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Calculus (MATH1006) is a first year Core module. This document will help to bridge the gap from A level
to University Mathematics. In these chapters, we will go over preliminary details in order to prepare you
for some of the topics you will face this academic year. There are questions throughout this document
with video links explaining the solutions.
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1 Introduction definitions
This first chapter will offer some initial information, including standard definitions and where they apply.
This information may not be new to you but will hopefully serve as a useful reminder.

• Domain of a function: The domain of a function represents the set of all inputs.

• Range of a function: The range is the set of outputs obtained when every element of the domain
is acted on by the function.

• One-to-Many: This is where an input can be mapped to more than one output. E.g. y =
√
x is

one-to-many when defined across all real numbers, positive and negative (and zero). This is because
x = 4 gives us both y = 2 and y = −2.

• Many-to-Many: This is where an input can be mapped to multiple outputs and outputs can be
obtained from more than one input.

A function specifically can be:

• One-to-One: This is where each input is mapped to a unique output. Note that these are the only
kind of functions that can be inverted. (see page 6).

• Many-to-One: This is where different inputs can be mapped to the same output. E.g. y = x2,
since x = 3 and x = −3 both give y = 9.

A Function is where each input only has one output; i.e. One-to-One or Many-to-One.

• Independent Variables: This is the input value for a function, it can be chosen freely and is there-
fore independent of other values. If the relationship is represented on a graph this value is on the x
axis.

• Dependent Variables: This is the output value for a function, it is calculated from the input value
and is therefore dependent on the input value. If the relationship is represented on a graph this value
is on the y axis.

E.g. Let y = f(x). x is the independent variable and y is the dependent variable (since y depends
on x).
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2 Hyperbolic functions

2.1 Introduction
Hyperbolic functions are similar to trigonometric functions; they are derived from the exponential defini-
tions and share many of the properties they hold. We define the following hyperbolic functions in terms of
the exponential function as follows:

sinh(x) =
ex − e−x

2
. (1)

cosh(x) =
ex + e−x

2
. (2)
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Figure 1: Graphs of sinh(x) and cosh(x)

Above, we have a sketch of the hyperbolic sine and cosine (sinh and cosh respectively).

Odd and even functions are defined as follows:

Even functions: f(x) = f(−x) (i.e. symmetric about the y-axis)
Odd functions: f(x) = −f(−x) (i.e. has rotational symmetry about the origin)

Note that y = cosh(x) is an even function passing through (0,1) (like y = cos(x)) and y = sinh(x) is an
odd function passing through (0,0) (like y = sin(x)).

The following identity is useful when working with hyperbolic functions.

cosh2(x)− sinh2(x) = 1 (3)

Notice how this is similar to the trigonometric identity sin2(x) + cos2(x) = 1.
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We now introduce the hyperbolic tangent function. The definition of tanh(x) can be derived from sinh(x)
and cosh(x). (in a similar way that tan(x) can be derived from sin(x) and cos(x)).

tanh(x) =
sinh(x)

cosh(x)
=

ex − e−x

ex + e−x
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Some other useful hyperbolic functions are listed below:

f(x) Exponential form

sech(x) = 1
cosh(x)

2
ex+e−x

cosech(x) = 1
sinh(x)

2
ex−e−x

coth(x) = 1
tanh(x)

ex+e−x

ex−e−x
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Below are the standard results from differentiating and integrating sinh(x) and cosh(x).

Derivatives:
d

dx
sinh(x) = cosh(x)

d

dx
cosh(x) = sinh(x)

Integrals: ∫
cosh(x)dx = sinh(x) + C∫
sinh(x)dx = cosh(x) + C

It is easy to prove these standard integration and differentiation results from the exponential definitions.

Example 1: Find all real solutions to the equation 10cosh(x)− 2sinh(x) = 11.

We start by substituting the exponential definitions for sinh(x) and cosh(x) from (1) and (2).

