Research

Our People

Paul Houston

Head of School and Professor of Computational and Applied Maths, Faculty of Science

Contact

Recent Publications

  • P. HOUSTON, S. ROGGENDORF and K.G. VAN DER ZEE, 2022. Gibbs Phenomena For L^q-best Approximation in Finite Element Spaces ESAIM Mathematical Modelling and Numerical Analysis. 56, 177-211
  • P. HOUSTON, C.J. ROURKE and K.G. VAN DER ZEE, 2022. Linearisation of the Travel Time Functional in Porous Media Flows SIAM Journal of Scientific Computing. (In Press.)
  • S. CONGREVE and P. HOUSTON, 2022. Two-grid hp-version discontinuous Galerkin finite element methods for quasilinear elliptic PDEs on agglomerated coarse meshes Advances in Computational Mathematics. (In Press.)
  • P.F. ANTONIETTI, P. HOUSTON, G. PENNESI and E. SULI, 2020. An agglomeration-based massively parallel non-overlapping additive Schwarz preconditioner for high-order discontinuous Galerkin methods on polytopic grids Mathematics of Computation. 89, 2047-2083
  • P. HOUSTON, S. ROGGENDORF and K.G. VAN DER ZEE, 2022. Gibbs Phenomena For L^q-best Approximation in Finite Element Spaces ESAIM Mathematical Modelling and Numerical Analysis. 56, 177-211
  • P. HOUSTON, C.J. ROURKE and K.G. VAN DER ZEE, 2022. Linearisation of the Travel Time Functional in Porous Media Flows SIAM Journal of Scientific Computing. (In Press.)
  • S. CONGREVE and P. HOUSTON, 2022. Two-grid hp-version discontinuous Galerkin finite element methods for quasilinear elliptic PDEs on agglomerated coarse meshes Advances in Computational Mathematics. (In Press.)
  • P.F. ANTONIETTI, P. HOUSTON, G. PENNESI and E. SULI, 2020. An agglomeration-based massively parallel non-overlapping additive Schwarz preconditioner for high-order discontinuous Galerkin methods on polytopic grids Mathematics of Computation. 89, 2047-2083
  • P.F. ANTONIETTI, C. FACCIOLA, P. HOUSTON, I. MAZZIERI, G. PENNESI and M. VERANI, 2020. In: M.G. LARSON, T. MARTÍNEZ-SEARA ALONSO, C. PARES, L. PARESCHI, A. TOSIN, E. VAZQUEZ-CENDON, J.P. ZUBELLI and P. ZUNINO, eds., High-Order Discontinuous Galerkin Methods on Polyhedral Grids for Geophysical Applications: Seismic Wave Propagation and Fractured Reservoir Simulations (In Press.)
  • P. HOUSTON, S. ROGGENDORF and K.G. VAN DER ZEE, 2020. Eliminating Gibbs Phenomena: A Non-linear Petrov-Galerkin Method for the Convection-Diffusion-Reaction Equation Computers & Mathematics with Applications. 80(5), 851-873
  • P. HOUSTON and T.P. WIHLER, 2020. In: S.J. SHERWIN, J. PEIRO, P.E. VINCENT and C. SCHWAB, eds., hp-Adaptive Iterative Linearization Discontinuous-Galerkin FEM for Quasilinear Elliptic Boundary Value Problems Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2018. Lecture Notes in Computational Science and Engineering. 134. 407-417
  • S. CONGREVE, P. HOUSTON and I. PERUGIA, 2019. Adaptive Refinement for hp-Version Trefftz Discontinuous Galerkin Methods for the Homogeneous Helmholtz Problem Advances in Computational Mathematics. 45(1), 361-393
  • P. HOUSTON, I. MUGA, S. ROGGENDORF and K.G. VAN DER ZEE, 2019. The convection-diffusion-reaction equation in non-Hilbert Sobolev spaces: A direct proof of the inf-sup condition and stability of Galerkin's method Computational Methods in Applied Mathematics. 19(3), 503-522
  • S. CONGREVE and P. HOUSTON, 2019. Two-Grid hp-DGFEMs on Agglomerated Coarse Meshes In: 90th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM), Vienna 2019. Proceedings in Applied Mathematics and Mechanics. 19. e201900175
