Web Site Development & Management in Zope

Simon Wilkinson

[image: image20.png]

Web Site Development &

Management in

www.zope.org
www.zope.com
Networked Learning Environment (NLE)

www.nottingham.ac.uk/nle/about/
The Medical School’s Networked Learning Environment (NLE) has been using Zope since May 1999. As the table below shows, Zope can adequately support large numbers of users and hits, enough for virtually any size of degree course.

Size
> 7,000 pages

Courses
67

Traffic

(last 12 months)
46Gb of data

> 4 million hits

Users

(max per month)
nearly 700

As the diagram below shows, the NLE is constructed using two main software systems: Zope and PHP. Although Zope generates about 95% of the NLE’s content, PHP is used for the more advanced programming involved in the NLE’s Computer-Assisted Assessment (CAA) and discussion forum sub-systems. Zope can be called directly through its own web serving software (ZServer), however, to utilise PHP as well the NLE uses Apache with specific re-write rules setup to redirect requests as appropriate onto ZServer.

[image: image1.png]
Zope

Advantages

· Free, free, free!

· High level

· Multi-platform (Windows 95/98/2000, Linux, UNIX)

· Sophisticated authentication

· Extendable (add in new ‘Products’)

· Scalable (web farms)

· Open Source

Disadvantages

· Bugs

· Illogical naming conventions in parts

· Lack of documentation (getting better though)

· Not-MS

Web-based editing system

All operations in Zope are handled through a web front-end (see below). His has the advantage that developers can log in from any machine, home or work, to alter sites. It also proves advantageous when encountering bugs with users in the field. Simple bugs can be fixed by the developer just by logging in using a locally available web browser. The web front-end also makes it totally multi-platform including exotic systems such as BeOS not traditionally catered for in web development systems.

[image: image2.png]
Acquisition

Zope uses special <dtml-var> tags to dynamically acquire the content of another object. After the lookup has been completed the whole <dtml-var> tag is replaced by the contents of the object being referenced. For example, on line 1 the tag <dtml-var standard_html_header> will pull in all 8 lines from the second code listing below. This in-line code replacement is all handled by ZServer at the back-end, the client web browser receives nothing but plain HTML. This is very similar to server-side includes.

index_html (DTML Document)

<dtml-var standard_html_header>

<h2><dtml-var title_or_id></h2>

<p>

This is the <dtml-var id> Document.

</p>

<dtml-var standard_html_footer>

standard_html_header (DTML Document)

<!DOCTYPE html

 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "DTD/xhtml1-transitional.dtd">

<html>

<head>

<title><dtml-var title_or_id></title>

</head>

<body style="background-color: white">

standard_html_footer (DTML Document)

<div align="right">Copyright 1999-2001 University of Nottingham</div>

</body>

</html>

As the above code examples show, acquisition can work within other acquired objects (i.e. nested acquisition). The browser initially calls a page with the ID index_html. This in turn acquires the contents of standard_html_header. However, within standard_html_header there is a further call to <dtml-var title_or_id>. This is not the title or ID of the current Zope object (i.e. standard_html_header), but is the title or ID of the calling object, in this case index_html. This makes it possible to use header type objects with a large number of calling objects and in each case to dynamically lookup a different title or ID.

Anytime/Anyplace Acquisition

One important aspect of the way Zope acquires objects is that it will search the current directory first for the relevant object ID and if it can’t find the object it will move up a directory and repeat the process. It will carry on doing this all the way to the root directory before reporting an error if it can’t find the relevant object. Local object IDs also override IDs from parent directories. This could be used, for example, to allow all documents to call a standard header object with the same ID, but then to include different headers at various levels in the hierarchy. A header could be used at the overall homepage and then separate ones for each department or course. If an object relying on one of these headers was moved to a different directory then it would automatically pick up the new header from its own directory without breaking. Another good example of this technique is to include a copyright notice in a footer object and then to call it from every page. Instead of having to specify convoluted paths depending upon the page’s position in the hierarchy, a simple call such as <dtml-var standard_html_footer> will find standard_html_footer at any level between the calling page object and the root.

Database Integration

Database integration is one of Zope’s main strengths. After installing Zope initially you will need a Database Adaptor (DA) for the database system you wish to interface with. There are a number available including: MySQL, Oracle, Informix, SAP, Postgres, Sybase, Microsoft Jet (Access) and a generic ODBC connection.