10( e
x+e−x

2 )− 2( e
x−e−x

2 ) = 11 =⇒ 5(ex + e−x)− (ex − e−x) = 11

4ex + 6e−x − 11 = 0

We then multiply through by ex to get:

4e2x − 11ex + 6 = 0

Set y = ex and factorise:
4y2 − 11y + 6 = 0

(4y − 3)(y − 2) = 0

=⇒ y = 3/4 or y = 2

Finally substitute y = ex and solve for x:

ex = 3/4 or ex = 2
=⇒ x = ln( 34 ) or x = ln(2)

Questions:

1. Find all the real solutions of these equations.

(a) cosh(x) + 2 sinh(x) = −1

Link to solution

(b) 2 cosh(2x) + 10 sinh(2x) = 5

2. Using the exponential definitions prove that:

(a) cosh2(x)− sinh2(x) = 1

Link to Solution

(b) sinh(2x) = 2 sinh(x) cosh(x)

Link to Solution
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3. Differentiate each of the following with respect to x.

(a) y = 2 sinh(x) cosh(2x)

Link to Solution

(b) (1 + x)3 cosh3(3x)

Link to Solution

4. Integrate each of the following with respect to x.

(a) cosh(2x)− 3 sinh(x)

Link to Solution

(b) sinh(x)
1+cosh(x)

Link to Solution

2.2 Inverse hyperbolic functions
Inverse hyperbolic functions are used in integration in similar ways to inverse trigonometric functions.

The cosh function is a many-to-one function, since more than one value of x can yield the same value of
y. However if we restrict the domain of cosh(x) to [1,∞) then the function is one-to-one, meaning we can
define the inverse arccosh(x). Since the sinh and tanh functions are one-to-one there is no need for any re-
strictions when defining their inverse functions arcsinh and arctanh.

Function Domain Range
arcsinh(x) (−∞,∞) (−∞,∞)
arccosh(x) [1,∞) [0,∞)
arctanh(x) (−1, 1) (−∞,∞)

To find the derivatives of inverse hyperbolic functions, we use implicit differentiation as follows:
Noting the condition that a > 0, we have

y = arcsinh(
x

a
) =⇒ sinh(y) =

x

a

d

dx
sinh(y) =

d

dx

x

a

cosh(y)
dy

dx
=

1

a
(4)

Using the identity (3)
cosh2(x)− sinh2(x) = 1

we get:

cosh(y) =

√
1 + sinh2(y) (5)

Thus by substitution of (5) into (4):

dy

dx
=

1

a cosh(y)
=

1

a
√
1 + sinh2(y)

=
1√

a2 + a2 sinh2(y)
=

1√
a2 + x2

.
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The following standard results can be obtained in the same way, where a > 0.

f(x) f ′(x)

arcsinh(xa )
1√

a2+x2

arccosh(xa )
1√

x2−a2

arctanh(xa )
a

a2−x2

We also get the corresponding integration results for a > 0.

f(x)
∫
f(x)dx

1√
a2−x2

arcsin(xa ) + C, for (|x| < a)

a
a2+x2 arctan(xa ) + C

1√
a2+x2

arcsinh(xa ) + C

1√
x2−a2

arccosh(xa ) + C, for (x > a)

1
a2−x2 ( 1a ) arctanh(

x
a ) + C

Questions:

1. Find

(a)
∫

1√
4+x2

dx

Link to Solution

(b)
∫

1√
9−x2

dx

Link to Solution

(c)
∫

1√
x2−4x+8

dx

Link to Solution

(d)
∫

x2
√
x6−1

dx (HINT: Substitute u = x3)
Link to Solution
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3 Differential equations
The derivative of a function is the rate by which the values of the function change as the independent
variable changes. An ordinary differential equation is a relationship between a function and the function’s
derivatives. The order of a differential equation is the highest power derivative of the dependent variable.

Example 1: A first order differential equation

dy

dx
= xy2.

Example 2: A second order differential equation

d2y

dx2
+ 3

dy

dx
+ y = x2.

Below, is an example of a higher order differential equation:

d43y

dx43
+ 4

d20y

dx20
= 14x.

The order of the above differential equation is 43.

3.1 First order differential equations
In this section we will solve first order differential equations using different methods.

3.1.1 Separation of variables

Suppose a first order differential equation can be written in the form:

dy

dx
= f(x)g(y), (6)

then we can use the separation of variables method to solve the differential equation, where f(x) de-
pends only on x and g(y) depends only on y.