  • R. BROGLIA, K.-S. CHOI, P. HOUSTON, L. PASQUALE and P. ZANCHETTA, 2018. Output feedback control of flow separation over an aerofoil using plasma actuators International Journal of Numerical Analysis and Modeling. 15(6), 864-883
  • P. HOUSTON and T.P. WIHLER, 2018. An hp-Adaptive Newton-Discontinuous-Galerkin Finite Element Approach for Semilinear Elliptic Boundary Value Problems Mathematics of Computation. 87(314), 2641-2674
  • P.F. ANTONIETTI, P. HOUSTON and G. PENNESI, 2018. Fast numerical integration on polytopic meshes with applications to discontinuous Galerkin finite element methods Journal of Scientific Computing. 77(3), 1339-1370
  • P. HOUSTON and N. SIME, 2018. Automatic Symbolic Computation for Discontinuous Galerkin Finite Element Methods SIAM Journal on Scientific Computing. 40(3), C327-C357
  • P.F. ANTONIETTI, P. HOUSTON, X. HU, M. SARTI and M. VERANI, 2017. Multigrid Algorithms for hp-Version Interior Penalty Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes Calcolo. 54(4), 1169-1198
  • P. HOUSTON, 2017. Adjoint Error Estimation and Adaptivity for Hyperbolic Problems. In: R. ABGRALL and C.-W. SHU, eds., Handbook of Numerical Analysis: Handbook of Numerical Methods for Hyperbolic Problems. Applied and Modern Issues 18. Elsevier. 233-261
  • P. HOUSTON and N. SIME, 2017. Numerical Modelling of MPA-CVD Reactors with the Discontinuous Galerkin Finite Element Method Journal of Physics D: Applied Physics. 50(29), 295202
  • E. HALL, P. HOUSTON and S. MURPHY, 2017. hp-Adaptive Discontinuous Galerkin Methods for Neutron Transport Criticality Problems SIAM Journal on Scientific Computing. 39(5), B916-B942
  • P. HOUSTON and T.P. WIHLER, 2017. An Adaptive Variable Order Quadrature Strategy In: M. Bittencourt, N. Dumont, and J.S. Hesthaven, (editors), Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016, Lecture Notes in Computational Science and Engineering. 119. 533-545
  • A. CANGIANI, Z. DONG, E.H. GEORGOULIS and P. HOUSTON, 2017. hp-Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes Springer International Publishing.
  • P.F. ANTONIETTI, A. CANGIANI, J. COLLIS, Z. DONG, E.H. GEORGOULIS, S. GIANI and P. HOUSTON, 2016. Review of Discontinuous Galerkin Finite Element Methods for Partial Differential Equations on Complicated Domains. In: G.R. BARRENECHEA, F. BREZZI, A. CANGIANI and E.H. GEORGOULIS, eds., Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations: Lecture Notes in Computational Science and Engineering Springer International Publishing. 281-310
  • O. BAIN, J. BILLINGHAM, P. HOUSTON and I. LOWNDES, 2016. Flows of Granular Material in Two-Dimensional Channels Journal of Engineering Mathematics. 98(1), 49-70
  • A. CANGIANI, Z. DONG, E.H. GEORGOULIS and P. HOUSTON, 2016. hp-Version Discontinuous Galerkin Methods for Advection-Diffusion-Reaction Problems on Polytopic Meshes ESAIM: Mathematical Modelling and Numerical Analysis. 50(3), 699-725
  • P. HOUSTON and T.P. WIHLER, 2016. Adaptive Energy Minimisation for hp-Finite Element Methods Computers & Mathematics with Applications. 71(4), 977-990
  • P.F. ANTONIETTI, P. HOUSTON and I. SMEARS, 2016. A Note on Optimal spectral bounds for nonoverlapping domain decomposition preconditioners for hp-Version Discontinuous Galerkin methods International Journal of Numerical Analysis and Modeling. 13(4), 513–524
