI techniques 
provides a great tool to narrow this gap. This study aims to compare chicken and plant-based chicken 
analogues in terms of their hydrolysis and digestibility by using relaxation time (T1&T2) and 
Magnetization Transfer (MT) measurements in samples during gastric phases of static digestion model. 
 

Methods:  
In-vitro digestion was performed following the INFOGEST harmonised static in-vitro digestion model2 
for soups without dilution and enzymes at baseline, and then 1h, 1:30h and 2h in the gastric phase. 
Protein sources from chicken (breast and thigh) and two commercial plant-based chicken analogues 
(P-C1 [soy protein, 63%], P-C2 [wheat protein, pea protein]) were assessed as part of a soup meal. All 
soups were designed to match for calories and content of protein, fat, carbohydrates. T1, T2 and 
Chemical Exchange Saturation Transfer (CEST) were measured using 3T Philips Ingenia MRI scanner 
using a 3D FFE multi-shot sequence with 18 slices (5mm slice thickness), Flip Angle 5°, Compressed 
Sense 6, FOV 300 x 300 mm2 and in-plane resolution 0.93 x 0.93 mm2. MT amplitude was obtained by 
fitting the CEST spectrum (22 frequencies) using a Lorentzian lineshape. Regions of interest in the 
different samples were drawn at the bottom of the tubes using MIPAV3 The calculations and 
processing were carried out using MATLAB R2022a (MT amplitude) and C (T1 and T2). The statistical 
differences were calculated using Two-way ANOVA analysis followed by a Tukey test (p <0.05) Using 
GraphPad Prism 10.  
 
Results:  
MT amplitude was significantly higher at the baseline in the undiluted soup prior to digestion when 
compared to the later timepoints for all samples (P<0.0001), where digestion process decreased the 
MT, Figure 1. There was a significant effect of digestion time between 1hour and 1:30 hour in breast, 
thigh and P-C1 with (P<0.0001). However, there were no significant differences of MT between the 
samples. There was a significant increase in T1- and T2-values for the samples in the digestion model 
compared to baseline soup (P<0.0001), except T2-values for P-C2 sample. T1-values demonstrated a 
significant difference between the animal-based chicken (breast and thigh) compared to plant-based 
chicken (P<0.001). T2-value was higher for thigh samples compared to other samples (P<0.01). 
However, the T1 and T2-values did not vary during the digestion time, see Tables 1.  
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Figure 1. Example 13C spectra. 
 

Results: The changes in liver and muscle glycogen (%) post-exercise over a 5-hour recovery period are 
illustrated in Figure 2. The highest mean (± SEM) percentage change in liver glycogen at 5 hours was 
observed in the Pro trial, with an increase of 67.3 ± 11.6%. This represents a 53.4% increase over trial 
M, which showed the lowest percentage change of glycogen resynthesis among the carbohydrate 
(CHO) trials. Notably, the glycogen repletion rate in the Pro trial between 2 to 5 hours post-exercise 
was markedly higher (59%) compared to the initial 2 hours, where resynthesis was considerably slower 
at 8.3 ± 7.9%. After the 5 hrs of recovery the F and M&F trials saw comparable glycogen resynthesis 
levels (45.4 ± 8.5 and 46.6 ± 9.9 %, respectively). Regarding muscle glycogen resynthesis, the M trial 
exhibited the highest percentage rise, with a 68.5 ± 16.4% increase after 5 hours of recovery. In 
contrast, the F trial resulted in the smallest percentage change among the CHO trials, with a 25.6 ± 
11.9% change. Similar to liver glycogen resynthesis, F and M&F trials saw similar changes in glycogen 
resynthesis (25.6 ± 11.9 and 27.8 ± 11.2 %).  
 

 
Fig. 3. Percentage change in glycogen from t=0 to t=300 minutes for (A) liver and (B) thigh muscle.  
 

Conclusion: In conclusion, these data support the hypothesis that co-ingestion of protein (30 g at 0 
and 180 mins) with CHO (60 g.h-1) further enhances liver glycogen repletion beyond CHO alone during 
a 5-hour recovery period in endurance trained male cyclists. In contrast within the muscle, it was 
observed that maltodextrin (60 g.h-1) produced the greatest increase in muscle glycogen resynthesis.  
References: 1. Jeukendrup AE. Carbohydrate intake during exercise and performance. Nutrition. 
2004;20(7-8). doi:10.1016/j.nut.2004.04.017, 2. Gonzalez JT, Fuchs CJ, Betts JA, van Loon LJC. Liver 
glycogen metabolism during and after prolonged endurance-type exercise. American Journal of 
Physiology - Endocrinology and Metabolism. 2016;311(3). doi:10.1152/ajpendo.00232.2016 
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Co-ingestion of whey protein enhances liver glycogen repletion following ingestion of 
combined glucose and fructose in trained cyclists 

Sophie Hannon1, James McStravick1, Libby Henthorn1, Fiona Smith1, Nathan Hodson1, Gabriella 
Rossetti1, James Morton2, Aneurin J Kennerley1, Mark Hearris1 

1Institute of Sport, Department of Sports & Exercise Science, Manchester Metropolitan University, 
Manchester. 
2Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool. 
 

Introduction: Carbohydrates (CHO) are crucial for energy production during prolonged endurance 
activities (1). Despite this, storage of CHO within the liver (~120g) and muscle (~500g) as glycogen is 
relatively limited and can become significantly depleted following prolonged exercise (2). Rapid 
glycogen replenishment represents a priority when performance must be restored within a limited 
timeframe (e.g., <24 hours). While post-exercise CHO consumption is vital for restoring glycogen, 
combining it with dietary protein may enhance liver glycogen repletion. This study uses non-invasive 
13C magnetic resonance spectroscopy (MRS) to assess skeletal muscle and liver glycogen 
concentrations during a 5-hour post-exercise recovery period in response to four nutritional 
interventions. This research aims to provide nutritionists, metabolism researchers and athletes with 
practical refueling recommendations.  
Methods: Trials were conducted at the Institute of Sport (Manchester, UK) following approval from 
Manchester Metropolitan University Research Ethics Committee in accordance with the Declaration 
of Helsinki. Ten endurance trained cyclists (mean ± SD: age 30 ± 8 years, body mass 77.8 ± 6.5 kg, 
height 181.4 ± 4.8 cm, VO2max 57.5 ± 5.7 ml kg−1min−1, peak power output [PPO] 384 ± 31 W) performed 
glycogen depleting exercise followed by five hours of recovery. During the recovery period, 
participants ingested 60 g.h-1 CHO from either maltodextrin (M), fructose (F), maltodextrin + fructose 
(M&F) or maltodextrin + fructose + protein (Pro; 30 g whey protein consumed at 0 and 180 minutes). 
1H Magnetic Resonance Imaging (MRI; and 13C spectroscopic data were acquired immediately post-
depletion (t=0 minutes), at two hours (t=120 minutes) and at five hours (t=300 minutes) to establish 
liver volume and glycogen concentrations within the liver and the thigh muscle. Data were acquired 
on a Siemens MAGNETON Vida 3T MR system (70cm bore, preinstalled XQ 45/200 gradients, XA31 
software - Siemens Healthcare GmbH, Erlangen, Germany). For whole liver volume assessment Spine 
32 and Body 18 1H array coils were used. 3D Slicer using an artificial intelligence-based segmentation 
tool (Totalsegmentator) was used to extract liver volume (VL). MRS utilised a dual-channel 1H/13C 
transmit-receive flexible surface coil (01365; Rapid Biomedical GmbH, Rimpar, Germany) positioned 
over the liver or thigh muscle. Following standard 1H localisation, manual frequency, power, and 3D 
shimming (MGE field mapping) achieved a 1H water peak FWHM of 19.9 ± 1.0 Hz. FID-based 
acquisition was implemented (TR 200 ms; NA 4096; FA 90°; bandwidth (BW) 16000 Hz; acquisition 
duration 128 ms; spectral points 2048). 13C spectral data were analysed offline in MATLAB 2024a (The 
MathWorks, Natick) using software routines developed in-house. Following 5Hz line broadening, 
spectra were manually phased (0 & 1st order correction). Spectra were windowed around the C-1 
glycogen doublet (~100ppm) and fitted, using nonlinear least squares with a Levenberg–Marquardt 
algorithm, to appropriate Gaussian/Lorentzian functions and a quadratic polynomial for the baseline 
(Figure 1). Fitting parameters were used to isolate the signal contribution from glycogen. The area 
under the curve was extracted and normalised to a small 50mM phantom acetate standard (secured 
on the opposite coil surface). Total liver glycogen content (LGC) was calculated using: 𝐿𝐿𝐿𝐿𝐿𝐿(𝑔𝑔) =
162(𝑔𝑔.𝑀𝑀−1)

1000 . 𝑉𝑉𝐿𝐿. [𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺]. 
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fitted gaussian. PC-MRI data was analysed in Philips Q-flow software to compute flow, mean velocity 
and mean cross sectional area.   
Results: Liver tissue T1, T2, T2*, 
stiffness, FF and volume were 
comparable between children with CF 
and HVs, Fig. 2, but note outlier values 
in 1 CF child who was independently 
being reviewed for CF-related liver 
disease. For the pancreas, there was a 
trend for higher FF in CF (CF=6.3(78)%, 
HV=0.9(2)%, p=0.09), with 3 CF children 
having partial or complete 
replacement by fat tissue, Fig. 3A. 
There was also a significant increase in 
pancreas T1 (CF=1166(494)ms, 
HV=736(228)ms, p<0.004) and T2 
(CF=111±32ms HV=59.9±5.9ms, 
p<0.002). There was also a trend for 
an increase in spleen tissue T1 in CF 
(CF=1418±40ms, HV=1381±24ms, 
p=0.05), Fig. 3B. There was no 
difference in SMA or PV flow but a 
significant increase in hepatic artery 
velocity in CF (CF=13.1±6.4cm/s, 
HV=8.2±1.5cm/s, p<0.04) Fig. 4. 
 

