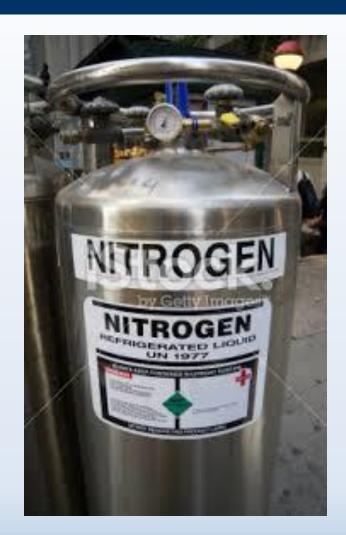


Working safely with liquid cryogens

Prof Tony Kent Mr Chris Pallender Mr Sanjeev Taak


School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD UK

- Together over 50 years experience working safely with liquid cryogens in research and technical roles.
- No known long-term health hazards from working with liquid cryogens.
- With good practice and common sense approach, using liquid cryogens is a low-risk activity.

The University of

- Management of health and safety at work is based on the process of **risk assessment**:
- •First we must identify the *hazards* associated with a work process. These describe the ways in which a process or agent used may potentially cause harm to persons or property. For liquid cryogens these are:
- Damage due to contact with substances/objects at extremely low temperature
- 2. Explosion due to build-up of high pressures in containers
- 3. Oxygen displacement leading to asphyxiation
- 4. Fire

The University of

- When we have identified the hazards we need to assess the *risk*, that is the likelihood that the harm from a particular hazard is realised, and also takes account of the severity of the consequences.
- Risk is situation specific, i.e. for liquid cryogens it will depend on the application, quantity and frequency of use.
- Local risk assessments must be carried out to identify the risks, and put in place safe systems of work to minimise them.
- In this talk we will explain and demonstrate the hazards associated with work with liquid cryogens and give some recommendations that you may use when devising safe systems of work.

The hazard of extreme low temperatures

- Boiling points at atmospheric temperature:
 Liquid nitrogen 77 K (-196 C)
 Liquid helium 4.2 K (-269 C)
- Metal is a good thermal conductor so the outside of a metal pipe carrying liquid nitrogen will be close to -196 C.
- Objects that are flexible at room temperature can become hard and brittle at liquid nitrogen and helium temperatures

https://www.youtube.com/
watch?v=t28jBbOq0yg

Extreme cold - safety recommendations

- Avoid direct contact with cryogen and objects at cryogenic temperature, e.g. pipes carrying liquid nitrogen
- Wear eye protection when decanting liquid cryogens
- Wear insulated gloves
- Wear sensible shoes/boots (not sandals) with trousers covering the the top to ensure spilt liquids do not run inside
- Prevent spillage on plastic floor tiles and electric cables etc.

DON'T do this

The hazard of build up of high pressures

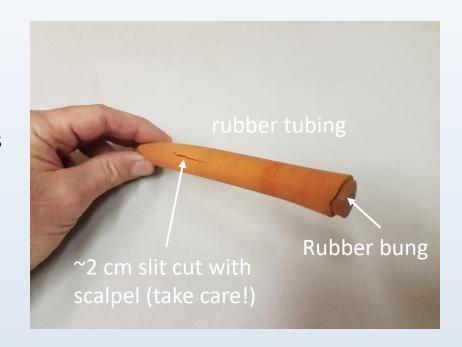
- 1 litre of liquid nitrogen (helium) expands to 0.7 (0.75) cubic metres of gas at room temperature
- Can cause build up of high pressure if gas is trapped, i.e. your piece of equipment becomes a bomb! unsecured bungs and stoppers become projectiles

https://www.youtube.com/watch?v=Jh5Y8Gb-kFU

High pressures – safety recommendations

- Ensure all vents are clear and checked regularly for build up of ice
- Tie all stoppers to top of container with short length of string to act as a retainer if they pop out
- Fit non-return (one-way) and pressure relief valves

Modern containers are equipped with multiple safety pressure-release valves:



High pressures – safety recommendations

• "Home made" Bunsen (one way) valve

if your equipment has open vents like this

fitted on equipment

The hazard of oxygen depletion

• Nitrogen and helium gases in a closed space can displace/dilute oxygen in the air. Leading to risk of asphyxiation.

Normal fraction of air that is oxygen: 21% Danger level: <19% Risk of permanent effects and death: <14%

• Breathing pure nitrogen or helium gas can produce immediate loss of consciousness and lead to death.

Room volume	Volume of liquid nitrogen spilled, litres						
m3	1	2	3	4	5	10	25
10	19.6	18.1	16.7	15.3	13.8	6.7	
25	20.4	19.9	19.3	18.7	18.1	15.3	
50	20.7	20.4	20.1	19.9	19.6	18.1	
75	20.8	20.6	20.4	20.2	20.0	19.1	16.2
100	20.9	20.7	20.6	20.4	20.3	19.6	17.4

Oxygen depletion – safety recommendations

- NEVER accompany liquid cryogens in a lift.
- Use liquid cryogens in well ventilated spaces.
- If using large quantities, or you are unsure about the ventilation, fit oxygen depletion alarms set to sound at <19.5% oxygen in air.
- DO NOT enter an enclosed area where you expect there has been a significant release of a liquid cryogen.

hand-held oxygen depletion monitor

Fire hazard

• Liquid oxygen has a higher boiling point than liquid nitrogen and the liquid seen dripping form cold pipes carrying liquid nitrogen is mostly liquid oxygen.

Pure oxygen is a fire and explosion hazard

Safety Recommendations:

- Insulate pipes carrying liquid nitrogen.
- Do not allow the condensate to drip onto clothing or come into contact with grease/oil/flammable materials.
- keep away from naked flames and incandescent material.

Finally – Emergency Procedures

- **Cold burns** treat as a normal burn, hold under tepid running water (not hot water!) for at least 15 minutes. If serious, like this one, seek medical assistance.
- **Spillage** evacuate area in which spill has taken place, leaving doors/windows open for ventilation.

- **Container overpressure** evacuate area and summon emergency services.
- **Asphyxiation** seek immediate medical assistance.