Kidney Transplantation

Current issues and opportunities for MR imaging

Cyril Moers, transplant surgeon

University of Groningen – since 1614

University Medical Center Groningen

University Medical Center Groningen

- Kidney (120 living, 80 deceased)
- Liver (10 living, 80 deceased)
- Pancreas (10)
- Small intestine (3)
- Lung (35)
- Heart (10)

Organ preservation and resuscitation unit

donor

organ preservation & transport

recipient

- There is a persistent donor organ shortage
- The typical organ donor today is older and has more comorbidities compared to 10 years ago
- Approximately 50% of potentially viable deceased donor kidneys are turned down locally, 20% discarded
- More than 30% of transplanted kidneys do not show acceptable outcome
- Current pre-transplant organ quality evaluation is based on subjective clinical assessment and unreliable
- There is an urgent need for objective pre-transplant organ assessment tools

Eurotransplant Annual Report 2017

- There is a persistent donor organ shortage
- The typical organ donor today is older and has more comorbidities compared to 10 years ago
- Approximately 50% of potentially viable deceased donor kidneys are turned down locally, 20% discarded
- More than 30% of transplanted kidneys do not show acceptable outcome
- Current pre-transplant organ quality evaluation is based on subjective clinical assessment and unreliable
- There is an urgent need for *objective* pre-transplant organ assessment tools

Eurotransplant Annual Report 2017

- There is a persistent donor organ shortage
- The typical organ donor today is older and has more comorbidities compared to 10 years ago
- Approximately 50% of potentially viable deceased donor kidneys are turned down locally, 20% discarded
- More than 30% of transplanted kidneys do not show acceptable outcome
- Current pre-transplant organ quality evaluation is based on subjective clinical assessment and unreliable
- There is an urgent need for objective pre-transplant organ assessment tools

3130 Transplanted Accepted, not transplanted Offered, not accepted Not offered

Eurotransplant Annual Report 2017

- There is a persistent donor organ shortage
- The typical organ donor today is older and has more comorbidities compared to 10 years ago
- Approximately 50% of potentially viable deceased donor kidneys are turned down locally, 20% discarded
- More than 30% of transplanted kidneys do not show acceptable outcome
- Current pre-transplant organ quality evaluation is based on subjective clinical assessment and unreliable
- There is an urgent need for objective pre-transplant organ assessment tools

Graft failure or death within 1 year and/or eGFR <30 ml/min at 1 year post-Tx No Yes 32,18% 67,82%

NOTR data 50+ donor cohort 2000-2015

- There is a persistent donor organ shortage
- The typical organ donor today is older and has more comorbidities compared to 10 years ago
- Approximately 50% of potentially viable deceased donor kidneys are turned down locally, 20% discarded
- More than 30% of transplanted kidneys do not show acceptable outcome
- Current pre-transplant organ quality evaluation is based on subjective clinical assessment and unreliable
- There is an urgent need for objective pre-transplant organ assessment tools

- There is a persistent donor organ shortage
- The typical organ donor today is older and has more comorbidities compared to 10 years ago
- Approximately 50% of potentially viable deceased donor kidneys are turned down locally, 20% discarded
- More than 30% of transplanted kidneys do not show acceptable outcome
- Current pre-transplant organ quality evaluation is based on subjective clinical assessment and unreliable
- There is an urgent need for objective pre-transplant organ assessment tools

- There is a persistent donor organ shortage
- The typical organ donor today is older and has more comorbidities compared to 10 years ago
- Approximately 50% of potentially viable deceased donor kidneys are turned down locally, 20% discarded
- More than 30% of transplanted kidneys do not show acceptable outcome
- Current pre-transplant organ quality evaluation is based on subjective clinical assessment and unreliable
- There is an urgent need for objective pre-transplant organ assessment tools

variance explained

- Prediction models for post-transplant outcome based on clinical variables alone and are unreliable
- Most kidneys are preserved on a hypothermic (0-8°C) machine perfusion (HMP) device, which yields better outcome versus static storage, but no reliable organ assessment
- Many centres are interested in *normo*thermic (37°C) ex vivo machine perfusion (NMP) as a platform for pre-transplant organ assessment
- But frankly, we have no idea what parameters and biomarkers during NMP tell us about kidney quality

- Prediction models for post-transplant outcome based on clinical variables alone and are unreliable
- Most kidneys are preserved on a hypothermic (0-8°C) machine perfusion (HMP) device, which yields better outcome versus static storage, but no reliable organ assessment
- Many centres are interested in *normo*thermic (37°C) ex vivo machine perfusion (NMP) as a platform for pre-transplant organ assessment
- But frankly, we have no idea what parameters and biomarkers during NMP tell us about kidney quality