If g(y) ̸= 0 then we can separate the variables by dividing both sides by g(y) and multiplying both sides
by dx. ∫

1

g(y)
dy =

∫
f(x)dx (7)

When you have rearranged to this form, you can integrate both sides.

Example 3: Consider the first order differential equation

dy

dx
= 3xy.

Here f(x) = 3x and g(y) = y.

If y ̸= 0, we can divide by g(y), obtaining∫
1

y
dy =

∫
3x dx =⇒ ln(|y|) = 3

2x
2 + c =⇒ |y| = e

3
2x

2+c = ece
3
2x

2

=⇒ y = ±ece
3
2x

2

=⇒ y = Ae
3
2x

2

.
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Where A = ±ec is an arbitrary non-vanishing constant.

If y = 0, we cannot divide by g(y), but a direct substitution in the original differential equation shows that
the constant function y(x) = 0 is a solution.
Combining the outcomes of the y ̸= 0 and y = 0 cases, the general solution can be conveniently written as

y = Ae
3
2x

2

,

where now A is an arbitrary constant: the solutions with y ̸= 0 are recovered for A ̸= 0 and the solution
y = 0 is recovered for A = 0.

3.1.2 Integrating factor

Suppose a first order differential equations can be written in the form:

dy

dx
+ P (x)y = Q(x). (8)

Where P (x) and Q(x) are functions of one variable (x). In this case, we cannot use separation of vari-
ables. This is because we can’t rearrange the equation into the form of (6).
Instead, we use the integrating factor method. This is carried out in the following steps:

1. Find the integrating factor, which is e
∫
P (x)dx;

2. Multiply the equation by the integrating factor;

3. Notice the left hand side of the equation is the result of a product rule application (see examples be-
low and videos if confused);

4. Integrate on both sides and solve for y.

Recall the formula for the product rule: d
dx (uv) = v du

dx + u dv
dx .

Also note that this method can only be carried out once the differential equation has been rearranged into
the form of (8).

Example 4: Consider

dy

dx
+

y

x
=

2

x3
.

P (x) = 1
x by direct comparison with (8), so the integrating factor is:

e
∫
P (x)dx = e

∫
1
xdx = eln |x| = x.

Following step 2, multiply the equation through by the integrating factor (x) to give:

x
dy

dx
+ x

y

x
= x

2

x3
,

x
dy

dx
+ y =

2

x2
. (9)

Notice that the left hand side of (9) looks like the result of a product rule application. We now recall the
product rule formula. In this example, u = x (hence du

dx = 1) and v = y (hence dv
dx = dy

dx ).

d

dx
(xy) = x

dy

dx
+ y =

2

x2
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We integrate ∫
d

dx
(xy) dx =

∫
2

x2
dx

Notice that the left hand side is the integral of a derivative, so they cancel each other out. This gives

xy =

∫
2

x2
dx =⇒ xy = − 2

x
+ C.

To give the general solution

y = − 2

x2
+

C

x
,

where C ∈ R.

Example 5: Consider

x
dy

dx
+ 2y = 10x2.

First, we rearrange the differential equation into the form of (8).

x
dy

dx
+ 2y = 10x2 =⇒ dy

dx
+

2

x
y = 10x.

Now it is in the correct form, we find the integrating factor:

P (x) =
2

x
=⇒ e

∫
2
xdx = e2ln|x| = x2.

Multiply through by the integrating factor (x2) to get:

x2 dy

dx
+ 2xy = 10x3.

Looking at the equation we can see that the left hand side looks like the result of product rule application.

d

dx
(x2y) = 10x3,

x2y =

∫
10x3 dx,

x2y =
10

4
x4 + C.

To give the general solution of

y =
5

2
x2 +

C

x2
.

3.2 Second Order Differential Equations
We now consider second order differential equations that can be written in the form:

a
d2y

dx2
+ b

dy

dx
+ cy = f(x), (10)

where a, b and c are real valued constants and a ̸= 0.
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3.2.1 Homogeneous equations

If f(x) = 0 then the second order differential equation is homogeneous.
We start by substituting our trial function y = Aemx where A and m are undetermined constants and
A ̸= 0 because this gives the trivial solution y(x) = 0.