Discussion: We have demonstrated 
the feasibility of acquiring a 
multiorgan multiparametric 
quantitative MRI protocol in children. 
Differences in liver, pancreas and 
spleen MRI measures in CF compared 
to HVs were seen in the spleen and 
pancreas, alongside liver changes in a 
CF child later diagnosed with liver 
disease. HV T1 measures agree with 
literature paediatric values [4], and 
we plan to collect more HV data. 
 

Conclusion: Following this baseline 
feasibility, we are now studying the 
effect of CFTR therapy on lung, gut, 
liver, pancreas and spleen function by 
scanning these children with CF 12-
months after commencement of 
Kaftrio.  
 

 
References: 

Figure 2: Liver tissue T1, T2, T2*, FF, MRE stiffness, and volume in HV and CF. 
Outlier with high T1, T2, and MRE stiffness, this child had CF-related liver disease. 
 

Figure 3: A) Pancreas in CF compared to HV has a significant increase in T1 (CF 
1166(494)ms, HV 736(228)ms, p<0.004) and T2 (CF 111±32ms HV 59.9±5.9ms, 
p<0.002), and a trend for increased FF (CF = 6.3(78)%, HV = 0.9(2)%, p = 0.09).  B) 
Spleen shows a trend for an increase in spleen tissue T1 in CF (CF 1418±40ms, HV 
1381±24ms, p=0.05). 

Figure 4: PC-MRI mean velocity measures which shows a significant increase in 
the hepatic artery in CF (CF 13.1±6.4cm/s, HV 8.2±1.5cm/s, p<0.04), but no 
difference in the SMA or portal vein. 

1) Dellschaft NS, Ng C, Hoad C, et al. Journal of Cystic Fibrosis 21:502–505. (2022). 
2) Palaniyappan N, Cox E, Bradley C, et al. J Hepatol 65(6):1131-1139. (2016). 
3) Quantitative Imaging Biomarkers Alliance (2017) QIBA Profile: Magnetic Resonance Elastography of the Liver. 1–65 (2019). 
4) Gilligan LA, Dillman JR, Tkach JA, et al. Pediatr Radiol 49:1018–1024. (2019). 

Multi-organ quantitative abdominal MRI in paediatric patients with Cystic Fibrosis 
Chris R Bradley1,2, Alexander Yule2, Nayan Dey2, Christabella Ng2, Naaventhan Palaniyappan2, Zachary 
Peggs1,2, Jonathan Brooke2, Neele Dellschaft1,2, Luca Marciani1,2, Robin Spiller2, Guruprasad Aithal2, 
Caroline Hoad1,2, Penny Gowland1,2, Ian Hall2, Alan Smyth2, Susan T Francis1 and Andrew Prayle2 

1Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, United Kingdom 
2NIHR Biomedical Research Centre, Nottingham Univ. Hospital NHS Trust and Univ. Nottingham, 
Nottingham, UK.  
 
Introduction: Cystic fibrosis (CF) is a multi-system, life-limiting autosomal recessive genetic disorder 
which causes mucus to build-up in certain organs, such as the lungs, liver, pancreas, and intestines. 
Cystic Fibrosis Transmembrane Regulator (CFTR) Modulator therapies target multiple organ 
systems, and modulators have maximal benefit when commenced in early childhood. There is a 
need for multisystem assessment of beneficial as well as potential adverse effects of modulators in 
children. Aim: To apply multi-organ MRI (the GIFT protocol) designed to be tolerable for children 
aged 6 to 11 years to quantify measures of lung, liver, spleen, pancreas and gut function for future 
study of CFTR therapies. This abstract presents results on the abdominal (liver, pancreas and spleen) 
measures.     
 

Methods:  
Study protocol: Eight children with CF (aged 9±2 years) and 3 healthy volunteers (HV) (aged 9±3 years) 
were recruited (https://clinicaltrials.gov/study/NCT05699148). The study day consisted of a fasted gut 
MRI (small bowel water content and 
gut motility) [1] followed by 
abdominal (liver, pancreas and 
spleen) MRI acquired in 20-minutes. 
Subjects then had a set breakfast, 
with a gut and lung scan (lung UTE 
and PREFUL) collected at 240-
minutes after breakfast, followed by 
a second set meal and a gut scan 
300-minutes post breakfast (Fig. 1).  
All scans were acquired on a Philips 
3T Ingenia scanner using a 16-
channel anterior coil with paediatric 
coil holder. Children undertook the 
scan protocol without sedation. 
Abdominal MRI measures collected included a breath hold mDIXON-Quant sequence to assess organ 
volume and fat fraction, and a fat suppressed respiratory triggered spin-echo echo-planar-imaging (SE-
EPI) inversion recovery technique with 15 inversion times (100-1500ms, ascend/descend acquisition) 
to assess organ tissue T1 in ~3 minutes (3x3x8mm3 voxel size, 9 axial slices). A breath hold multi-echo 
(mFFE) sequence was used to collect T2* data (10s,12 echoes, TE1=2.35ms, ΔTE=2.35ms,3x3x8mm3,9 
axial slices), and T2 data were collected using a respiratory triggered GraSE sequence with 30 echoes 
(TE1=5.6ms,ΔTE=5.6ms,3x3x8mm3, 9 axial slices). Phase contrast MRI (PC-MRI) assessed blood flow 
through the superior mesenteric artery (SMA), hepatic artery (HA) and portal vein (PV) (velocity 
encoding: 140, 100 and 50cm/s respectively,1x1x6mm3) to monitor for CF related liver disease and 
portal hypertension [2]. Liver MR elastography (MRE) was collected using a QIBA recommended SE-
EPI sequence with 4 axial slices, 4 phase offsets and 60Hz vibration frequency [3].  
 

Data Analysis: mDIXON fat fraction (FF), T2 and T2*, and MRE stiffness maps were scanner computed. 
T1 data were fit voxel-wise to compute T1 maps (MATLAB). A manual ROI was drawn of the liver, spleen 
and pancreas from the mDIXON images and used to compute organ volume. This ROI was then used 
to interrogate the quantitative maps with histogram analysis performed to compute the mode of a 

Figure 1: Study day timeline of GIFT protocol and representative images 
collected for the gut, abdomen (liver, pancreas, spleen), and lung. 
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and 2mM Gd-DTPA were made in degassed PBS. Formalin fixed tissue (kidney and brain) was soaked 
in degassed PBS for a week to remove any traces of formalin and baseline scans of the tissue were 
obtained. The tissue was then soaked in each solution for 7 days and rescanned with the same 
parameters to observe the change in tissue relaxation rate. Upon completion of this process, tissue 
was sliced, and atmospheric-pressure matrix assisted laser absorption ionisation spectrometry (AP-
MALDI) was performed to confirm that the metal had remained complexed throughout the tissue. 
 

Results: 
A library of transition metal salen complexes have been synthesised, including complexes with ligand 
modifications to increase solubility and resulting cell uptake of the complexes. Manganese, iron, 
chromium and copper complexes were all shown to increase relaxation rate with increasing 
concentration but less so than Gd-DTPA. In the tissue however, Mn-salen has shown promise as an ex 
vivo stain in kidney tissue effectively enhancing T1 and T2 relaxation rate while simultaneously 
increasing contrast between differing tissue regions. In comparison, Gd-DTPA enhanced relaxation 
rates across the whole kidney, reducing the contrast between differing regions. 
 

Discussion: 
Transition metals have fewer unpaired electrons than gadolinium so were expected to be less efficient 
contrast agents. With regard to the tissue staining however, the vast difference in the relaxation rate 
ability could be due to the molecules size and lipophilicity. Gd-DTPA with a molecular weight of 546 is 
not able to enter cells whereas a much smaller, planar Mn-salen with a molecular weight of 357 would 
be much better suited for this. From the obtained results, it appears that Mn-salen may favour uptake 
in some tissues more than others, leading to the drastic difference in contrast between tissue types. 
 