After correctly installing a database adapter you can select ‘Z MySQL Database Connection’ (in the case of MySQL) from the drop down list box in the top right of the screen. On the next screen enter an ID for the object (e.g. addressdb) and then enter the database name in the connection string field. This usually takes the form of ‘databasename@localhost’.

With a connection established between Zope and the MySQL database, it is time to create some SQL scripts. Assuming the database is empty, we want to use Zope to create a web front-end to add some new records. To do this select a new ‘Z SQL Method’ from the new object list. Select the database connection object from the drop down list next to ‘Connection ID’. Give it an ID and enter the SQL query into the ‘Query Template’ text area at the bottom. The ‘title’ field can be left blank. Next click ‘Add and Test’ to see if the query works.

[image: image3.png]
To confirm that some data has been put into the database we can write another query to view the data. Go through the same process of creating another new Z SQL Method, this time give it the ID list_addresses. In the Query Template enter:

SELECT *

FROM addresses

However, the code in our add_address object is somewhat limited, being as it is set to Mr George W. Bush. What would be much better is some way of giving it some dynamic parameters. To do this click on the add_address object for editing. In the edit screen enter ‘title firstname surname’ into the ‘Arguments’ field and alter the ‘Query Template’ to read:

INSERT INTO addresses (title, firstname, surname)

VALUES (<dtml-sqlvar title type=string>,<dtml-sqlvar firstname type=string>,<dtml-sqlvar surname type=string>)

Each <dtml-sqlvar> tag will cause Zope to look up one of the corresponding parameters. When you click on the ‘Test’ tab you should now see three text input boxes, one for each of the parameters (see below):

[image: image4.png]
Now that we have a way of dynamically inserting values into the various fields of the database, it is possible to build a web form to allow end-users to input values from their browser. To do this create a new ‘DTML Method’ object and enter the following code:

input_new_address (DTML Method)

<dtml-var standard_html_header>

<h2><dtml-var document_title></h2>

<form method="get" action="makeNewUser">

<p>Title:

<select name="users_title" size="1">

<option value="Dr">Dr</option>

<option value="Mr">Mr</option>

<option value="Mrs">Mrs</option>

<option value="Miss">Miss</option>

<option value="Ms">Ms</option>

<option value="Professor">Professor</option>

</select>

</p>

<p>Firstname: <input type="text" name="firstname" size="30"></p>

</p>Surname: <input type="text" name="surname" size="30"></p>

<p><input type="submit" name="submit" value="Add" /></p>

</form>

<dtml-var standard_html_footer>

makeNewUser (DTML Document)

<dtml-var standard_html_header>

<dtml-call "add_address(title=title,firstname=firstname,surname=surname)">

<p>New person added!</p>

<dtml-var standard_html_footer>

The code in input_new_address should be pretty familiar HTML with the addition of acquired header and footer objects. It has an HTML form with a drop down list for the title and two text input boxes for firstname and surname to be entered. When the user clicks on the ‘Submit’ button the form sends, using the ‘Get’ method, all the entered data to the Zope object makeNewUser. This second object is where the add_address SQL Method is called (see 3rd line in red) with the relevant parameters. The 4th line then just prints a simple message to the browser screen saying ‘New person added!’.

Authentication

Developer Authentication

The NLE effectively uses two types of authentication within Zope. The first is a very small number of usernames reserved for the system developers. This stops the general public from entering the development parts of Zope and changing the site. It also allows a development team to specify who owns a file and what permissions they give to other developers.

User Authentication

The more important part of authentication for the NLE is the identification and subsequent authorisation of staff and students. This is done through a ‘product’ (see Product section below) called UserDB. What this product does is to handle authentication requests received and generated by Zope and looks users up in a MySQL database. This allows very easy addition and deletion of user records. The user database is also shared with the CAA and discussion forum sub-systems written in PHP.