  • J. COLLIS and P. HOUSTON, 2016. Adaptive Discontinuous Galerkin Methods on Polytopic Meshes. In: G. VENTURA and E. BENVENUTI, eds., Advances in Discretization Methods: Discontinuities, Virtual Elements, Fictitious Domain Methods Springer International Publishing. 187-206
  • K.A. CLIFFE, J. COLLIS and P. HOUSTON, 2015. Goal-Oriented A Posteriori Error Estimation for the Travel Time Functional in Porous Media Flows SIAM Journal on Scientific Computing. 37(2), B127-B152
  • K.A. CLIFFE, E.J.C. HALL and P. HOUSTON, 2014. hp-Adaptive Discontinuous Galerkin Methods for Bifurcation Phenomena in Open Flows Computers & Mathematics with Applications. 67(4), 796-806
  • P.F. ANTONIETTI, S. GIANI and P. HOUSTON, 2014. Domain Decomposition Preconditioners for Discontinuous Galerkin Methods for Elliptic Problems on Complicated Domains Journal of Scientific Computing. 60(1), 203-227
  • S. GIANI and P. HOUSTON, 2014. hp-Adaptive Composite Discontinuous Galerkin Methods for Elliptic Problems on Complicated Domains Numerical Methods for Partial Differential Equations. 30(4), 1342-1367
  • S. GIANI and P. HOUSTON, 2014. Domain Decomposition Preconditioners for Discontinuous Galerkin Discretizations of Compressible Fluid Flows Numerical Mathematics: Theory, Methods and Applications. 7(2), 123-148
  • A. CANGIANI, E.H. GEORGOULIS and P. HOUSTON, 2014. hp-Version discontinuous Galerkin methods on polygonal and polyhedral meshes Mathematical Models and Methods in Applied Sciences. 24(10), 2009-2041
  • S. GIANI and P. HOUSTON, 2014. Goal-Oriented Adaptive Composite Discontinuous Galerkin Methods for Incompressible Flows Journal of Computational and Applied Mathematics. 270, 32-42
  • S. CONGREVE and P. HOUSTON, 2014. Two-Grid hp-Version Discontinuous Galerkin Finite Element Methods for Quasi-Newtonian Fluid Flows International Journal of Numerical Analysis and Modeling. 11(3), 496-524
  • CONGREVE, S., HOUSTON, P. and WIHLER, T.P., 2013. Two-Grid hp-Version Discontinuous Galerkin Finite Element Methods for Second-Order Quasilinear Elliptic PDEs Journal of Scientific Computing. 55(2), 471-497
  • CONGREVE, S., HOUSTON, P., SÜLI, E. and WIHLER, T.P., 2013. Discontinuous Galerkin finite element approximation of quasilinear elliptic boundary value problems II: strongly monotone quasi-Newtonian flows IMA Journal of Numerical Analysis. 33(4), 1386-1415
  • P.F. ANTONIETTI, S. GIANI and P. HOUSTON, 2013. hp-Version Composite Discontinuous Galerkin Methods for Elliptic Problems on Complicated Domains SIAM Journal on Scientific Computing. 35(3), 1417-1439
  • S. CONGREVE and P. HOUSTON, 2013. Two–Grid hp–DGFEM for Second Order Quasilinear Elliptic PDEs Based on an Incomplete Newton Iteration In: The Eighth International Conference on Scientific Computing and Applications. Contemporary Mathematics, AMS. 586. 135-142
  • FISCHER, S., HOUSTON, P., MONK, N.A.M. and OWEN, M.R., 2013. Is a Persistent Global Bias Necessary for the Establishment of Planar Cell Polarity? PLOS ONE. 8(4), e60064
  • ANTONIETTI, P.F. and HOUSTON, P., 2013. Preconditioning high-order Discontinuous Galerkin discretizations of elliptic problems. In: Domain Decomposition Methods in Science and Engineering XX: Lecture Notes in Computational Science and Engineering 91. Springer-Verlag. 231-238
  • CLIFFE, K.A., HALL, E.J.C., HOUSTON, P., PHIPPS, E.T. and SALINGER, A.G., 2012. Adaptivity and a posteriori error control for bifurcation problems III: incompressible fluid flow in open systems with O(2) symmetry Journal of Scientific Computing. 52(1), 153-179