Conclusions: 
Mn-salen is a planar molecule with a low molecular weight that has shown great promise as an MRI 
active tissue stain in comparison to clinically used Gd-DTPA. While it has been confirmed using 
spectroscopic techniques that the Mn-salen complex remained complexed throughout the tissue, 
further studies to confirm whether it has permeated through cell membranes are needed. 
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Funding was provided by the EPSRC as part of the Advanced Medical Imaging Doctoral Training 
Program in collaboration with The University of Queensland. 
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Novel MRI contrast agents and image analysis for studying kidney pathophysiology. 
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Introduction:  
Accurate quantification of nephron number is central to assessing overall kidney function as a deficit 
in nephron number has been linked to increased risk of cardiovascular and renal disease in adults.1 
Current clinical methods of assessing kidney function are highly invasive and often miss the early 
stages of renal disease preventing the use of any early intervention which may slow or halt 
progression. Contrast enhanced magnetic resonance imaging (MRI) has shown potential as a non-
destructive method of counting individual nephrons in an intact kidney.2 
 

Gadolinium(III) based contrast agents have long since been the gold standard for use in MRI, however 
rising concerns of nephrogenic systemic fibrosis in patients with reduced kidney function have 
prompted a search for alternatives.3 The salen ligand has been effectively researched in the world of 
catalysis for decades.4 Its simple synthesis and affinity for transition metal complexation make it a 
promising candidate for a range of new contrast agents capable of increasing T1 relaxation rates. 
 

 
Figure 1 Comparison between the advantages and disadvantages of current clinical contrast agent 
gadopentetic acid (Gd-DTPA) in comparison to Mn-salen, one of the proposed new complexes for 

MRI.  

 

Methods:  
Salen compounds were made following literature procedures and characterised through standard 
techniques. Relaxation parameters were measured in phantoms at varying concentration on a 7 T 
Bruker MR scanner. T1 and T2 calculations were conducted using ImageJ and corresponding R1 and R2 
maps produced. Relaxivity values were calculated from graphs of relaxation rate against 
concentration. To test relaxation properties of the complexes in tissue, 4mM solutions of Mn-salen 
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erosion, which was inferred by observing a decrease in tablet size and change in shape. The 
brightening of the signal from the meal contents around the tablet was also clearly seen to increase in 
size as the study progressed. This phenomenon was observed consistently in all subjects in the T1-
weighted imaging sequences.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Discussion and Conclusion 

This is, to the best of our knowledge the first study to use MRI to image tablet dissolution in the fed 
stomach using the addition of manganese gluconate as a contrast agent. A bright ‘halo’ effect is 
observed around the surface of the tablet, consistent with T1 shortening of the bulk water surrounding 
the tablet. This positive contrast enhancement or shortening of the T1 signal is observed only when 
the manganese from the tablet dissolves into water. The lack of mixing of the meal was a contributing 
factor in making the ‘halo’ visible over a prolonged time. 

The use of manganese ions for this application has not previously been used for dissolution imaging 
of tablets using MRI. Typically, for an oral formulation, dissolution of the drug must occur as the first 
step in ensuring an efficacious dose is delivered. Expanding knowledge of dispersion and dissolution 
using manganese gluconate has the potential for improved understanding of disintegration and 
dissolution and may inform in silico modelling and potentially lead to better in vitro and in vivo 
agreement.  
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Figure 1: Axial, 3D LAVA MRI images of abdomen. Image A shows image after 
administration of nutritional drink and prior to tablet administration. Image B, C, 
D show tablet at time points 4, 16 and 29 minutes, respectively, post tablet 
administration with inset E showing an enlarged image of tablet. Anatomical 
landmarks indicated in image A, liver(1), stomach(2), spleen(3). 

 

Figure 2: Coronal, T1-weighted Dual Echo MRI images of abdomen. Image A 
shows image after administration of nutritional drink and prior to tablet 
administration. Image B, C, D show participant at time points 2, 15 and 28 
minutes respectively post tablet administration. Anatomical landmarks 
indicated in image A, liver (1), stomach(2), spleen(3), kidneys(4). 

 

Visualisation of tablet dissolution in the human stomach using magnetic resonance imaging 
and manganese as a marker 
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Introduction 

The addition of a contrast agent into a drug dosage form significantly enhances its visibility when 
imaging it the gastro intestinal (GI) tract using magnetic resonance imaging (MRI) [1]. The contrast 
agent assists to discriminate the system from water, food materials and gas present in the complex GI 
environment. In recent years, contrast agents including gadolinium-chelates, magnetite, pineapple 
and hibiscus tea have been attempted, not only in imaging the dosage form, but also imaging its 
disintegration and dispersion in both the fasted and fed stomach. It is well known that rate limiting 
step to absorption of drugs from the GI tract to the systemic circulation is dissolution [2]. This area has 
not been actively investigated due to limitations posed by contrast agents. This study uses the 
paramagnetic substance of manganese gluconate added to a tablet to image its dissolution in the fed 
stomach.  

 

Methods 

A. Tablet development 

Tablets were manufactured using a Riva Piccola rotary press equipped with round, bevelled edge flat 
faced 15 mm punch and die sets. Each 750 mg tablet included 18.75 mg of manganese gluconate 
(Sigma-Aldrich) and commonly used excipients for producing direct compression tablets. 
Pharmacopeial tests such as uniformity of mass, friability and disintegration time were used to 
evaluate the success of the tablet formulation. 

 

B.  Experimental design 

Ten healthy human volunteers were asked to drink 300 mL of a nutrient drink (428 kCals) to induce a 
fed state after a ten hour overnight fast. After five minutes, one tablet and 240 ml of water were 
administered to the participant. MRI scans were then acquired serially for one-hour post-
administration.  

 

Results 

Figures 1B and 2B show the typical appearance of the tablet in the stomach of one participant four 
minutes post-dosing. The tablet size and shape observed in the images is representative of the 
physical shape of the tablet; a bevelled edge tablet of approximately 15 mm in diameter is observed 
as shown in inset Figure 1E.  

A bright ‘halo’ effect can also be observed around the surface of the tablet, consistent with T1 
shortening of the bulk water surrounding the tablet due to dissolution of the manganese contrast 
agent in the stomach. No significant mixing of the stomach contents occurred during the imaging 
period, and the ‘halo’ remained largely around the tablet. With time, the tablets showed increased 
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Fig. 1. b=1000 (A, B) and ADC (C, D) images for EPI-DWI (A, C) and TSE-DWI (B, D) featuring cerebellar 

infarct indicated by red arrow 
 
Conclusions: Overall, both single sequence and multisequence assessments favoured the TSE-DWI 
over EPI-DWI for IoMRI, although the TSE-DWI was significantly longer. 
Acknowledgements: Thanks to Children with Cancer UK, Nottingham Hospitals Charity, and the 
University of Nottingham CARO for their support in funding of the IoMRI facility used in this analysis. 
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Diffusion-Weighted Imaging in Intraoperative MRI: A Comparison between Echo Planar 
and Turbo Spin-Echo Techniques 

James C Thorpe1, Stefanie C Thust1,2,3,4, Claire H M Gillon1, Selene Rowe1, Charlotte E Swain1, Donald 
C MacArthur1,2, Simon P Howarth1, Shivaram Avula5, Paul S Morgan1,2,3, Rob A Dineen1,2,3 
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Introduction: In intraoperative MRI (IoMRI) guided brain tumour surgery, Diffusion Weighted Imaging 
(DWI) is routinely used in the detection of acute cerebral ischaemia and the identification of purulent 
infection (1-3). Conventionally echo planar imaging DWI (EPI-DWI) is used; however, it is susceptible 
to distortion and signal pile-up artefacts that affect image quality (4,5). This is a particular issue in the 
IoMRI setting in which intracranial air is introduced during surgery. An alternative technique with 
minimal spatial distortion and signal pile-up artefact is Turbo Spin Echo DWI (TSE-DWI) (6,7). This study 
sought to compare via single and multisequence assessment EPI-DWI and TSE-DWI in the IoMRI setting 
to determine whether there is a radiological preference for either sequence.  
Methods: Thirty-four consecutive patients (22 female) aged 2-61 years (24 under 18) were scanned 
with EPI- and TSE-DWI as part of standard IoMRI scanning protocol while undergoing IoMRI during 
surgical resection of intracranial tumours. A neuroradiologist blinded to sequence type performed a 
single sequence assessment of spatial distortion and image artefact. Images were scored on distortion 
and artefact, around and remote to the resection cavity, and visibility and confidence of abnormality 
detection. Two further neuroradiologists performed a multisequence radiological assessment with 
access to all other imaging from each case. The DWI images were directly compared with radiologists 
scoring which they preferred with respect to anatomy, abnormality, artefact, and overall preference. 
The multisequence assessment also asked two further questions. Firstly, “Does one DWI sequence 
display clinically important information that is not visible in the other sequence that aids your 
assessment?” Secondly, “Does one sequence display artefacts/misleading information that is not 
present in the other sequence that hinders your assessment?”  
Results For the blinded single sequence assessment the TSE-DWI was scored equal to or superior to 
the EPI-DWI for every criterion for every case (p<0.001 for each question using Wilcoxon Signed Ranks 
Test). In the multisequence assessment both radiologists independently expressed (with a near 
complete interrater agreement of κW = 0.94) a preference for TSE-DWI over EPI-DWI on viewing brain 
anatomy, abnormalities and artefacts with TSE-DWI preferred overall for intraoperative assessments. 
Both radiologists reported instances (n = 7 / 12) in which there was clinically important information 
visible in the TSE-DWI that was not visible in the EPI-DWI, with one radiologist reporting one instance 
of the opposite. Both radiologists also reported instances (n = 4 / 19) of EPI-DWI featuring artefacts 
that hindered their assessment in a way that was not seen in TSE-DWI, with one instance of the TSE-
DWI having uniquely misleading information. An example of an occasion in which the EPI-DWI 
featured a large signal pile-up artefact that obscured the view of a cerebellar infarct that was 
otherwise visible in the TSE-DWI is shown (for b=1000 images and ADC maps) in Figure 1.  
Discussion: Overall, the results showed that for IoMRI, TSE-DWI had consistently superior image 
quality to EPI-DWI over a broad range of criteria according to both the blinded scoring and direct 
comparisons. However, the TSE-DWI had a significantly longer acquisition time (approximately 3.5 
times longer than EPI-DWI), even when scan coverage was minimised for the TSE-DWI. This is not ideal 
in an intraoperative setting where it is desirable to acquire images as quickly as possible to allow the 
operation to continue and reduce time under anaesthetic.  
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scattered regions of fat. Large volumes of fat filled the entire lumen of the colon, colon walls were 
visible against the fat within the colon and the visceral fat surrounding the colon (Figure 1). 

