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Linear Mathematics (MATH1007) is a first year Core module. This document will help to bridge the gap
from A level to University Mathematics. In these chapters, we will go over preliminary details in order to
prepare you for some of the topics you will face this academic year. There are questions throughout this
document with video links explaining the solutions.
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1 Complex Numbers

1.1 Real and Imaginary numbers

We define
√
−1 = i where i is called an imaginary number. A complex number is written in the form

a+ bi where a, b are real numbers (see equivalent ACF document for more details). In the equation a+ bi,
a is known as the ‘real part’ and b the ‘imaginary part’ (note that ‘bi’ is not considered as the imaginary
part, but simply ‘b’ by itself).

Additionally, the set of complex numbers is denoted C. All numbers are complex numbers! This is be-
cause real numbers (i.e. positives, negatives and zero) have imaginary part b = 0. For instance, the number
5 is complex because we can write it as 5+0i. It represents the biggest set of numbers and contains the reals
R.

1.2 Complex conjugation

The complex conjugate of a general complex number ‘a+ bi’ is written as ‘a− bi’. That is, the sign of the
imaginary part is flipped from negative to positive and vice-versa.

1.3 Basic Operations

To add two complex numbers ‘z’ and ‘w’, simply take the real part (denoted Re) of z and add it to the
real part of w. Then, take the imaginary part (denoted Im) of z and add it to the imaginary part of w (see
below).
Example 1:

For z = a + bi, w = c + di : z + w = (a+ c) + (b+ d)i (1)

(7 + 5i) + (2 + 8i) = 9 + 13i (2)

To subtract two complex numbers, take the same approach as addition, but subtract!
Example 2:

(a+ bi)− (c+ di) = (a− c) + (b− d)i (3)

(6 + 7i)− (2 + 3i) = 4 + 4i (4)

To multiply two complex numbers, expand using the FOIL (first, outer, inner, last) method:
Example 3:

(a+ bi)(c+ di) = ac+ adi+ bci+ bdi2 (5)

By remembering i2 = −1, we then find (5) = (ac− bd) + (ad+ bc)i.

(3 + 2i)(4 + i) = 12 + 3i+ 8i+ 2i2 = 10 + 11i (6)

Division, however, is slightly more involved. We think of division as ‘mulitplying by one over a complex
number.’ In essence, division by complex numbers is equivalent to multiplying the top and bottom by the
complex conjugate of the denominator (see below):
Example 4:

a+ bi

c+ di
=

a+ bi

c+ di
· c− di

c− di
=

ac+ bd+ (bc− ad)i

c2 + d2
(7)

Note that c2 + d2 is real. Here is an example of complex division:

5 + 4i

3 + 2i
=

5 + 4i

3 + 2i
· 3− 2i

3− 2i
=

23

13
+

2

13
i (8)
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1.4 Argand Diagram

An Argand diagram is a geometric plot of complex numbers. Complex numbers written in the form x+ yi
are plotted as points in the form (x, y). The x axis is called the ‘real axis’ and the y axis is called the
‘imaginary axis’.

Re{z}

Im{z}

−4

−4i

−3

−3i

−2

−2i

−1

−1i

1

1i

2

2i

3

3i

4

4i

3 + 2i

−4 + 3i

−1− 4i

−3 + 0i

Looking at the figure above, we have plotted the numbers −4 + 3i, 3 + 2i, −1− 4i and −3 + 0i. Note that
-3+0i simply has imaginary part ’0’, so it is purely real (it is still referred to as complex).

1.5 Polar form of complex numbers

Polar coordinates are written in the form x = rcosθ, y = rsinθ. See below to understand how these values
are derived:

r

(x, y)

(0,0)

rsinθ

rcosθ

θ

Figure 1: Polar Coordinates

We can then rewrite the comples form z = ‘x+ yi’ as follows:

z = x+ yi = rcosθ + i(rsinθ) = r(cosθ + i sin θ) (9)
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r is the absolute value (modulus) of the complex number and θ is the argument of the complex number
measured in radians (denoted arg).

r = |z| =
√
x2 + y2 =

√
(rcosθ)2 + (rsinθ)2 (10)

1.5.1 Principal Argument

The principal argument of a complex number z, denoted Arg(z), is simply the argument but restricted
as such:

-π < Arg(z) ≤ π

Calculating the principal argument is usually relatively simple; if you find that your argument θ is outside
of the above range, simply add/subtract 2π radians until you are within the range!