  • HOUSTON, P. and WIHLER, T.P., 2012. Second-Order Elliptic PDE with Discontinuous Boundary Data IMA Journal of Numerical Analysis. 32(1), 48-74
  • GIANI, S. and HOUSTON, P., 2012. Anisotropic hp-Adaptive Discontinuous Galerkin Finite Element Methods for Compressible Fluid Flows International Journal of Numerical Analysis and Modeling. 9(4), 928-949
  • HOUSTON, P. and WIHLER, T.P., 2012. Discontinuous Galerkin Methods for Problems with Dirac Delta Source Mathematical Modelling and Numerical Analysis. 46, 1467-1483
  • ZHU, L., GIANI, S., HOUSTON, P. and SCHÖTZAU, D., 2011. Energy norm a-posteriori error estimation for hp-adaptive discontinuous Galerkin methods for elliptic problems in three dimensions Mathematical Models and Methods in Applied Sciences. 21(2), 267-306
  • MILNE, A., CLIFFE, K.A., HOLTON, D., HOUSTON, P., JACKSON, C.P. and JOYCE, S., 2011. Conditioning Discrete Fracture Network Models of Groundwater Flow International Journal of Numerical Analysis and Modeling. 8(4), 543-565
  • GEORGOULIS, E.H., HOUSTON, P. and VIRTANEN, J., 2011. An a posteriori error indicator for discontinuous Galerkin approximations of fourth-order elliptic problems IMA Journal of Numerical Analysis. 31(1), 281-298
  • ANTONIETTI, P. and HOUSTON, P., 2011. A Class of Domain Decomposition Preconditioners for hp-Discontinuous Galerkin Finite Element Methods Journal of scientific computing. 46, 124-149
  • CLIFFE, K.A., HALL, E.J.C., HOUSTON, P., PHIPPS, E.T. and SALINGER, A.G., 2011. Adaptivity and a posteriori error control for bifurcation problems II: incompressible fluid flow in open systems with Z2 symmetry Journal of Scientific Computing. 47(3), 389-418
  • CONGREVE, S., HOUSTON, P. and WIHLER, T.P., 2011. Two-Grid hp-Version DGFEMs for Strongly Monotone Second-Order Quasilinear Elliptic PDEs Proceedings in Applied Mathematics and Mechanics: Special Issue: 82nd Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM), Graz 2011; Editors: G. Brenn, G.A. Holzapfel, M. Schanz and O. Steinbach. 11(1), 3-6
  • SCHAMBERG, S., HOUSTON, P., MONK, N.A.M. and OWEN, M.R., 2010. Modelling and analysis of planar cell polarity Bulletin of Mathematical Biology. 72(3), 645-680
  • K.A. CLIFFE, A.G.SALINGER., E.J.C. HALL, P. HOUSTON, E.T. PHIPPS and A.G. SALINGER, 2010. Adaptivity and A Posteriori Error Control for Bifurcation Problems I: The Bratu Problem Communications in Computational Physics. 8(4), 845-865
  • GIANI, S. and HOUSTON, P., 2010. High-Order hp-Adaptive Discontinuous Galerkin Finite Element Methods for Compressible Fluid Flows. In: N. KROLL, H. BIELER, H. DECONINCK, V. COUALLIER, H. VAN DER VEN AND K. SORENSEN, ed., ADIGMA - A European Initiative on the Development of Adaptive Higher-Order Variational Methods for Aerospace Applications: Notes on Numerical Fluid Mechanics and Multidisciplinary Design 113. Springer. 399-411
  • CLIFFE, K.E., HALL, E. and HOUSTON, P., 2010. Adaptive discontinuous Galerkin methods for eigenvalue problems arising in incompressible fluid flows SIAM Journal on Scientific Computing. 31(6), 4607-4632
  • HARTMANN, R. and HOUSTON, P., 2009. Error Estimation and Adaptive Mesh Refinement for Aerodynamic flows. In: DECONINCK, H., ed., VKI LS 2010-01: 36th CFD/ADIGMA Course on hp-Adaptive and hp-Multigrid Methods Von Karman Institute for Fluid Dynamics, Rhode Saint Genese, Belgium.