 

Fig 1 Fat-only image (left) and water-only image (right) of large volumes of fat in the sigmoid colon. 

Smaller high fat areas of chyme were detected throughout the colon. These high fat areas of chyme 
appeared more mixed in the chyme and did not fill the width of the lumen (Figure 2). 

 
Fig 2 Fat- only images showing smaller, more dispersed high fat areas of chyme in the ascending 
colon (left) and descending colon (right). 

Discussion and Conclusions 
This study is ongoing and preliminary data have been presented. MRI could visualise fat in the colon 
using an orlistat model of fat malabsorption. Methods to quantify the volume of fat in the colon are 
currently being explored. The relationship between the volume of high fat areas of chyme and 
gastrointestinal symptoms is yet to be assessed. MRI could be used as an alternative technique to 
assess patients for fat malabsorption conditions.  
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Application of Magnetic Resonance Imaging and Spectroscopy Methods to Identify Fat 
Malabsorption in the Colon 

Introduction 
Fat malabsorption is one of the most prevalent malabsorption conditions [1]. Fat digestion and 
absorption is complex; in fat malabsorption conditions, undigested fat progresses through the small 
bowel and reaches the colon where, in health, fat is not generally found. Unabsorbed fat is 
associated with symptoms including diarrhoea, loose-oily stools (steatorrhea), and discomfort [1]. 
 
Fat malabsorption has been diagnosed using invasive, poorly tolerated or unreliable techniques as 
such there is a demand for new, non-invasive methods [2]. Magnetic Resonance Imaging (MRI) and 
Spectroscopy (MRS) are non-invasive techniques that can be used to image or detect fat. MRI has 
previously been used to visualise and quantify fat in the liver [3]. Currently it has not been 
demonstrated whether MRI can be used to visualise and/or quantify fat in the colon.  
 
Orlistat (Alli®, GSK) is a weight loss drug aimed at people with obesity [4]. It is a lipase inhibitor that 
prevents the breakdown of fat and therefore can be used to mimic fat malabsorption in healthy 
participants [4]. 
 
Aims and Hypothesis  
This study hypothesised that MRI could be used to visualise fat in the colon. 
The aim was to induce fat malabsorption in healthy volunteers and assess whether fat could be 
detected in the colon using MRI. 

Methods 
This was a two-way cross over study using placebo or 120mg of Orlistat with a 7-day wash out 
period. N=7 participants consumed 50ml of Calogen® Energy Dense Supplement (Nutricia) 
containing 25g fat and their allocated treatment with both lunch and dinner the day before their 
study day. Participants arrived fasted at the MRI centre for a breakfast meal containing 22g fat and 
their allocated treatment followed by a lunch meal containing 21.1g fat and their allocated 
treatment. An MRI scan was conducted 2 hours after the lunch meal. Participants completed a 7-day 
Bristol stool score for (3 days before the scan day, the scan day, and 3 days after) for both arms. 
 
Participants were scanned on a 3T Ingenia Widebore scanner (Philips, Best, The Netherlands) using a 
range of sequences including mDIXON [5]. 3D Dual Echo FFE mDIXON images were taken coronally,  
with 2 stacks and 30mm overlap in HF direction. 111 (reconstructed 1.8mm) slices were collected 
within each stack acquired as an 18s breath hold. Fat-only images were used to identify high fat 
areas of chyme in the colon, if any. Water-only images were used to confirm whether suspected high 
fat areas of chyme were fat or artefact. For additional sequences the field of view (FOV) was centred 
over suspected high fat areas of the chyme. 
 
MRS (multi-echo, single voxel, STEAM spectroscopy (10x10x10mm)) was carried out on regions of 
interest where fat was identified or in the ascending colon and sigmoid colon if no obvious fat 
regions were observed.  
 
Results 
Study procedures were acceptable to participants and the orlistat fat malabsorption model worked 
well. MRI showed large areas of fat in the chyme in the descending and sigmoid colon or smaller 
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Fig. 1. Example maps of SAvg, CCV and CCQ in a healthy volunteer (age 24, female) across flip angle (), 
and associated parenchyma (yellow) and vessel masks (green). On increasing the flip angle, SAvg and 
CCV tend to decrease, while CCQ increases. 

 
 

 
 

Fig. 2. Example convergence 
plots for ventilation metrics in 
a healthy volunteer (age 24, 
female) shown for a) XCCV, b) 
LagV and c) GradV. d) shows 
the number of images 
required for convergence for 
all five participants. 
Significant differences in the 
length of required scan 
(Wilcoxon rank-sum) are 
indicated with asterisks (*).  
 
 
 
 

Discussion: While low flip angles close to the Ernst angle for the parenchyma elicit a strong CCV, this 
results in a lower CCQ. To trade-off the estimation of both parenchyma V and Q signals, a flip angle 
higher than the Ernst of α=7-12° may be appropriate. In addition, the delay/phase information (LagV) 
requires increased sampling of the respiratory cycle compared to correlation/gradient metrics. 
 
Conclusion: The need for a trade-off between obtaining a strong ventilation signal whilst not 
suppressing the parenchyma perfusion signal is demonstrated. Further work is required to verify these 
results in lung disease in which the parenchyma T1 may increase, and where the convergence may be 
impacted by a reduction in SNR due to altered alveolar susceptibility profiles. 
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Optimisation of Gradient Echo Protocols for Quantitative Assessment of Pulmonary 
Ventilation and Perfusion at 3 T 

Zachary J.T. Peggs1, Penny A. Gowland1, Susan T. Francis1 
1Sir Peter Mansfield Imaging Centre, School of Physics & Astronomy, University of Nottingham, UK 
 
Introduction: Several emerging non-contrast proton (1H) MRI techniques make use of dynamic 
imaging to generate maps of pulmonary ventilation (V) and perfusion (Q). Recent studies have shown 
that spoiled gradient echo sequences (SPGR, T1-FFE, FLASH) can be used to measure these signals.  
Such 2D SPGR sequences can measure both ventilation and perfusion information simultaneously in 
the lung. Ventilation metrics are calculated from the local proton density variations in the lung 
parenchyma during respiration, while the time-of-flight effect provides signal from which to estimate 
perfusion. As the clinical availability of 3 T MRI continues to expand, optimisation of these dynamic 
imaging protocols is required to maximise the functional sensitivity and patient tolerability. 
Generally low flip angles of 3-5° close to the Ernst angle are used, given the relatively long T1 of lung 
parenchyma (~1000 ms at 3 T) [1]. However, a low flip angle reduces the contrast between the lung 
tissue and the pulmonary vasculature. This is potentially problematic for eliminating perfusion signals 
from parenchyma ventilation analysis, as well as for the assessment of perfusion signals. In addition, 
the optimum number of dynamic images required to determine the V/Q parametric maps remains 
unknown. 
The aim of this work was to assess in healthy individuals the effect of flip angle and length of dynamic 
image series on the quantification of V/Q parameter maps from free-breathing proton MRI at 3T. 
VOxel-wise Lung VEntilation (VOLVE) analysis was performed to quantify V/Q correlation values [2].  
 