The structure of the authentication database table in MySQL is:

+----------+-------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+----------+-------------+------+-----+---------+-------+

| password | varchar(15) | YES | | NULL | |

| grade | varchar(30) | YES | | NULL | |

| homepage | text | YES | | NULL | |

| surname | varchar(30) | YES | | NULL | |

| initials | varchar(5) | YES | | NULL | |

| title | varchar(12) | YES | | NULL | |

| username | varchar(15) | | MUL | | |

| email | varchar(40) | YES | | NULL | |

| roles | varchar(10) | YES | | NULL | |

+----------+-------------+------+-----+---------+-------+

Using the UserDB and some appropriate properties this table is called and the username/password checked. In return it sends back the contents of the ‘roles’ field for that user. Currently this is just ‘Staff’ or ‘Student’. However, once in Zope the ‘security’ tab of each object is then used to control authentication and access rights. ‘View’ is effectively the most important permission. To switch authentication on all you need to do is uncheck the ‘Anonymous’ role and to check ‘Staff’ and ‘Student’.

[image: image5.png]
To create a staff only part of the NLE, for example, file upload areas, the developer checks the ‘Staff’ role and unchecks ‘Student’. For objects that can contain children, such as folders, the permissions may be inherited. The ‘Acquire permission settings’ column on the left controls whether the current object will inherit the security settings of its parents or instead use its own specific settings.

Thus far, this has been quite course-grain authentication at the page level. However, it is also possible to do finer permissions. For example, on the main NLE homepage there is a set of links including separate FAQs for staff and students. To dynamically control which FAQ link is inserted depending upon whether the current user is a member of staff or a student, the following code can be used:

<dtml-if "REQUEST['AUTHENTICATED_USER'].has_role('Student')">

NLE Student FAQ

<dtml-else>

NLE Staff FAQ

</dtml-if>

It uses a basic ‘IF’ statement to check firstly whether the authenticated user has a role of ‘Student’. If this is true then the second line of plain HTML is sent to the browser. If not (i.e. ‘Staff’) then the line of code after the <dtml-else> is displayed. The whole block is then ended by the closing </dtml-if> statement.

Products

One of the ways to easily extend the functionality of Zope is to find a ‘product’ that has been created by someone else to solve a particular problem. UserDB is an example of a product that we have already covered. Another excellent product is called Local File System. Normally, any file that a developer wishes to place on the web has to go inside public_html on a UNIX server. However, by using Local File System, Zope can make visible various other parts of the UNIX file system. By setting the appropriate security permissions this is a easy way of forcing users to authenticate before viewing files.

To create access to a directory select Local File System from the new objects drop down list. On the next screen (see below) give it an object name (e.g. resources) and then set the ‘Base Path’ to the required path in UNIX.

[image: image6.png]
Once the Local File System object has been created, links to files within that directory can be made by adding together part of the Zope path with part of the UNIX path. For example, in the NLE the Local File System is called resources and sits in the /nle folder. Next imagine there is a file in the UNIX directory with the full path: /home/brzsw/online_resources/ABiol1/cell_structure_and_function.doc. Since Local File System already maps onto the /home/brzsw/online_resources/ part of the desired file, a link within Zope would point to /nle/resources/Abiol1/cell_structure_and_function.doc.

To restrict access to authenticated users only we need to click on the ‘Security’ tab of the Local File System object. The ‘View’ permission is the most important. Uncheck the ‘acquire permission settings’ and importantly uncheck ‘Anonymous’ and make sure that the ‘Owner’, ‘Staff’ and ‘Student’ are checked.

[image: image7.png]
Versions

One of the problems that affects the NLE, as with any heavily-used web site, is that there are very few periods when no-one is on the system. The NLE receives hits 24 hours/7 days a week throughout the year. This pattern of access provides developers with the problem of how to change the web site without upsetting users with downtime, broken-links, etc. The solution in Zope is to use what are called ‘Versions’. A version acts like a non-live copy of the entire site. The developer can perform as many changes within the version as he or she wishes without affecting end-users viewing/using the ‘normal’ site. To use versions you must create a new version object from the drop down list of objects in the top right of the screen. Enter an ID for this version object (e.g. prototype) and give it a title (optional).

[image: image8.png]
After the version has been created, to start working in it, click on it (red diamond icon). On the next screen click on the button marked ‘Start working in Prototype test version’. You should receive a confirmation screen that you are now working in this version. From here you can move to and perform any ‘normal’ Zope operation without affecting the main ‘live’ view. At the end of the changes click back on the version object and then click on the ‘Save/Discard’ tab at the top of the screen:

[image: image9.png]
If you are happy with all the alterations made to the site while in the version then click on ‘Save’, if you want to clear all the version alterations then click ‘Discard’.