  • GEORGOULIS, E.H. and HOUSTON, P., 2009. Discontinuous Galerkin Methods for the Biharmonic Problem IMA Journal of Numerical Analysis. 29(3), 573-594
  • HOUSTON, P., SCHOETZAU, D. and WEI, X., 2009. A mixed DG method for linearized incompressible magnetohydrodynamics Journal of Scientific Computing. 40(1-3), 281-314
  • GEORGOULIS, E.H., HALL, E. and HOUSTON, P., 2009. Discontinuous Galerkin methods on hp-anisotropic meshes II: a posteriori error analysis and adaptivity Applied Numerical Mathematics. 59(9), 2179-2194
  • ANTONIETTI, P. and HOUSTON, P., 2008. A Pre-processing Moving Mesh Method for Discontinuous Galerkin Approximations of Advection-Diffusion-Reaction Problems International Journal of Numerical Analysis and Modeling. 5(4), 704-728
  • HARTMANN, R. and HOUSTON, P., 2008. An Optimal Order Interior Penalty Discontinuous Galerkin Discretization of the Compressible Navier-Stokes Equations Journal of Computational Physics. 227, 9670-9685
  • HOUSTON, P, SÜLI, E and AND WIHLER, T.P., 2008. A Posteriori Error Analysis of hp-Version Discontinuous Galerkin Finite Element Methods for Second-Order Quasilinear Elliptic Problems IMA Journal of Numerical Analysis. 28, 245-273
  • ANTONIETTI, P. and HOUSTON, P., 2008. An hr-Adaptive Discontinuous Galerkin Method for Advection-Diffusion Problems In: Communications to SIMAI Congress 2008.
  • HOUSTON, P., SCHÖTZAU, D. and WIHLER, T.P., 2007. Energy norm a posteriori error estimation of hp-adaptive discontinuous Galerkin methods for elliptic problems Mathematical Models and Methods in Applied Sciences (M3AS). 17(1), 33-62
  • GEORGOULIS, E.H, HALL, E. and HOUSTON, P., 2007. Discontinuous Galerkin Methods for Advection-Diffusion-Reaction Problems on Anisotropically Refined Meshes SIAM Journal on Scientific Computing. 30(1), 246-271
  • GEORGOULIS, E.H, HALL, E. and HOUSTON, P., 2007. Discontinuous Galerkin Methods on hp-Anisotropic Meshes I: A Priori Error Analysis International Journal of Computing Science and Mathematics. 1(2-3), 221-244
  • BUFFA, A, P. HOUSTON, P and AND PERUGIA. I., 2007. Discontinuous Galerkin Computation of the Maxwell Eigenvalues on Simplicial Meshes Journal of Computational and Applied Mathematics. 204(2), 317-333
  • HOUSTON, P, PERUGIA, I and AND D. SCHÖTZAU, D., 2007. A Posteriori Error Estimation for Discontinuous Galerkin Discretizations of H(curl)-Elliptic Partial Differential Equations IMA Journal of Numerical Analysis. 27, 122-150
  • BROWNLEE, R, HOUSTON, P, LEVESLEY, J and AND ROSSWOG, S., 2006. Enhancing SPH using Moving Least-Squares and Radial Basis Functions. In: ISKE, A and AND J. LEVESLEY, J., eds., Algorithms for Approximation Springer-Verlag. 103-112
  • HOUSTON,P., SCHOETZAU,D. and WIHLER,T., 2006. An hp-adaptive mixed discontinuous Galerkin FEM for nearly incompressible linear elasticity. Computer Methods in Applied Mechanics and Engineering. 195(25-28), 3224-3246
  • HARTMANN, R and AND HOUSTON, P., 2006. Symmetric Interior Penalty DG Methods for the Compressible Navier-Stokes Equations II: Goal-Oriented A Posteriori Error Estimation International Journal of Numerical Analysis and Modeling. 3(2), 141-162
  • HARTMANN, R and AND HOUSTON, P., 2006. Symmetric Interior Penalty DG Methods for the Compressible Navier-Stokes Equations I: Method Formulation International Journal of Numerical Analysis and Modeling. 3(1), 1-20