Methods: 5 healthy volunteers were recruited to undergo 1H lung MRI on a 3 T Philips Ingenia scanner. 
Images were acquired during free-breathing using a 2D fast field echo (FFE) sequence 
(TR/TE=1.9/0.57ms, 4.37 images/second) at a range of flip angles (α: 3°, 5°, 7°,10°, 12°, 14° and 18°). 
A single coronal slice placed approximately 1 cm posterior to the heart was imaged, with 512 images 
collected in 117s for a given scan. Three repeats of the scan was collected for each flip angle. 
VOLVE analysis [2] was performed in MATLAB (R2022b) for each flip angle dataset. All images were 
registered to a mid-ventilation image using a demons-based registration. The thoracic cavity was 
segmented for each image series via seeded region growing to generate a whole lung mask. The 
whole-lung masks for each flip angle were split into parenchyma and vessel masks via adaptive 
thresholding with manual corrections if needed.  
The mean signal, SAvg, was computed voxel-wise for each flip angle. The VOLVE ventilation correlation 
coefficient (CCV) and perfusion correlation coefficient (CCQ) were computed by comparing the 
registered parenchyma timeseries values to a lung-diaphragm navigator signal, and an aorta or major 
pulmonary vessel-based cardiac signal time course, respectively [2]. For the α=18° data, the VOLVE 
fitting routine was repeated for each dataset with varying numbers of dynamic images included, 
ranging from 2-256 images (retrospective temporal under sampling). The median of each ventilation 
parameter map (XCCV, LagV, GradV) was computed for each dynamic series length. Convergence of the 
parameters was defined as the point at which the root mean square deviation over a 5 image sliding 
window did not change by more than 5%. 
 
Results: Fig. 1 shows a trend for SAvg and CCV to decrease in the parenchyma with increasing flip angle 
(r = -0.99, p = 0.003). Conversely, CCQ increases with increasing flip angle, until reaching a plateau at 
~10°-14°. Fig. 2 shows the number of images required for convergence of LagV was greater than for 
XCCV or GradV. 

P77



Power Pitch Session 4Power Pitch Session 4

270269 BIC-ISMRM 2024 Annual Meeting Nottingham 11th - 13th September 2024

 

 

demonstrated a substantially weaker relationship with LCI2.5, FEV1%p, and FVC%p which we 
speculate is due to the additional influence of gas uptake dynamics to these MRI signals [3].  
Overall the OE-MRI method shows good sensitivity to CF. 
 

Conclusions: ∆R2*, VVF, and 
VUVF, extracted from dual-
echo gradient echo dynamic 
OE-MRI using ICA, 
demonstrated good 
correlation with lung 
clearance index in cystic 
fibrosis, suggesting a 
potential sensitivity to 
disease severity. 
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Biomedical Research Centre. JM acknowledges funding from CRUK via the Network Accelerator 
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Figure 1: (i) MRI images, and 
maps of ICA-extracted (ii) ΔR2*, 
(iii) PSES0, (iv) VVF, and (v) VUVF. 
Two coronal slices from two CF 
patients are shown: (A) 19 years, 
LCI2.5 = 11.4, FEV1p% = 96, FVCp% 
= 112, and (B) 46 years, LCI2.5 = 
19.6, FEV1p% = 51, FVCp% = 58.  
Pink indicates lung voxels classed 
as functioning in VVF and VUVF 
maps; black indicates lung voxels 
classed as non-functioning. 
The lung appeared heterogeneous 
in ΔR2* and PSES0 for subject (B). 
Subject (B) demonstrated a 
greater lung fraction classed as 
non-functioning in the VVF and 
VUVF maps compared to subject 
(A). 

 

 

ICA-enabled oxygen-enhanced MRI (OE-MRI) correlates with pulmonary function tests in 
cystic fibrosis 
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Thomas Semple3,4, Jane C. Davies3,4,5, Geoff J. M. Parker1,2  
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Introduction: Dynamic oxygen-enhanced MRI (OE-MRI) uses inhaled oxygen to provide contrast to 
indicate regional lung function. T2*-sensitive dual-echo dynamic lung OE-MRI acquisitions have 
recently been demonstrated at 3T [1] and 1.5T [2]. However, the presence of artefacts, confounding 
signals, and poor lung tissue SNR makes the analysis of dynamic lung OE-MRI challenging. 
Application of independent component analysis (ICA) to dynamic lung OE-MRI can enable the 
separation of the lung’s oxygen-enhancement response from confounding signals [3]. Here we apply 
ICA to dual-echo dynamic OE-MRI in cystic fibrosis (CF) and examine the correlation between 
dynamic OE-MRI, the lung clearance index and spirometry. 

Methods: 11 CF patients (median age 26 years, range 8-46) were recruited. Subjects underwent 
pulmonary function testing (PFT) using multiple breath N2 washout to obtain the lung clearance 
index (LCI2.5), and spirometry to obtain FEV1 %predicted (FEV1%p) and FVC %predicted (FVC%p). 
Subjects were imaged using a free-breathing dynamic 2D multi-slice dual-echo RF-spoiled gradient 
echo OE-MRI acquisition at 1.5T [2]. Subjects inhaled: medical air (1.5 minutes), 100% oxygen (3.5 
minutes), and medical air (4 minutes). The dynamic MRI series were registered using NiftyReg [3,4]; 
a 3x3x3 median filter was applied to each echo [5]. 
R2* and S0 were extracted from the dual-echo data within a cardiac mask consisting of cardiac tissue, 
lung tissue, and major blood vessels. In a spoiled gradient echo acquisition, S0 is influenced by 
proton density and R1. ICA was applied to extract the oxygen-enhancement response of R2* and S0 
from confounds using a previously developed analysis pipeline [3]. The pipeline was adapted for 
application to R2* and S0 and a single oxygen-inhalation period by considering 2-72 ICA components.  
The ICA-extracted ΔR2* was calculated as the difference between 100% oxygen-inhalation (average 
over 180-215 dynamics) and air-inhalation (average over 10-50 dynamics); the percentage signal 
enhancement of the ICA-extracted S0, PSES0, was calculated as the percentage difference between 
100% oxygen-inhalation and air-inhalation. The ICA-extracted ΔR2* and PSES0 were thresholded 
within the lung to evaluate the ventilated volume 
fraction (VVF) and ventilated with oxygen uptake 
volume fraction (VUVF), respectively [2]. The median 
lung ΔR2* and PSES0, and the VVF and VUVF values, were 
compared with the PFT measures using Pearson’s 
correlation; p < 0.05 was considered significant.  

Results: ΔR2*, VVF, and VUVF exhibited significant 
correlations with LCI2.5 and FEV1%p, with ΔR2* and VVF 
correlations generally being stronger (Table 1). PSES0 did 
not exhibit any significant correlations. Maps of ΔR2*, 
PSES0, VVF, and VUVF are presented in Figure 1. 

Discussion: LCI2.5 is of interest as a global marker of CF disease severity, particularly for early disease 
[6]. OE-MRI biomarkers provide regional measures of lung function, of relevance to heterogeneous 
presentations of CF. The OE-MRI measures of ΔR2* and VVF exhibited significant correlations with 
LCI2.5, FEV1%p, and FVC%p suggesting they share a common basis in gas ventilation information, 
concordant with literature understanding of the source of the ΔR2* signal [3,7]. PSES0 and VUVF 