Just to make this clearer, arg(z) simply represents a general argument. We may write:

arg(z) = Arg(z) + 2kπ ; where k is an integer!

1.6 Eulers formula and De Moivre’s

1.6.1 Euler’s formula derivation

If we look at the Maclaurin expansion of ex (if Maclaurin has not been covered, refer to the ‘Bridging the
gap to Calculus’ PDF)

ex = 1 + x+
x2

2!
+

x3

3!
+

x4

4!
+

x5

5!
+ ... (11)

Now, set x = iθ

eiθ = 1 + iθ +
(iθ)2

2!
+

(iθ)3

3!
+

(iθ)4

4!
+

(iθ)5

5!
+ ... (12)

NOTE: i2 = −1, i3 = −i, i4 = 1

eiθ = (1− θ2

2!
+

θ4

4!
− ...) + i(θ − θ3

3!
+

θ5

5!
− ...) (13)

NOTE: The first bracket is the Maclaurin expansion of cosθ and the second is the Maclaurin expansion of
sinθ

eiθ = cosθ + isinθ (14)

Now applying this to the general complex number

z = r(cosθ + isinθ) = reiθ (15)

1.6.2 Introduction to De Moivre’s

De Moivre’s theorem provides a formula for computing powers of complex numbers. We gain some insight
into the derivation of De Moivre’s theorem by considering what happens when we multiply a complex number
by itself:

z2 = r2(cosθ + isinθ)2 = r2(cos2θ + 2icosθsinθ − sin2θ) = r2(cos2θ + isin2θ) (16)

In this example when the complex number is squared, it is the same as squaring the absolute value and
multiplying the argument by 2. This can be generalised for higher integer values. If the complex number is
raised to the nth power (zn) this is the same as raising the absolute value to the nth power and multiplying
the argument by n. More specifically:
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zn = rn(cosθ + isinθ)n = rn(cos(nθ) + isin(nθ)) (17)

This is quite obvious when we look at the alternative written form of a complex number

z = reiθ (18)

zn = (reiθ)n = rneinθ = rn(cos(nθ) + isin(nθ)) (19)

If confused, do not worry! The line above is explained in part by equation (14), but if you still don’t under-
stand it, your lecturers will offer more in depth derivations of these formulae!

Questions

1. a = 5− 3i, b = 2 + 7i, c = 4− 6i and d = 1 + 3i.

(a) a+ b
Link to solution

(b) c− d
Link to solution

(c) a× c
Link to solution

(d) b÷ d
Link to solution

2. Covert the cartesian form into polar form

(a) 2+3i
Link to solution

(b) 6+8i
Link to solution

(c) 7+5i
Link to solution

3. Convert the polar coordinate form to cartesian form

(a) z =
√
3(cos(π) + isin(π))

Link to solution

(b) z =
√
5(cos(π3 ) + isin(π3 ))

Link to solution

(c) θ = π
5 , | z |= 6

Link to solution

(d) θ = π
2 , | z |= 10

Link to solution

4. Sketch the points from question 3(a)-(d) on an argand diagram
Link to solution

5. Using De Moivre’s, simplify the below expressions

(a) (4(cos(2θ) + isin(2θ))5

Link to solution

(b) (
√
5(cos(4θ) + isin(4θ))2

Link to solution
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(c) (
√
6(cos(2θ) + isin(2θ))−3

Link to solution

(d) (
√
8(cos(4θ) + isin(4θ))−7

Link to solution
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2 Vectors

A vector is used to represent a quantity that has both magnitude and direction. If a quantity has only
magnitude then it is known as a scalar (this will be briefly explained later in this section). Vectors come as
either row vectors or column vectors (see below for general examples of both):

Row Vector: (a, b, c, d) is a (1 by 4) vector, i.e. 1 row and 4 columns.

Column Vector:

a
b
c

 is a (3 by 1) vector, i.e. 3 rows and 1 column.

Note: A vector a is typically denoted a or a⃗ and this is true throughout this section.