  • HOUSTON, P, GEORGOULIS, E.H and AND E. HALL, E., 2006. Adaptivity and A Posteriori Error Estimation For DG Methods on Anisotropic Meshes. In: LUBE, G and AND G. RAPIN, G., eds., Proceedings of the International Conference on Boundary and Interior Layers (BAIL) - Computational and Asymptotic Methods
  • HOUSTON, P., PERUGIA, I., SCHNEEBELI, A. and SCHÖTZAU, D., 2005. Interior penalty method for the indefinite time-harmonic Maxwell Equations. Numerische Mathematik. 100(3), 485-518
  • HOUSTON, P., PERUGIA, I., SCHNEEBELI, A. and SCHÖTZAU, D., 2005. Mixed discontinuous Galerkin approximation of the Maxwell operator: The indefinite case MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS. VOL 39(NUMB 4), 727-754
  • HOUSTON, P., ROBSON, J. and E. SÜLI, E., 2005. Discontinuous Galerkin Finite Element Approximation of Quasilinear Elliptic Boundary Value Problems I: The Scalar Case IMA Journal of Numerical Analysis. 25, 726-749
  • HOUSTON, P., PERUGIA, I. and SCHÖTZAU, D., 2005. Energy norm a posteriori error estimation for mixed discontinuous Galerkin approximations of the Maxwell operator COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING. VOL 194(ISSUE 2-5), 499-510
  • HOUSTON, P., PERUGIA, I. and SCHÖTZAU, D., 2005. Mixed Discontinuous Galerkin Approximation of the Maxwell Operator: Non-Stabilized Formulation Journal of scientific computing. 22(1), 325-356
  • HOUSTON, P. and SULI, E., 2005. A note on the design of hp-adaptive finite element methods for elliptic partial differential equations COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING. VOL 194(ISSUE 2-5), 229-243
  • HOUSTON,P., SCHÖTZAU,D. and WIHLER,T.P., 2005. Energy norm a posteriori error estimation for mixed discontinuous Galerkin approximations of the Stokes problem. Journal of scientific computing. 22(1), 357-380
  • HOUSTON, P., PERUGIA, I. and SCHÖTZAU, D., 2004. Mixed discontinuous Galerkin approximation of the Maxwell operator SIAM Journal on Numerical Analysis. VOL 42(NUMB 1), 434-459
  • HOUSTON, P., SCHOETZAU, D. and WIHLER, T.P., 2004. hp-Adaptive Discontinuous Galerkin finite element methods for the Stokes Problem. In: Proceedings of the European Congress on Computational Methods in Applied Sciences and Engineering, Volume II.
  • HOUSTON, P., PERUGIA, I., SCHNEEBELI, A. and SCHOETZAU, D., 2004. Discontinuous Galerkin methods for the time-harmonic Maxwell Equations. In: Numercial Mathematics and Advanced Applications, ENUMATH 2003. 483-492
  • HOUSTON,P., PERUGIA,I. and SCHÖTZAU,D., 2004. Recent developments in discontinuous Galerkin methods for the time-harmonic Maxwell's Equations. International Compumag Society Newsletter. 11(2), 10-17
  • HOUSTON, P., SCHOETZAU, D. and WIHLER, T.P., 2004. Mixed hp-discontinuous Galerkin finite element methods for the Stokes Problem in Polygons In: Numercial Mathematics and Advanced Applications, ENUMATH 2003. 493-501
  • HOUSTON, P., PERUGIA, I. and SCHOETZAU, D., 2004. Noncomforming mixed finite element approximations to time-harmonic Eddy current problems. In: Proceedings of XIV COMPUMAG Conference on Computation of Electromagnetic Fields.
  • HOUSTON, P., PERUGIA, I. and SCHOETZAU, D., 2004. Discontinuous Galerkin methods for Maxwell's equations. In: Progress in Industrial Mathematics at ECMI 2002..