Table 1: Pearson’s correlation of the ICA-
extracted OE-MRI measures with PFTs. 
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Fig.1. (A) Description of segmentation for three muscles, MG, LG, and TA, including segmentation for 
aponeurosis inside TA. (B) Fascicles captured from tractography techniques for b = 500 s/mm2. (C) 
Fascicles captured from tractography techniques for b = 10 s/mm2.  
Conclusions: The variation of b-values can lead to differences in both architectural and diffusivity 
measurements of the lower leg muscles. The specific change in variance differs between the muscles 
studied and the range of b-values selected. These findings suggest that unlike lower b-values, higher 
b-values (greater than 100 s/mm²) can provide consistent architectural and diffusion parameters. 
Considering both the image quality acquired and data accuracy, b-values equal to and higher than 250 
s/mm2 are recommended for DWI/DTI scanning of lower leg muscles. 
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How do b-Values in Diffusion-Weighted Imaging Affect Measures of Skeletal Muscle 
Architecture and Diffusivity? 
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Introduction: The b-value parameter in DWI acquisition protocols can be manipulated to optimize 
image quality and sensitivity to microstructure characteristics. Informed determination of b-values is 
essential for enhancing the diagnostic and research capabilities of DWI in assessing skeletal muscle 
health and pathology [1, 2]. In the literature a wide range of b-values (10-1000s/mm2) have been used 
to study skeletal muscles [3, 4]. However, there is a scarcity of systematic, objective assessments of 
the effects of different b-values on measures of skeletal muscle architecture. Therefore, this study 
aims to systematically investigate how different b-values affect the quantification of fascicle 
characteristics in lower leg skeletal muscles, thereby providing insights that could refine DWI protocols 
for muscle studies.  
Methods: Six healthy adults (3 males and 3 females, aged 24-46 years) were recruited for the study. 
DWIs were acquired on a 3T MRI scanner (Siemens MAGNETOM Vida) using six different b-values, 
ranging from 10 to 500 s/mm². The medial gastrocnemius (MG), tibialis anterior (TA), and lateral 
gastrocnemius (LG) muscles were examined. Spin echo, echo-planar imaging (SE-EPI) was used for DWI 
acquisition, with a slice thickness of 5 mm, and 60 slices collected for each muscle. Key diffusion 
parameters such as fractional anisotropy (FA) and mean diffusivity (MD), along with muscle 
architectural factors including fascicle curvature, pennation angle (PA), and fascicle length (FL), were 
analyzed across different b-values. 
Results: Greater FA and MD values were associated with lower b-values, particularly for b-values 
below 100 s/mm² for all muscles studied. MD values ranged from 4-8 mm²/s at b = 10 s/mm² 
compared to 1.3-1.5 mm²/s at b = 500 s/mm². Within participants, fascicle curvatures were greater at 
lower b-values, increasing from 8.5 m⁻¹ at b = 500 s/mm² to 15 m⁻¹ at b = 10 s/mm². PA increased from 
20o at b = 500 s/mm² to over 35o at b = 10 s/mm². In MG muscle, PA did not vary significantly across 
b-values, but differed between b = 100 s/mm2 and b = 500 s/mm2 for LG and TA muscle. Similar 
variations were observed for curvature measurements. Fascicle lengths were shorter at lower b-values 
for the three muscles (46.3 mm at b = 500 s/mm2 and 20.3 mm at b = 10 s/mm2 for MG muscle). 
Additionally, extremely short fascicles were captured for b-values lower than 50 s/mm2 under the 
same stopping criteria. As depicted in Fig.1C, fewer fascicles were captured for b = 10 s/mm2 and FLs 
were shorter compared to Fig. 1B with b = 500 s/mm2. Although by using softer stopping criteria, 
longer and larger numbers of fascicles can be captured, the resulting fascicles presented unrealistic 
PA and curvature values. Overall, median FL, PA, curvature, and diffusivity values were consistent 
when b-values exceeded 100 s/mm². 
Discussion: B-values less than 100 s/mm² significantly influenced the number of fascicles detected 
and the features measured, in particular the fascicle length. The intravoxel incoherent motion (IVIM) 
effects for b-values lower than 100 s/mm2 likely influenced the fascicle tract number and architectural 
values measured, as the perfusion effects contribute more than the diffusion effects at lower b-values. 
While the very low b-values have been used to explore specific muscle characteristics, such as motor 
unit territory, it is clear they are not suitable for architectural measures.  
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a fit to the expected angular-dependence. 
Figure 2 shows DQF spectra from forearms oriented 
approximately parallel to the B0-direction, plotted as a 
function of creation time, τ, displaying the build-up and decay 
of the double-quantum coherence amplitude.   
Figure 3 shows a comparison of 2D CSI and DQF-CSI data for 
the lower leg, highlighting spectra in individual voxels in the 
tibialis anterior and soleus. 
Discussion: The residual quadrupolar splitting of the 
deuterated water spectrum provides evidence of some local 
ordering of the tissue, and has been previously observed in 
muscle, tendon, cartilage, and nerves [3—6]. The observed 
splittings in the muscles of the forearm, as seen in Figure 1, 
exhibit an angular dependence that is consistent with a 
quadrupolar interaction. The measured value of 𝑓𝑓𝑞𝑞  is similar 
to previous 7T measurements in the lower leg [3] and with 
values found from fitting to the DQF spectra (Figure 2).  
The anti-phase DQF sequence produces spectra whose peaks 
have opposite phases. Consequently, signals with zero or very 
small splittings will vanish or be very small, and this provides 
a way of displaying only signals with non-zero splittings. These signals are shown in Figure 2, which 
roughly follow the form 𝐴𝐴𝑒𝑒−2𝜏𝜏/𝑇𝑇2 sin 2𝜋𝜋𝑓𝑓𝑞𝑞𝜏𝜏.  The utility of the DQF sequence is illustrated in Figure 3, 
where standard spectra with isotropic peaks in addition to a doublet (tibialis anterior), or no clear 
doublet (soleus) provide non-vanishing DQF spectra of varying amplitude. 

Conclusions: Quadrupolar splittings in the lower leg are most prominent in the region of the tibialis 
anterior. This is because the fibres of this muscle align closely with the B0-direction, but could also 
indicate a more ordered environment in which the water resides. In the forearm, splittings are more 
homogeneous. The DQF sequence is useful in isolating the anisotropic signals from isotropic.   
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Figure 2. DQF spectra from forearms 
parallel to the B0-direction, plotted 
against creation time τ.  

Figure 3. CSI (left) and DQF-CSI (right) data from the lower leg. Spectra are highlighted from 
muscles of the anterior tibialis (red) and soleus (green). 

 

 

Quadrupolar Splittings in the Forearm and Lower Leg after Deuterium Oxide Loading 
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Introduction: Partially ordered biological tissues can be studied via the deuterium (2H) magnetic 
resonance of water because the quadrupolar interaction produces a frequency doublet whose 
splitting is sensitive to the effect of ordering on the time-averaged direction of the local electric field 
gradient with respect to the B0-direction [1,2]. The low natural abundance of deuterium (0.015%) 
means that performing 2H MR measurements in vivo can be challenging, even at high field [3]. 
Additionally, tissues typically contain multiple water compartments and spectra are complicated by 
the superposition of ordered (anisotropic) and disordered (isotropic) signal components. Here, these 
issues were investigated by measuring the angular dependence of the 2H quadrupolar splittings from 
the lower leg and forearm muscles in healthy human participants who had ingested D2O to enrich 
their deuterium levels to ~100x natural abundance. Comparisons to measurements employing double-
quantum filtering (DQF) were also made.  
Methods: Deuterium spectroscopy and chemical shift imaging (CSI) were performed on the lower leg 
and forearm in three human volunteers, using in-house-built 2H coils resonating at 19.6 MHz, 
interfaced to a Philips Achieva 3T scanner. A 16 cm diameter saddle coil was used for the lower leg, 
and a 15 cm diameter Helmholtz coil was used for the forearm.  
Deuterium 3D CSI images were acquired with resolution 10x10x10 mm3, TR/TE=500/6.2 ms, sampling 
bandwidth 750 Hz, 256 samples, 2 averages. Images were acquired in each subject with the lower leg 
parallel to the B0-direction and with the forearm at 10 angles (~0 – 90°) to B0.    
DQF deuterium spectra were acquired from a 2-cm axial slice of the lower leg or forearm, using hard 
pulses in combination with outer-volume saturation. Spectra were obtained via an anti-phase DQF 
sequence [4] whereby the quadrupole-doublet peaks acquire a relative phase of 180°. DQF spectra 
were acquired for a range of values of the creation time, 1 ≤ 𝜏𝜏 ≤ 36 ms, with TR/TE=1000/0.58 ms, 
sampling bandwidth 3000 Hz, 1024 
samples, 56 averages. 
Deuterium 2D CSI data were also acquired 
from a single 2-cm axial slice, using outer-
volume suppression. CSI data were 
acquired for the pulse-acquire sequence, 
and using the anti-phase DQF sequence 
(DQF-CSI) with 𝜏𝜏 = 5 ms. The in-plane 
resolution was 10x10 mm2, TR/TE=1000/2 
ms, 256 samples, bandwidth 750 Hz, 4 
averages (CSI), 8 averages (DQF-CSI). 
Results: Spectra from CSI data of the 
forearm, oriented at different angles, θ, to 
the B0-direction were analysed to obtain 
the quadrupolar splittings. Figure 1 shows 
the averaged splitting frequencies plotted 
against angle, for three participants. An average splitting value of 𝑓𝑓𝑞𝑞 = 32 ± 1 Hz was obtained from 

Figure 1. Averaged quadrupolar splittings from forearms 
oriented at different angles θ to the B0-direction. The 
dotted line is a fit to the function 𝑓𝑓𝑞𝑞|3 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃2 − 1|/2. 

P80



Power Pitch Session 4Power Pitch Session 4

276275 BIC-ISMRM 2024 Annual Meeting Nottingham 11th - 13th September 2024

 

 

 
Discussion: Lower bandwidth improves the signal-to-noise ratio (SNR) due to increased averaging of 
noise per sample point [11]. Higher SNR results in better image quality for tissues with longer T2 
relaxation times, where the signal persists for longer. However, blurring can result for tissues either 
with short T2 (due to decay of the signal before acquiring high spatial frequencies) or large chemical 
shift (due to accrual of phase by the end of the of the readout). This is particularly problematic for 
bone and fat respectively. Hence, we need to consider a trade-off between a higher SNR, less blurring, 
and sufficient bone signal for better bone visualisation.  
Conclusions: The images demonstrate that using a higher bandwidth can improve fat-bone separation 
and reduce off-resonance effects, resulting in clearer and more accurate imaging of bone structures. 
However, the trade-off involves increased noise and potential SNR reduction. To address these issues 
and further enhance image quality, we are currently employing a Total Generalized Variation (TGV) 
regularized reconstruction technique, which we expect to improve the image quality by reducing 
noise. 
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Optimized bone imaging protocol via IR-ZTE with long-T2 suppression 
 