We find the first and second derivatives of our trial function to give us:

y = Aemx =⇒ dy

dx
= Amemx =⇒ d2y

dx2
= Am2emx

We then substitute these results into (10).

Aemx(am2 + bm+ c) = 0 =⇒ am2 + bm+ c = 0

since emx ̸= 0.

This is known as the auxiliary equation:

am2 + bm+ c = 0. (11)

We can solve this like a normal quadratic to find the roots of the equation m1 and m2. Looking at the dis-
criminant of the auxiliary equation, we can find which general case we are working with; this then allows
us to find the general solution (see below for each case and examples).

General solution’s for each case:

Case 1 - Real distinct roots: b2 − 4ac > 0
In this case, the auxiliary equation (11) will have two real roots m1 and m2.
The general solution is in the form y = Aem1x +Bem2x, where A, B ∈ R.

Case 2 - Repeated roots: b2 − 4ac = 0
In this case, the auxiliary equation will have one repeated root where m1 = m2 = m.
The general solution is in the form y = (A+Bx)emx, where A, B ∈ R.

Case 3 - Complex roots:- b2 − 4ac < 0
In this case, the auxiliary equation will have two complex roots m1 and m2.
The roots will be a complex conjugate pair in the form m1 = α + βi and m2 = α − βi (See the Linear
document for more on complex numbers).
The general solution is in the form y = Aem1x + Bem2x. This can also be written as y = eαx(A cos(βx) +
B sin(βx), where A, B ∈ R.

Example 7: Consider
d2y

dx2
+ 5

dy

dx
+ 6y = 0.

From this we have the auxiliary equation below as a = 1, b = 5 and c = 6,

m2 + 5m+ 6 = 0,

a = 1, b = 5, c = 6 =⇒ b2 − 4ac = 52 − 4(1)(6) = 1 > 0.

This is case 1 as b2 − 4ac > 0. The general solution for this case is:

y = Aem1x +Bem2x.

11



Now solve the auxiliary equation by factorisation

m2 + 5m+ 6 = 0 =⇒ (m+ 3)(m+ 2) = 0.

This gives us roots

m1 = −3 and m2 = −2,

to give the general solution
y = Ae−3x +Be−2x.

Example 8: Consider

d2y

dx2
− 4

dy

dx
+ 9y = 0.

We can identify a = 1, b = −4 and c = 9 to give the auxiliary equation:

m2 − 4m+ 9 = 0.

a = 1, b = −4, c = 9 =⇒ b2 − 4ac = (−4)2 − 4(1)(9) = −20 < 0.

This is case 3 as b2 − 4ac < 0. The general solution for this case is:

y = Aem1x +Bem2x,

where we have the roots in the form m1 = α+ βi and m2 = α− βi.

To solve the auxiliary equation, use the quadratic formula or completing the square (remembering these
roots will be complex)

m2 − 4m+ 9 = 0 =⇒ (m− 2)2 = −9 =⇒ m− 2 = ±3i =⇒ m = 2± 3i

=⇒ m1 = 2 + 3i, m2 = 2− 3i

To give the general solution
y = Ae(2+3i)x +Be(2−3i)x

Which can also be written in the form

y = e2x(A cos(3x) +B sin(3x)).
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3.2.2 Inhomogeneous Equations

a
d2y

dx2
+ b

dy

dx
+ cy = f(x). (12)

If f(x) ̸= 0 then the second order differential equation is inhomogeneous. As f(x) ̸= 0 solving this
differential equation is a bit more involved.
We can solve equations in the same form as (12) using the following steps:

1. Set the right hand side equal to 0 (we now have a d2y
dx2 + b dydx + cy = 0).

2. Solve the now homogeneous equation using methods from section 3.2.1 to find the general solution.
This is called the complementary function denoted yCF (note that this solution alone does not solve
the original inhomogeneous equation).

3. Use a trial function to find a solution to equation (12) that doesn’t involve any constants of integra-
tion. This is called the particular integral denoted yPI (use the table below).