  • HARTMANN, R. and HOUSTON, P., 2004. Adaptive discontinuous Galerkin finite element methods with interior penalty for the compressible Navier-Stokes Equations In: Numerical Mathematics and Advanced Applications, ENUMATH 2003. 410-419
  • HOUSTON, P., PERUGIA, I. and SCHOETZAU, D., 2004. A review of discontinuous Galerkin methods for Maxwell's Equations in frequency-domain. In: Proceedings of the European Congress on Computational Methods in Applied Sciences and Engineering, Volume II.
  • HOUSTON, P., PERUGIA, I. and SCHÖTZAU, D., 2004. Nonconforming Mixed Finite-Element Approximations to Time-Harmonic Eddy Current Problems IEEE Transactions on Magnetics. VOL 40(PART 2), 1268-1273
  • HARTMANN, R. and HOUSTON, P., 2003. Goal-oriented a posteriori error estimation for compressible fluid flows. In: Numerical Mathematics and Advanced Applications, ENUMATH 2001. 775-784
  • HARRIMAN, K., HOUSTON, P., SENIOR, B. and SULI, E., 2003. hp-Version discontinuous Galerkin methods with interior penalty for partial differential equations with nonnegative characteristic form. In: Recent advances in scientific computing and partial differential equations. Contemporary Mathematics Vol 330. 89-119
  • HOUSTON, P., SENIOR, B. and SULI, E., 2003. Sobolev regularity estimation for hp-adaptive finite element methods. In: Numerical Mathematics and Advanced Applications, EMUMATH 2001. 631-656
  • HARTMANN, R. and HOUSTON, P., 2003. Goal-oriented a posteriori error estimation for multiple target functionals. In: Hyperbolic Problems: Theory, Numerics, Applications. 579-588
  • HOUSTON, P., PERUGIA, I. and SCHOETZAU, D., 2003. hp-DGFEM for Maxwell's equations. In: Numerical Mathematics and Advanced Applications, ENUMATH 2001. 785-794
  • HOUSTON, P., SCHWAB, C. and SULI, E., 2002. Discontinuous hp-finite element methods for advection-diffusion-reaction problems SIAM Journal on Numerical Analysis. 39(6), 2133-2163
  • HOUSTON,P. and SULI,E., 2002. hp-Adaptive discontinous Galerkin finite element methods for first-order hyperbolic problems. SIAM Journal on scientific computing. 23(4), 1226-1252
  • HOUSTON, P., JENSEN, M. and SULI, E., 2002. hp-Discontinuous Galerkin Finite Element Methods with Least-Squares Stabilization Journal of scientific computing. VOL 17(1-4), 3-25
  • WARD, M. J., MCINERNEY, D., HOUSTON, P., GAVAGHAN, D. and MAINI, P., 2002. The Dynamics and Pinning of a Spike for a Reaction-Diffusion System SIAM Journal on Applied Mathematics. VOL 62(PART 4), 1297-1328
  • SÜLI, E and AND HOUSTON, P., 2002. Adaptive Finite Element Approximation of Hyperbolic Problems. In: BARTH, T and AND DECONINCK, H., eds., Error Estimation and Adaptive Discretization Methods in Computational Fluid Dynamics 25. Springer-Verlag. 269-344
  • HOUSTON, P., SENIOR, B. and SULI, E., 2002. hp-Discontinuous Galerkin finite element methods for hyperbolic problems: Error analysis and adaptivity International Journal for Numerical Methods in Fluids. VOL 40(1-2), 153-169
  • SCHNELL, S., MAINI, P. K., MCINERNEY, D., GAVAGHAN, D. J. and HOUSTON, P., 2002. Models for pattern formation in somitogenesis: A marriage of cellular and molecular biology Comptes Rendus Biologies. VOL 325(NUMBER 3), 179-189
  • HARTMANN, R. and HOUSTON, P., 2002. Adaptive Discontinuous Galerkin Finite Element Methods for Nonlinear Hyperbolic Conservation Laws SIAM JOURNAL ON SCIENTIFIC COMPUTING. VOL 24(PART 3), 979-1004
  • HARTMANN, R. and HOUSTON, P., 2002. Adaptive Discontinuous Galerkin Finite Element Methods for the Compressible Euler Equations Journal of Computational Physics. VOL 183(PART 2), 508-532