Diana Catargiu1, Tobias C. Wood1 
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Introduction: Bone imaging using MRI is gaining traction due to its ability to produce clinically useful 
images without the need for additional ionizing CT scans [1]. Techniques such as Ultrashort Echo Time 
(UTE) or Zero Echo Time (ZTE) are preferred to effectively capture the rapidly decaying signal in bone 
[2][3][4]. In this study we use Inversion Recovery Zero Echo Time (IR-ZTE) combined with physics-
based subspace reconstruction to visualize cortical bone [3]. We compare bone sharpness across two 
bandwidth settings, evaluating the trade-offs involved in achieving better quality bone images. 
Methods: A healthy volunteer was scanned in a 3T magnet equipped with a 48 channel head coil (GE 
Premier). We acquired two scans, with the following sequence parameters: (a) readout bandwidth 
±31.5kHz,  250 spokes per segment, 256mm FOV, 0.8 mm voxel size, flip angle 2°, 2.83ms TR, 5ms 
Inversion Time, 7min 38s scan time (b) readout bandwidth ±50.0kHz,  400 spokes per segment, 256mm 
FOV, 0.8 mm voxel size, flip angle 1.6°, 1.87ms TR, 5ms Inversion Time, 7min 42s scan time. The 
trajectory within a segment was a generalized spiral [5] with golden means rotation between each 
segment to produce an overall incoherent trajectory [6]. Low-resolution segments were acquired with 
the gradients ramped down by a factor of 8 to fill the dead-time gap [7].  
Sensitivity maps were calculated from a calibration ASSET (Array Spatial Sensitivity Encoding 
Technique) scan [8], acquired at low spatial resolution with readout bandwidth ±31.5kHz, 128 spokes 
per segment, 256mm FOV, 0.8 mm voxel size, flip angle 2°, 30s scan time.    
The data was reconstructed with the RIESLING toolbox [9]. To construct the required subspace basis 
vectors, the evolution of 128 samples from 6 simulated tissue types (CSF, Grey Matter, White Matter, 
Blood, Fat and Bone) with T1 ranges of 3.80-4.80, 1.20-1.70, 0.80-1.10, 1.30-1.80, 0.30-0.50, 0.20-0.50, 
was simulated using a simulation framework for segmented, magnetization-prepared sequences using 
homogenized Bloch equations and an eigenanalysis to find the steady state [10]. Finally, a Singular 
Value Decomposition was taken. We reconstructed the data using a least squares algorithm with 4 
maximum iterations.  
Results: Figure 1 shows slices at time-
point T=80, chosen to maximize 
positive bone contrast while 
minimizing the signal from soft tissues. 
In both scans, the cortical bone is 
clearly visible. The scan acquired at 
31.5 kHz appears less noisy, with 
better suppression of grey matter and 
background noise. However, fat has 
not been entirely suppressed and off-
resonance effects are noticeable. The 
fat-bone separation is more accurate 
at 50.0 kHz; blurring is reduced, 
leading to a clearer distinction 
between the tissues. 
 
 

 Fig. 1. IR-ZTE Bone scans at ±31.5kHz and ±50.0kHz 
 bandwidth with highlighted bone/fat separation 
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Results & Discussion – FLAIR-IVIM pilot datasets revealed that compared to the cortex, the CP had a significantly 
higher D value [8.0 x 10-4 LV vs 5.9 x 10-4 cortex, p<0.01], as well as displaying a significant, 9-fold higher intravascular 
fraction, F [0.51 LV vs 0.06 cortex, p<0.0001] (Fig 2), in line with the much higher perfusion rate observed at the CP 
previously9-10. The pooled CP average biexponential fitting R2 was 0.85 across the pilot cohort. The mean extracted D 
and F values had coefficient of variance values of 12% and 11% respectively, indicating relatively low inter-subject 
measurement variability. Previous human CP ADC measures have yielded values 2-3 times higher, likely due to 
confounding CSF PV contributions3-5.  

 

 

 

In the ageing study, adult and aged mice exhibited similar D values [adult 7.9 x 10-4 vs aged 9.3 x 10-4, p = 0.18] (Fig 3a). 
However, aged mice displayed a significantly lower intravascular fraction compared to adult mice (F = [0.55 adult, vs 
0.48 aged], p = 0.03)] (Fig 3b-e). This is in-line with post-mortem human measures where normal aging accompanied 
significant decreases in CP microvessel density11, as well as decreased CP perfusion in aged mice9. This is likely 
exacerbated in neurodegenerative pathology, and so highlights the potential for F to serve as a valuable, early 
biomarker of age-related neurodegenerative processes.   

Conclusion – By attenuating CSF signal, FLAIR-IVIM can non-invasively inform on the microstructural and vascular 
characteristics of the CP, providing outputs that are distinct to the brain cortex, without major CSF PV confounding 
contributions. Studying diffusion outputs, e.g. F, in the contexts of health and disease may provide a potential 
biomarker for neurodegenerative processes, as well as deepening our understanding of CP structural/functional 
changes involved in pathophysiology.  
References – 1. Balusu S, Brkic M, Libert C, Vandenbroucke RE. The choroid plexus-cerebrospinal fluid interface in Alzheimer's disease: more than just a barrier. Neural Regen Res. 2016 Apr;11(4):534-7. 2. Serot JM, 
Foliguet B, Béné MC, Faure GC. Choroid plexus and ageing in rats: a morphometric and ultrastructural study. Eur J Neurosci. 2001 Sep;14(5):794-8. 3. Alisch, J. S., Egan, J. M., & Bouhrara, M. (2022). Frontiers in 
Endocrinology, 13, 984929. 4. Alicioglu, B., Yilmaz, G., Tosun, O., & Bulakbasi, N. (2017). The neuroradiology journal, 30(5), 490–495.  5. Grech‐Sollars, M., et al. (2015). NMR in Biomedicine, 28(4), 468-485.  6. Le 
Bihan, D. (2019). Neuroimage, 187, 56-67.  7. Remmi toolbox https://remmi-toolbox.github.io/  8. Gudbjartsson H, Patz S. The Rician distribution of noisy MRI data. Magn Reson Med. 1995 Dec;34(6):910-4. 9. Evans, 
P. G., et al. Nature communications, 11(1), 2081. 10. Faraci, F. M., et al (1988). Circulation research, 63(2), 373-379. 11. Thore CR, Anstrom JA, Moody DM, Challa VR, Marion MC, Brown WR. Morphometric analysis of 
arteriolar tortuosity in human cerebral white matter of preterm, young, and aged subjects. J Neuropathol Exp Neurol. 2007 May;66(5):337-45. 
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Fig 2 – FLAIR-IVIM pilot cohort results. a) B0 image (B = 71 s/mm
2
), representative 

subject (n = 1). Paired comparison of diffusion outputs from CP and cortex: b) 
diffusion coefficient (D), and d) perfusion fraction (F). From example subject (a), voxel-
wise D and F maps are shown to highlight regional difference in diffusion outputs (c, e). 

Fig 3 – FLAIR-IVIM ageing study results. Diffusion outputs (D) comparison between adult 
and aged subjects (n = 12, Welch’s t-test), alongside mean: a) diffusion coefficient, and 
b) intravascular fraction. Example voxel wise maps for intravascular fraction, F, for c) 
adult, and d) aged subjects (representative n = 1 each). e) From these same subjects, 
histograms of the F values are shown for adult (66 CP voxels) vs aged (65 CP voxels). 

Imaging choroid plexus diffusion characteristics using FLAIR-IVIM DW-MRI 

Authors - Charith Perera1, Shereen Nizari1, Ian Harrison1, Mark F Lythgoe1, David L Thomas2, Jack A Wells1 

Introduction – The blood-cerebrospinal fluid barrier (BCSFB) at the choroid plexus (CP) plays a critical role in CNS 
homeostasis. Invasive and ex-vivo studies of the aged brain have revealed marked changes to BCSFB morphology and 
function, which may seed downstream neurodegenerative events1-2. Thus, the development of translatable, non-
invasive tools for investigating BCSFB microstructure may be valuable to improve understanding of the BCSFB’s role in 
age-related neurodegenerative disease. Previous attempts of using diffusion weighted (DW)-MRI to investigate CP 
microstructure are likely confounded by substantial partial volume (PV) contributions from CSF3-5. To overcome this, 
we investigated the feasibility of using a fluid-attenuated inversion recovery (FLAIR) intravoxel-incoherent motion 
(IVIM6) DW-MRI to more reliably and non-invasively assess CP diffusion behaviour, whilst attenuating PV from 
surrounding CSF, in the mouse brain. In a pilot study, we probe differences in diffusion outputs obtained from the 
brain cortex to novel measures localised to the CP and determine the inter-subject variability. We then applied this 
methodology to investigate differences in diffusion characteristics between healthy adult mice and aged mice, with 
an aim of detecting microstructural alterations in a non-invasive, translatable manner. 

Methods – In a pilot cohort, MR imaging (Bruker 9.4T) was conducted in the anaesthetised mouse brain (C57BL/6, n= 
7 (5 subjects, 2 rescanned, ~30 weeks, male). Data from this cohort was used to optimise the analytical pipeline, prior 
to application in the ageing study. 

 

Initially, 3D T2-weighted structural scans (ultra-long TE = 176 ms), were used to determine CP location within the 
lateral ventricular compartment (Fig 1a).  IVIM data was acquired using the remmi toolbox7 fast spin echo (FSE) 
sequence (TR/TE = 6000/36 ms; 15×15 mm2 FOV; 120×120 matrix; 0.35 mm slice thickness; 10 averages; A-P direction; 
13 arrayed b‐values (71-1454 s/mm2); partial-FT (1.0,1.5) (Fig 1b). Prior to the DW module, a FLAIR pulse was applied 
to suppress CSF. This pulse utilised a subject-wise inversion time (IR-TI), calculated separately from DW images with 
matched parameters to those used for FLAIR-IVIM, but with varying TIs to determine the TI at which CSF is effectively 
suppressed.   