Moers et al, NEJM 2009 & 2012

Jochmans, Moers et al, AJT 2011

- Prediction models for post-transplant outcome based on clinical variables alone and are unreliable
- Most kidneys are preserved on a hypothermic (0-8°C) machine perfusion (HMP) device, which yields better outcome versus static storage, but no reliable organ assessment
- Many centres are interested in *normo*thermic (37°C) ex vivo machine perfusion (NMP) as a platform for pre-transplant organ assessment
- But frankly, we have no idea what parameters and biomarkers during NMP tell us about kidney quality

- Prediction models for post-transplant outcome based on clinical variables alone and are unreliable
- Most kidneys are preserved on a hypothermic (0-8°C) machine perfusion (HMP) device, which yields better outcome versus static storage, but no reliable organ assessment
- Many centres are interested in *normo*thermic (37°C) ex vivo machine perfusion (NMP) as a platform for pre-transplant organ assessment
- But frankly, we have no idea what parameters and biomarkers during NMP tell us about kidney quality

- Prediction models for post-transplant outcome based on clinical variables alone and are unreliable
- Most kidneys are preserved on a hypothermic (0-8°C) machine perfusion (HMP) device, which yields better outcome versus static storage, but no reliable organ assessment
- Many centres are interested in *normo*thermic (37°C) ex vivo machine perfusion (NMP) as a platform for pre-transplant organ assessment
- But frankly, we have no idea what parameters and biomarkers during NMP tell us about kidney quality

Ex vivo kidney perfusion

Potential for pre-transplant organ assessment

Ex vivo kidney perfusion

Ex vivo versus in vivo physiology

Major lack of mechanistic understanding

Normothermic MP as a diagnostic tool

Table 1 Ex vivo normothermic perfusion assessment score

	Score
Macroscopic assessment	
Grade I: excellent perfusion (global pink appearance)	1
Grade II: moderate perfusion (patchy appearance)	2
Grade III: poor perfusion (global mottled and	3
purple/black appearance)	
Renal blood flow (ml per min per 100 g)	
Threshold ≥ 50	0
Threshold < 50	1
Total urine output	
Threshold ≥ 43	0
Threshold < 43	1

Hosgood et al. Am J Transpl 2016 and Br J Surg 2015

Urgent requirements

- Better understand the molecular mechanisms that characterise ex vivo kidney perfusion
- Discover which parameters, biomarkers and molecular pathways are relevant for ex vivo pre-transplant organ assessment

Prior and preliminary work

MRI sequences

 Zoomed T2 weighted anatomical imaging detection of ischemic areas

■ lower pole whole whole (control)

Pre-transplant Renal Ex vivo Imaging and Multi-omics for Advanced Graft Evaluation

PRE-IMAGE

Cyril Moers

Transplant surgeon and tenure track researcher

Pre-transplant Renal Ex vivo Imaging

FOR Advanced PRE-IMAGE

Cyril Moers

Transplant surgeon and tenure track researcher

Post-transplant opportunities for MRI

Assessment of renal perfusion

- Replace observer-dependent ultrasound
- Better pinpoint cause of perfusion problems
- Less invasive vs. CT-angiography

Early graft dysfunction

- Replace invasive diagnostics
- Early differentiation of causes
- Rapid onset of targeted therapy

Urological complications

- Replace invasive diagnostics
- Long term graft monitoring

Cyril Moers surgeon, junior PI Henri Leuvenink senior PI

Sijbrand Hofker transplant surgeon

Christina Krikke

transplant surgeon

Robert Pol

transplant surgeon

Mostafa El Moumni surgeon/statistician

Petra Ottens hiotechnician

Merel Pool PhD student

Tim Eertman

student

Rianne Schutter

PhD student

Leonie Venema PhD student

Aukje Brat

PhD student

Kate Lewis PhD student

Veerle Lantinga

student

Leonie van Leeuwen

PhD student

Tim Hamelink

student

Rinse Ubbink OPR technician umcg

Loes Hartveld student **Liset Wijngaards** student Jaël Vos student

Stefan Berger nephrologist Jan-Stephan Sanders nephrologist Meindert Crop nephrologist

Bente Jespersen senior PI Christoffer Laustsen

MRI specialist

Marco Eijken

postdoc researcher

Ulla Møldrup uroloaist

Stine Lohmann

PhD student

Anna Krarup Keller urology registrar Stina Lignell

student

Team

Martin Hoogduijn senior PI Jesus Sierra-Parraga PhD student **Robert Minnee**

surgeon

Rutger Ploeg senior PI Maria Kaisar PhD student Benedikt Kessler proteomics specialist Honglei Huang proteomics specialist James Hunter postdoc researcher

Marlies Reinders senior PI Volkert Huurman transplant suraeon Asel Arykbaeva PhD student

Andries Hoitsma nephrologist Cynthia Konijn data manager Nichon Jansen senior researcher

Thank you for your attention!