4. The general solution to the second order inhomogeneous differential equation is denoted y = yCF +
yPI .

Below is a table displaying which trial function to use for each possible f(x) (where k, C, D and E are
constants).

f(x) Trial function
k C
kx Cx+D
kx2 Cx2 +Dx+ E

k cos(x) or k sin(x) C sin(x) +D cos(x)
k cosh(x) or k sinh(x) C sinh(x) +D cosh(x)

ekx Cekx

Example 9: Consider

d2y

dx2
+ 5

dy

dx
+ 6y = 3x.

In this example we have already solved the homogeneous equation d2y
dx2 + 5 dy

dx + 6y = 0 and hence found the
complementary function (yCF = Ae−3x +Be−2x). See Example 7 .

We now need to calculate the particular integral. Looking at the right hand side of the inhomogeneous
equation we have f(x) = 3x, therefore we use the trial function Cx+D (as f(x) is in the form kx from the
table). We first work out the derivatives of our trial function; this is so we can substitute into our inhomo-
geneous equation and solve for our constants C and D.

y = Cx+D =⇒ dy

dx
= C =⇒ d2y

dx2
= 0.

We now need to substitute this into the inhomogeneous differential equation

0 + 5(C) + 6(Cx+D) = 3x =⇒ (6Cx) + (5C + 6D) = 3x.

13



By comparing coefficients, we know that 1○ 6Cx = 3x and 2○ 5C + 6D = 0,

∴ C =
1

2
,

and substituting the value of a into 2○

5
(
1
2

)
+ 6D = 0 =⇒ D = − 5

12
.

The trial function is y = Cx+D =⇒ yPI = 1
2x− 5

12 . We know the general solution to the inhomogeneous
equation is in the form y = yCF + yPI :

y = Ae−3x +Be−2x +
1

2
x− 5

12
.

Example 10: Consider

d2y

dx2
+ 5

dy

dx
+ 6y = e−3x.

This example is similar to example 7 but demonstrates this special case.

From Example 7 we have that yCF = Ae−3x + Be−2x is the complementary function for the inhomoge-
neous equation.

The structure of the trial function should be Ce−3x as f(x) = e−3x. However, because this trial function,
(Ce−3x), is in the same form as one of the terms of our complementary function (Ae−3x) we can’t use this
as it will fail - we encourage you to try show that this case does not work. Instead, we have to multiply
this trial function by the independent variable x (now our trial function is Cxe−3x). As Cxe−3x is not in
the same form as a term in the complementary function we can use this as our trial function.

In the case where this form is also in the complementary function we would multiple by x again and again
until there was a form that isn’t in the complementary function. Luckily this is not the case on this exam-
ple so we can just use Cxe−3x.

We work out the first and second order derivatives of our trial function. This is so we can substitute into
the inhomogeneous equation and solve for our constant C.

y = Cxe−3x,

dy

dx
= Ce−3x − 3Cxe−3x,

d2y

dx2
= −3Ce−3x − 3Ce−3x + 9Cxe−3x.

Substitute into the inhomogeneous second order differential equation:

−3Ce−3x − 3Ce−3x + 9Cxe−3x + 5(Ce−3x − 3Cxe−3x) + 6(Cxe−3x) = e−3x,

−Ce−3x = e−3x =⇒ C = −1,

yPI = −xe−3x is the particular integral.

14



Hence the general solution to Example 10 is

y = Ae−3x +Be−2x − xe−3x.

In the special case where the trial function is in the same form as a term in the complementary function,
follow the below steps in order to find an alternative trial function:

1. Find the trial function

2. Check the trial function is not contained in the complementary function yCF

(a) If contained, we move to step 3

(b) If not contained, continue with the method as normal, and find the particular integral

3. Multiply the trial function by the independent variable (typically x) and repeat step 2.

15



Questions

1. Using the method of separation of variables workout the general solution to the following first order
ODE’s:

(a) dy
dx = x

y .
Link to Solution

(b) dy
dx = 8xy.
Link to Solution

(c) 3 dy
dx = xy4.