2.1 Distances, Unit Vectors/Norms

The distance between two points with position vectors a = (a1, a2, a3) and b = (b1, b2, b3) is given by

∥a− b∥ =
√
(a1 − b1)2 + (a2 − b2)2 + (a3 − b3)2

Since a − b = (a1 − b1, a2 − b2, a3 − b3) produces another vector, say c, ∥a− b∥ = ∥c∥. So, we can view the
distance between two vectors as the length of the vector that joins them.

The distance between the origin (0, 0, 0) and a point (a1, a2, a3) is known as the norm (also known as
length or magnitude) of a a vector.

The norm of a vector a is defined as

∥a∥ =
√

a21 + a22 + a23.

Example 1:

For a vector a =

−4
1
−7

 the norm ∥a∥ =
√
(4)2 + (1)2 + (−9)2 =

√
16 + 1 + 81 =

√
98

2.1.1 Unit vectors

A unit vectors is a vector with norm = 1. See below for some examples.

General Case: The unit vector of a, denoted â (said as ’a hat’), is defined as

â =
1

∥a∥
× a

Example 2:
b = (2,4,5) has unit vector b̂ = 1

∥b∥ × b = 1√
22+42+52

× (2,4,5).

We then have

b̂ = 1
3
√
5
(2,4,5) = ( 2

3
√
5
, 4

3
√
5
, 5

3
√
5
)

Example 3:
c = (0,3,4) has unit vector ĉ = 1

∥c∥ × c = 1√
02+32+42

× (0,3,4).

We then have

ĉ = 1
5 (0,3,4) = (0, 3

5 ,
4
5 )
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2.2 Dot (scalar) product

The dot product is an operation between two vectors (here in R3) where the operation produces a scalar
(hence the name). Given two vectors a and b

a

b

θ

the dot product between a and b is defined as follows:

a · b = ∥a∥ ∥b∥ cos θ

This is where a =

a1
a2
a3

 and b =

b1
b2
b3


Example 4:

Calculate the dot product between vectors a =

1
0
3

 and b =

5
5
0

 where the angle between the vectors is

1.3453 radians.

Begin by calculating the modulus of both vectors:

∥a∥ =
√
12 + 02 + 32 =

√
10 and ∥b∥ =

√
52 + 52 + 02 =

√
50

=⇒ a · b =
√
10

√
50 cos(1.3453) ≈ 5

Special cases:

• If θ = π/2, the dot product is 0 (since cos(π/2) = 0). In this case we say that a and b are orthogo-
nal/perpendicular vectors.

• If θ = 0, (if the angle between the two vectors is 0), we have cos(0) = 1, meaning a · b =| a || b |.

• The dot product is commutative, that is a · b = b · a

2.2.1 Alternative Dot Product definition

The more commonly used definition of the dot product is as follows

a · b =

a1
a2
a3

 ·

b1
b2
b3

 = a1b1 + a2b2 + a3b3

No angle is required with this method.
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Example 5:

Calculate the dot product between vectors a =

5
8
2

 and b =

9
0
4

.

Using a · b = a1b1 + a2b2 + a3b3
a · b = 5× 9 + 8× 0 + 2× 4 = 53

Here we see that the angle is not required in order to calculate the dot product (this definition is more
commonly used).

Example 6:

Calculate the dot product between the two vectors a =

1
6
3

 and b =

3
4
2

 and find the angle between them.

Using a · b = a1b1 + a2b2 + a3b3
a · b = 1× 3 + 6× 4 + 3× 2 = 33

In order to calculate the angle between the vectors we use a · b = ∥a∥ ∥b∥ cos θ
∥a∥ =

√
12 + 62 + 32 =

√
46, ∥b∥ =

√
32 + 42 + 22 =

√
29

=⇒ 33 =
√
46
√
29 cos θ =⇒ θ = cos−1( 33√

46
√
29
) ≈ 0.4429 radians

.

2.3 Cross (vector) product

We define the cross product as

a× b =

∣∣∣∣∣∣
i j k
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣ = (b3a2 − b2a3)i− (b3a1 − b1a3)j+ (b2a1 − b1a2)k

(See the matrix determinants section if this is unfamiliar). There are worked examples below if this is
still confusing.