Subsequently, FLAIR-IVIM data underwent voxel-wise noise correction, as described previously8, and were subject to 
ROI analysis; a conservative region was drawn to include CP signal within the ventricles, using the prior structural scan 
for reference (Fig 1a,c). For CP voxels, noise-corrected voxel-wise signal values were used to fit biexponential models 
for the extraction of diffusion parameters: diffusion coefficient (D), and the intravascular fraction (F) (Fig 1d)6.  
Separately. cortical signals were averaged, and mean signal values were used for fitting cortical diffusion outputs. 
Voxel-wise maps were also generated across the brain to visualise differences in D and F. 

For the ageing study, an identical imaging protocol was applied in aged C57BL/6JRj mice (n = 12, 24-months, male), 
and strain-matched adults (n = 10, 6-months, male).  

Fig 1 – FLAIR-IVIM data and 
analysis for example pilot 
subject: a) Example slice from 
3D T2-weighted structural image 
to pinpoint choroid plexus (CP) 
tissue (dark), within ventricular 
CSF (bright).     b) B0 image (B = 

71 s/mm
2
).     c) ROI selection for 

analysis of CP (red) from B0 
FLAIR-IVIM image, guided by T2-
weighted structural scan (a).                  
d) Example biexponential 
modelling of acquired voxel-
wise, noise-corrected [B, S/S0] 
data (3 example CP voxels). 
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Results: With T1-bias correction, the data 
acquired using different 𝛼𝛼  (Fig. 2A) were 
corrected towards a similar SFFT1corrected (Fig. 
2B). The values are still biased relative to 
PDFF due to vendor-specific biases, which can 
be simulated as shown in Fig. 2. With the full 
proposed correction, the 95% limits of 
agreement (LoA) of approximately ± 3% and 
0.5% mean bias is achieved across vendors 
and field strengths (Fig. 3). It meets the QIBA 
requirement for subject-level liver PDFF 
measurement precision, indicating good 
agreement with LMS IDEAL PDFF [8]. Fig. 4 
shows an example of the SFF map before and after each step of correction and LMS IDEAL PDFF. 

 
Fig. 3. Bland-Altman plots of Dixon SFF using LMS IDEAL PDFF as reference, for scanner-derived SFF 
(A), T1-bias corrected SFF (B) and T1-bias and vendor-specific corrected SFF (C). Data acquired on 
different vendors and field strengths are plotted with different colours, and the QIBA subject-level 
liver PDFF measurement precision requirements for 95% LoA [8] are also shown. 

 
Fig. 4. Fat fraction map of the scanner-derived Dixon SFF (A), T1-bias corrected SFF (B), T1-bias and 
vendor-specific corrected SFF (C) and IDEAL PDFF (D). The liver segmentation mask is indicated in 
green, and the median value within the segmentation mask is shown above each figure.  
Limitations: A bias between the SFFT1corrected obtained from different flip angle datasets is visible in Fig. 
2B, indicating incomplete removal of the T1 bias, which could be related to the inaccurate effective 
flip angle due to B1 field inhomogeneity. Bias due to noise and T2* was not considered in this work.   
Conclusions: We proposed a bias correction approach to achieve more accurate and reproducible fat 
quantification in the liver using commercialised 3D dual-echo Dixon sequences on different vendors 
and field strengths, including 32 volunteers on 1.5T GE, 1.5T Siemens and 3T Siemens scanners at 9 
sites. Corrected liver SFF shows good agreement with LMS IDEAL PDFF.  
References: [1] T Yokoo, M Bydder, G Hamilton, et al. Radiology. 251(1):67-76 (2009). [2] CY Liu, CA 
McKenzie, H Yu, JH Brittain and SB Redder Magn Reson Med. 58(2), 354-64 (2007). [3] D Hernando, ZP Liang 
and P Kellman Magn Reson Med. 64(3), 811-822 (2010). [4] WT Triplett, C Baligand, SC Forbes, et al. Magn 
Reson Med.72(1):8-19. (2014). [5] A Triay Bagur, et al. Magn Reson Med. 82(1), 460-475 (2019). [6] FE Mozes, 
EM Tunnicliffe, A Moolla, et al. NMR Biomed. 32(2):e4030. (2019). [7] Garnov N, Linder N, Schaudinn A, et al. 
NMR Biomed.27(9):1123-1128. (2014). [8] QIBA Proton Density Fat Fraction Biomarker Committee, 2023. 
Quantitative Imaging Biomarkers Alliance, December 2023. Available at: 
https://qibawiki.rsna.org/index.php/Profiles 

Fig. 2. Median Liver Dixon SFF is plotted against LMS 
IDEAL PDFF for each volunteer for scanner-derived 
SFF (A), and SFFT1corrected (B). The simulation SFF result 
is plotted against ground truth PDFF. 

 

 

Towards accurate, reproducible PDFF quantification in the liver using a 3D dual-echo 
Dixon body composition sequence 
Yifei Jin1, Markus Henningsson1, Carolina Fernandes1 
1Perspectum, Oxford, United Kingdom  
 

Introduction: Water-fat separation using 3D dual-echo Dixon is provided by all major MRI vendors. 
However, in quantitative analysis, the signal fat fraction (SFF) from scanner-derived water and fat 
images is biased compared to proton density fat fraction (PDFF), which is a biomarker for diseases 
such as metabolic dysfunction-associated steatohepatitis [1]. The large flip angle (𝛼𝛼~10°) and short 
repetition time (TR~4-8 msec) optimised for fast acquisition will lead to a T1-biased SFF [2]. The 
different echo times (TE) and fat models used by vendors also introduce vendor-specific biases [3]. 
Here, we propose a correction method targeting these two biases, achieving more accurate and 
reproducible fat quantification in the liver across different vendors and field strengths. 
 

Theory: The T1-bias is corrected using a term calculated from 𝛼𝛼, TR, water T1 (𝑇𝑇1𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 ) and fat T1 
(𝑇𝑇1𝑓𝑓𝑓𝑓𝑓𝑓)[4]. The vendor-specific bias was then corrected using a simulation-based technique. The signal 
was simulated for the full PDFF range (0-100%) using the liver fat model [5], then SFF reconstruction 
was performed with the derived vendor-specific fat model and algorithm. By locating the closest 
simulated SFF to the acquired SFF, the corresponding PDFF for the simulated SFF was obtained. 
  

Experiments: To evaluate the T1-bias correction performance, 15 volunteers were scanned on 1.5T 
GE scanners at multiple sites using the 3D dual-echo spoiled gradient echo (Lava-Flex) sequence: TE1,2 
= (2.08, 4.17) msec, TR = [6.03–6.10] msec, 𝛼𝛼 = 5° and 15°. For each volunteer, the two datasets 
acquired with different 𝛼𝛼 were T1-bias corrected and their SFFT1corrected were compared. 
 

To evaluate the Dixon-derived PDFF reproducibility using the full proposed correction, data were 
acquired on multiple vendors. In addition to the 15 1.5T GE datasets with 𝛼𝛼  = 15°, 10 and 7 
volunteers were scanned on 1.5T Siemens and 3T Siemens respectively, using the dual-echo spoiled 
gradient echo Dixon (VIBE-Dixon) sequence. On 1.5T Siemens: TE1,2 = (2.08, 4.17) msec, TR = [6.80–
7.36] msec and 𝛼𝛼 = 15° were used. On 3T Siemens: TE1,2 = (1.23, 2.46) msec, TR = 3.92 msec and 𝛼𝛼 
= 9° were used. 2D LiverMultiScan IDEAL (LMS IDEAL) was acquired for each volunteer to obtain liver 
PDFF [5]. MOLLI T1 and Dixon T2* were acquired for each volunteer, and the median liver 𝑇𝑇1𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤  
was extracted from the MOLLI T1 data, using as inputs PDFF and T2* [6]. The T1-bias and vendor-
specific correction was performed as shown in Fig. 1 and the result was compared to the LMS IDEAL 
PDFF. 

 
Fig. 1. Schematics of the proposed correction (from left to right). The SFFT1corrected was first obtained 
with correction factor 𝑓𝑓𝑇𝑇1 =  𝑇𝑇1𝑊𝑊𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

𝑇𝑇1𝑊𝑊𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤
 , where T1-weighting of fat or water component signal is 

𝑇𝑇1𝑊𝑊𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = (1−𝑒𝑒−𝑇𝑇𝑇𝑇/𝑇𝑇1𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ) sin 𝛼𝛼
1−𝑒𝑒−𝑇𝑇𝑇𝑇/𝑇𝑇1𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 cos 𝛼𝛼

. TR, 𝛼𝛼, calculated T1water and literature T1fat value [7] were used to 
compute 𝑓𝑓𝑇𝑇1. The SFFT1corrected was matched to the simulated SFF to find PDFF. Median liver PDFF 
was then extracted within the segmented liver mask. 
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