Link to Solution

2. Using the integrating factor method, workout the general solution to the following first order ODE’s:

(a) dy
dx + 3xy = 5

Link to Solution

(b) dy
dx + 7x2y = 6

Link to Solution

(c) 3x dy
dx + 6x2y = 24x

Link to Solution

3. Find the general solution to the following first order homogeneous ODE’s:

(a) d2y
dx2 + 5 dy

dx + 6y = 0

Link to Solution

(b) d2y
dx2 + 2 dy

dx + 4y = 0

Link to Solution

(c) d2y
dx2 + 4 dy

dx + 5y = 0

Link to Solution

(d) d2y
dx2 + 6 dy

dx + 9y = 0

Link to Solution

4. Find the general solution to the following second order inhomogeneous ODE’s:

(a) d2y
dx2 + 4 dy

dx + 5y = 3x

Link to Solution

(b) d2y
dx2 + 6 dy

dx + 9y = 4e−3x

HINT: Refer to the special case section and example on page 14
Link to Solution
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4 Taylor series and Maclaurin series
Polynomial functions are easy to work with. Therefore it is preferable to use them as approximations to
more complicated functions. Let f be a function that is differentiable infinitely many times at a point a.
The derivatives of the function f at a point a can be used to construct a polynomial approximation to the
function.

The Taylor series about a for f is :

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 +

f3(a)

3!
(x− a)3 + ...+

fn(a)

n!
(x− a)n + ... (13)

The point a is called the centre of the Taylor series.

When a = 0, the Taylor series becomes

f(x) = f(0) + f ′(0)x+
f ′′(0)

2!
x2 +

f3(0)

3!
x3 + ...+

fn(0)

n!
xn + ...

This is known as the Maclaurin series for f .

It is useful to know and recognise the following standard Maclaurin series:

ex = 1 + x+
1

2!
x2 +

1

3!
x3 +

1

4!
x4 + ... (x ∈ R)

sin(x) = x− 1

3!
x3 +

1

5!
x5 − 1

7!
x7 +

1

9!
x9 − ... (x ∈ R)

cos(x) = 1− 1

2!
x2 +

1

4!
x4 − 1

6!
x6 +

1

8!
x8 − ... (x ∈ R)

sinh(x) = x+
1

3!
x3 +

1

5!
x5 +

1

7!
x7 +

1

9!
x9 + ... (x ∈ R)

cosh(x) = 1 +
1

2!
x2 +

1

4!
x4 +

1

6!
x +

1

8!
x8 + ... (x ∈ R)

1

1 + x
= 1− x+ x2 − x3 + x4 + ... (x ∈ (−1, 1))

ln(1 + x) = x− x2

2
+

x3

3
− x4

4
+ ... (x ∈ (−1, 1))

Example 11: Find the first three terms in the Taylor expansion for f(x) = x sin(x) where a = π
2 .

Calculate

f(x) = x sin(x),
f ′(x) = sin(x) + x cos(x),

f ′′(x) = cos(x) + cos(x)− x sin(x) = 2 cos(x)− x sin(x).

We now substitute a = π
2 into (13):

f(x) = x sin(x) = π
2 sin(π2 ) +

(
sin(π2 ) +

π
2 cos(π2 )

)
(x− π

2 ) +
2 cos(π

2 )−π
2 sin(π

2 )

2! (x− π
2 )

2 + ...

We now use the fact that cos(π2 ) = 0 and sin(π2 ) = 1 to get

f(x) = x sin(x) = π
2 + (x− π

2 ) +−π
4 (x− π

2 )
2 + ...
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Questions:

1. Using the Maclaurin expansion show that

(a) e−x = 1− x+ 1
2!x

2 − 1
3!x

3 + ...

Link to Solution

2. Using the Standard Maclaurin expansions find the first three non zero terms of

(a) sin2(x)

Link to Solution

(b) ln( 1+x
1−x )

Link to Solution

(c) excos(x)
Link to Solution

3. Using Taylor series find the first three terms of sin(x+ π
6 ) about a = π

2

Link to Solution

18

https://echo360.org.uk/media/38d639c4-8f05-4333-85c5-4bf2414c316c/public
https://echo360.org.uk/media/9cbfea01-ce8d-44ed-b6ae-c208d558a154/public
https://echo360.org.uk/media/4638cb37-b1e6-42c1-8b43-e46f4ecfc33b/public
https://echo360.org.uk/media/04caeb43-1781-4c93-a3df-3d64e792fd1b/public
https://echo360.org.uk/media/4f660416-5b3f-420c-bb0f-9af059dc33ed/public


5 Solutions to Questions:

5.1 Hyperbolic Functions
1. (a) x = − ln(3)

(b) Real solutions occur when e2x > 0 so
2x = ln( 43 ) =⇒ x = 1

2 ln(
4
3 )

2. (a) See video for solution.