  • HOUSTON,P. and SULI,E., 2001. Adaptive Lagrange-Galerkin methods for unsteady convection-diffusion problems. Mathematics of Computation. 70(233), 77-106
  • HOUSTON, P., HARTMANN, R. and SULI, E., 2001. Adaptive discontinuous Galerkin finite element methods for compressible fluid flows. In: Numerical Methods for Fluid Dynamics VII. 347-353
  • HOUSTON, P., SENIOR, B. and SULI, E., 2001. hp-Discontinuous Galerkin finite element methods for hyperbolic problems: Error analysis and adaptivity. In: Numerical Methods for Fluid Dynamics VII. 73-86
  • HOUSTON, P., RANNACHER, R. and SULI, E., 2000. A posteriori error analysis for stabilised finite element approximations of transport problems Computer Methods in Applied Mechanics and Engineering. VOL 190(NUMBER 11-12), 1483-1508
  • COLLIER, J. R., MCINERNEY, D., SCHNELL, S., MAINI, P. K., GAVAGHAN, D. J., HOUSTON, P. and STERN, C. D., 2000. A Cell Cycle Model for Somitogenesis: Mathematical Formulation and Numerical Simulation Journal of Theoretical Biology. VOL 207(PART 3), 305-316
  • SULI, E., SCHWAB, C. and HOUSTON, P., 2000. hp-DGFEM for partial differential equations with nonnegative characteristic form. In: Discontinuous Galerkin Methods. Theory, Computation and Applications.. 221-230
  • HARRIMAN,K., GAVAGHAN,D.J., HOUSTON,P., KAY,D. and SULI,E., 2000. Adaptive finite element simulation of currents at microelectrodes to a guaranteed accuracy. ECE and EC_2E mechanisms at channel microband electrodes. Electrochemistry Communications. 2(8), 576-585
  • HOUSTON, P., SCHWAB, C. and SULI, E., 2000. Stabilized hp-Finite Element Methods for First-Order Hyperbolic Problems SIAM Journal on Nnumerical Analysis. VOL 37(PART 5), 1618-1643
  • HARRIMAN, K., GAVAGHAN, D. J., HOUSTON, P. and SULI, E., 2000. Adaptive finite element simulation of currents at microelectrodes to a guaranteed accuracy. An E reaction at a channel microband electrode Electrochemistry Communications. VOL 2(NUMBER 8), 567-575
  • HARRIMAN, K., GAVAGHAN, D. J., HOUSTON, P. and SULI, E., 2000. Adaptive finite element simulation of currents at microelectrodes to a guaranteed accuracy II. Theory Electrochemistry Communications. VOL 2(NUMBER 3), 157-162
  • HARRIMAN,K., GAVAGHAN,D.J., HOUSTON,P. and SULI,E., 2000. An adaptive finite element approach to simulation of currents at microelectrodes to guaranteed accuracy I: Application to a simple model problem. Electrochemistry Communications. 2(3), 150-156
  • BREZZI, F., HOUSTON, P., MARINI, D. and SULI, E., 2000. Modeling subgrid viscosity for advection-diffusion problems Computer Methods in Applied Mechanics and Engineering. VOL 190(NUMBER 13-14), 1601-1610
  • SULI, E., HOUSTON, P. and SCHWAB, C., 2000. hp-Finite element methods for hyperbolic problems. In: The Mathematics of Finite Elements and Applications X (MAFELAP 1999). 143-162
  • HOUSTON,P., MACKENZIE,J., SULI,E. and WARNECKE,G., 1999. A posteriori error analysis for numerical approximation of Friedrichs systems. Numerische Mathematik. 82(3), 433-470
  • HOUSTON, P. and SULI, E., 1998. Local mesh design for numerical solution of hyperbolic problems. In: Numerical Methods for Fluid Dynamics VI. 17-30
  • SULI, E. and HOUSTON, P., 1997. Finite element methods for hyperbolic problems: a posteriori error analysis and adaptivity. In: State of the Art in Numerical Analysis. 441-471

World-class research at the University of Nottingham

University Park
Nottingham
NG7 2RD
+44 (0) 115 951 5151
research@nottingham.ac.uk