Multi-level undo system

In addition to the version object covered above, Zope also has a multi-level undo system in case of mistakes. When inside an object, click on the ‘Undo’ tab to reveal the screen below. Each alteration to the object is recorded with the userID of the developer who made the change and the time/date the change was made. To undo an action or series of actions all you need to do is select the check boxes at the side (most recent alteration is at the top) and then select the ‘Undo’ button at the bottom of the screen. However, there is no redo system so be careful!

[image: image10.png]
Extensibility using Python

One of the problems with any high-level development environment is what happens when you run up against the inherent limitations of the system. In Zope’s case, you can extend its functionality by calling Python routines. Zope is built on top of Python anyway, so extending into Python is quite seamless.

An example of when the NLE calls upon Python is its search routine. To allow students to include boolean search expressions the NLE Project Officer wrote two Python scripts to facilitate the relevant parsing. The same <dtml-var> acquisition tags are used that we met earlier. Each is called before the overall SQL query is executed by the database.

SELECT parent_sequence, id, thetag, sequence, parent, <dtml-var "highlight_query(original_query=keywords)">, tag_id, header, guideID

FROM element

WHERE <dtml-var "parse_query(query=keywords)">
AND NOT (thetag='meta')

ORDER BY sequence

highlight_query (Python)

query = _.string.split(original_query,' and ')

new_query = []

for a in query:

 new_query = new_query + _.string.split(a,' or ')

query_string = "REPLACE(content, '" + new_query[0] + "', '" + new_query[0] + "')"

for b in new_query[1:]:

 query_string = "REPLACE(" + query_string + ", '" + b + "', '" + b + "')"

query_string = query_string + " AS content"

return query_string

parse_query (Python)

query = _.string.lower(query)

query = "(LCASE(content) RLIKE '[[:space:][:punct:]]" + query + "[[:space:][:punct:]]'"

query = _.string.replace(query," and not ","[[:space:][:punct:]]') AND NOT (LCASE(content) RLIKE '[[:space:][:punct:]]")

query = _.string.replace(query," but not ","[[:space:][:punct:]]') AND NOT (LCASE(content) RLIKE '[[:space:][:punct:]]")

query = _.string.replace(query," and ","[[:space:][:punct:]]') AND (LCASE(content) RLIKE '[[:space:][:punct:]]")

query = _.string.replace(query," or ","[[:space:][:punct:]]') OR (LCASE(content) RLIKE '[[:space:][:punct:]]")

query = query + ")"

return query

PDA

Accessibility of the NLE is one of the central aims of the project due to the distributed pattern of learning at various teaching hospitals. With the recent fall in the price of handheld PDAs, the NLE Project Officer was interested in how well Zope could support the creation of a specialised PDA version of the NLE. With a resolution of 240x320 on Pocket PC devices and 160x160 on Palm/Handspring Visor models, the decision was taken that it would not be sensible to squeeze the existing ‘desktop’ design into a PDA. Instead, of one badly fitting desktop and PDA site, it was thought better to develop two optimised versions. To do this new ‘desktop’ and ‘pda’ folders were first created inside Zope then the structure of the NLE was analysed and a smaller design created. This was accomplished by turning what was effectively a two level hierarchy into four levels. The desktop NLE uses a portal-style homepage with courses, news, timetable and web link information. This page then links to the course pages underneath. To generate ‘Pocket NLE’ each one of these parts (course, news, timetable, etc) was split up and given its own screen. A new homepage was then create with icons linking these separate pages. The other change that resulted was the separation into another two levels the original framed interface of each course. Now one screen is used for the table of contents and another for the body text.

[image: image11.png]
[image: image12.png]
‘Pocket NLE’ homepage

[image: image13.png]
Year 1 courses

[image: image14.png]
Timetable

Although the Pocket PC operating system comes with Pocket Internet Explorer as standard, the browser only accepts HTML 3.2, not the recent XHML. To solve this problem the NLE uses separate Zope objects to render XHTML to the desktop and HTML 3.2 to PDAs. However, because it is querying the same underlying timetable and news databases, any changes are automatically reflected in both sites. This dynamic creation saves an enormous amount of maintenance time between the two versions.