(b) See video for solution.

3. (a) dy
dx = 4 sinh(x) sinh(2x) + 2 cosh(x) cosh(2x)

(b) dy
dx = 3(1 + x)2 cosh2(3x)[3(1 + x) sinh(3x) + cosh(3x)]

4. (a) 1
2 sinh(2x)− 3 cosh(x) + C

(b) ln (1 + cosh(x)) + C

5. (a) arcsinh(x2 ) + C

(b) arcsin(x3 ) + C

(c) Complete the square first
arcsinh(x−2

2 ) + C

(d) 1
3 arccosh(x

3) + C

5.2 Differential equations
1. (a) y =

√
x2 + 2c

(b) y = Ae4x
2

where A = ±ec

(c) y = 3

√
−2

x2+2c

2. (a) y = 5
3x + ce

−3
2 x2

(b) y = 6
7x2 + ce−

7
3x

3

(c) y = 4
x + ce−x2

3. (a) y = Ae−3x +Be−2x

(b) y = e−x(Acos(
√
3x) +Bsin(

√
3x))

(c) y = e−2x(Acos(x) +Bsin(x))

(d) y = (A+Bx)e−3x

4. (a) d2y
dx2 + 4 dy

dx + 5y = 3x

You have already worked out the complementary function to this equation in 3c (yCF = e−2x(Acos(x)+
Bsin(x))). Need to calculate the particular integral (yPI = 3

5x− 12
25 )

=⇒ y = e−2x(Acos(x) +Bsin(x)) + 3
5x− 12

25

(b) d2y
dx2 + 6 dy

dx + 9y = 4e−3x

First need to calculate the complementary function
a = 1, b = 6 and c = 9

(6)2 − 4(1)(9) = 0 =⇒ case 2
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Solve the auxiliary equation
m2 + 6m+ 9 = 0 =⇒ (m+ 3)2 = 0 =⇒ m = −3

Looking at the general solution for this case y = (A+Bx)emx

y = (A + Bx)e−3x. Now need to calculate the particular integral. f(x) = 4e−3x mean the form
of the particular integral should be y = Ce−3x. However, this form is in the complementary
function () therefore multiple by x so the form is now Cxe−3x. However this form is also in the
complementary function (). This means we need to multiple by x again Cx2e−3x. This is not in
the complementary function so we can use this. y = Cx2e−3x, dy

dx = 2Cxe−3x − 3Cx2e−3x and
d2y
dx2 = 2Ce−3x − 6Cxe−3x + 9Cx2e−3x − 6Cxe−3x

2Ce−3x − 6Cxe−3x + 9Cx2e−3x − 6Cxe−3x + 6(2Cxe−3x − 3Cx2e−3x) + 9(Cx2e−3x) = 4e−3x

2Ce−3x = 4e−3x =⇒ 2C = 4 =⇒ C = 2 The particular integral is y = 2x2e−3

The general solution y = (A+Bx)e−3x + 2x2e−3x

5.3 Taylor and Maclaurin series

1. e−x = 1− x+ x2

2! −
x3

3! + ...

2. (a) x2 − 3x4 + x6

36 + ....

(b) 2x+ 2x3

3 + 2x5

5 + ....

(c) 1 + x− 2
3x

3 + ....

3.
√
3
2 − 1

2 (x− π
2 )−

√
3
4 (x−

√
3
4 (x− π

2 )
2 + ...

20


	Introduction definitions
	Hyperbolic functions
	Introduction
	Inverse hyperbolic functions

	Differential equations
	First order differential equations
	Separation of variables
	Integrating factor

	Second Order Differential Equations
	Homogeneous equations
	Inhomogeneous Equations


	Taylor series and Maclaurin series
	Solutions to Questions:
	Hyperbolic Functions
	Differential equations
	Taylor and Maclaurin series