WAP

Serving WAP from Zope is remarkable simple. Initially you need to add the relevant mimetypes to Apache’s httpd.conf:

AddType text/vnd.wap.wml .wml

AddType text/vnd.wap.wmlscript .wmlc

AddType application/vnd.wap.wmlc .wmlc

AddType application/vnd.wap.wmlcscriptc .wmlsc

AddType image/vnd.wap.wbmp .wbmp

The next important thing is to send the correct DOCTYPE at the start of the WML code (first 3 lines) and then the right header to tell the server what type of content to send. The header can be set in Zope (line 4) by using: <dtml-call "RESPONSE.setHeader('Content-Type', 'text/vnd.wap.wml')">. The rest of the code below shows three cards generating the NLE WAP homepage, Year 1 timetable and Year 2 timetable. A glance down the code will reveal <dtml-in> statements that pull in data from timetable Z SQL Methods. Since all the Zope tags (coloured green) are rendered on the server side, the phone receives nothing put pure WML.

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"

 "http://www.wapforum.org/DTD/wml_1.1.xml" >

<dtml-call "RESPONSE.setHeader('Content-Type', 'text/vnd.wap.wml')">

<wml>

<card id="home" title="NLE">

<p></p>

<p>

<anchor title="Today">

 <go href="#tt1a" />Yr 1 Today

</anchor>

<anchor title="Today">

 <go href="#tt2a" />Yr 2 Today

</anchor>

</p>

</card>

<card id="tt1a" title="Yr 1 Today">

<p><dtml-var ZopeTime fmt=day> <dtml-var ZopeTime fmt=Month>, <dtml-var ZopeTime fmt=year></p>

<dtml-in "nle.desktop.Actors.RENDER.search_todays_sessions(ahead=0,semesterNo=1)">

<p>

 <dtml-var occurance> - <dtml-var location>

 <dtml-if groupid>(<dtml-var groupid>)</dtml-if><dtml-var class_code>: <dtml-var title>
</p>

<dtml-else>

 <p>No classes today.</p>

</dtml-in>

<p>

<anchor>Homepage

<prev />

</anchor>

</p>

</card>

<card id="tt2a" title="Yr 2 Today">

<p><dtml-var ZopeTime fmt=day> <dtml-var ZopeTime fmt=Month>, <dtml-var ZopeTime fmt=year></p>

<dtml-in "nle.desktop.Actors.RENDER.search_todays_sessions(ahead=0,semesterNo=3)">

<p>

 <dtml-var occurance> - <dtml-var location>

 <dtml-if groupid>(<dtml-var groupid>)</dtml-if><dtml-var class_code>: <dtml-var title>
</p>

<dtml-else>

 <p>No classes today.</p>

</dtml-in>

<p>

<anchor>Homepage

<prev />

</anchor>

</p>

</card>

</wml>

The above code generates the following WAP cards (or screens).

[image: image15.png]
[image: image16.png]
[image: image17.png]
WapIDE, available for free download from the Ericsson website (www.ericsson.com), is an excellent piece of software. It runs as an MS Windows program and shows a visual representation of a WAP phone (see right) and connects to any WAP site using a standard Internet connection on the desktop. Using this saves a large amount of money since you do not actually need a real WAP phone while developing, only for final testing right at the end of the project.

For those who have not done any WML programming I would strongly recommend buying a book. WML is not a subset of HTML! For example, graphics are different. Instead of GIFs and JPEGs, WAP sites must use the new WBMP format. There is a free plug-in for PaintShop Pro and Photo Shop (http://www.rcp.co.uk/distributed/Downloads):

[image: image18.png]

[image: image19.png]
As with nearly all web site design, knowing how to design a site from a technical perspective is not sufficient to ensure that it will be usable for students. Jakob Nielsen’s Alertbox on WAP field study is worth reading: http://www.useit.com/alertbox/20001210.html. In essence he claims that most WAP sites fail because there is a fundamental mismatch between what he called the information architecture (the WAP site structure) and the user’s task at hand. With screens as small as 96x96 pixels and only 5 or less lines available, the challenge for designers is to work out what the user wants from the WAP service, not how to prune the desktop website into a WAP version.

1
5