We may additionally define the cross product as follows:

a× b = ∥a∥ ∥b∥ sin θ n̂

The cross product actually generates another vector (hence the name); this vector is always perpendicular
to both a and b. This can be seen in the diagram below.

a

b

a× b = n

θ

We have labelled the new vector n to denote the term ’normal’. The normal vector is a vector perpendic-
ular to a surface/plane (click here or keep reading as there will be more on this later).

We now list some special cases where θ takes certain values.
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Special cases

• If θ = 0, the cross product is 0 (since sin(0) = 0). We then say that parallel vectors have a cross
product of 0. An example of this is a× a = 0.

• If θ = π/2 then we get sin(π/2) = 1. This means a× b = ∥a∥ ∥b∥ n̂.

• The cross product is not commutative. In fact, it is anti-commutative, i.e. a× b = −b× a.

We will also now show a property of the cross product to give you a rough idea of what is to come this year
(do not worry if you do not yet fully grasp this; this is just to get you started)!

Example 7:

Let a = (2,−4, 4) and b = (4, 0, 3). Find a× b.

Applying the formula above, which will be derived in lectures at some point throughout your study, we
find

a× b =

∣∣∣∣∣∣
i j k
2 −4 4
4 0 3

∣∣∣∣∣∣ = (3× (−4)− 0× 4)i− (3× 2− 4× 4)j+ (0× 2− 4× (−4))k

=⇒ a× b = (−12, 10, 16).

2.4 Lines in R3

2.4.1 Equation of lines in R3

x

y

r
a

b

The vector equation of a line is defined by

r =

x
y
z

 =

a1
a2
a3

+ λ

b1
b2
b3


Vector a is called the position vector, b is the direction vector and λ is a real constant. Changing the
value of λ gives different points on the line.
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Example 8:

Let a =

6
9
2

 and b =

3
5
1

. Find the equation of the line that passes through both of these points.

Chose one of these points to be the position vector. (a=

6
9
2

 to be position vector). We then find the

direction vector between the two points.

a− b =

6
9
2

−

3
5
1

 =

3
4
1


The equation of the line is given by

r =

6
9
2

+ λ

3
4
1


Side note
The parametric equation of a line can be rearranged in order to give the Cartesian equation of a line.

x− a1
b1

=
x− a2
b2

=
x− a3
b3

(= λ)

2.4.2 Intersecting lines

If we are given the equation of two straight lines, we can find the intersection of two straight lines. This is
shown by example.

Example 9:

Let L1 =

x
y
z

 =

 5
2
−1

 + λ

 1
−2
−3

 and let L2 =

x
y
z

 =

2
0
4

 + µ

 1
2
−1

. Calculate where the lines

cross each other

We equate x, y and z of L1 and L2 as follows:

5 + λ = 2 + µ (1)
2− 2λ = 2µ (2)
−1− 3λ = 4− µ (3)

Note that the above resembles a set of simultaneous equations! We can solve these as follows:

Equation (1) + 1
2 equation (2) =⇒ 6 = 2 + 2µµ = 2

We then substitute µ = 2 into the first equation to get λ = −1.

We now substitute in these values of λ and µ into L1 and L2.

to get

x
y
z

 =

4
4
2


12



So the two lines intersect at (4, 4, 2).

Sometimes lines in R3 lines do not intersect (for example if lines are parallel). Other questions may ask
you to find if they intersect rather than ask where do they intersect.

2.5 Planes in R3

A plane is an infinite 2-dimensional surface in 3-dimensional space (R3). There are several ways to represent
these mathematically and we will show you two different ways in this section!

2.5.1 Parametric Equation of a plane

The general parametric equation of a plane is:

b

c

a

(0,0)

r =

a1
a2
a3

+ λ

b1
b2
b3

+ µ

c1
c2
c3


where a =

a1
a2
a3

 is the position vector and b =

b1
b2
b3

 and c =

c1
c2
c3

 are direction vectors along the plane;

that is, vectors that lie on the plane in 3-dimensional space. Also note that λ and µ are real constants and
changing their values of gives different points in the plane. We now look at an example.

Example 10:

Given three vectors a =

−5
4
1

, b =

−8
3
−7

and c =

 4
6
−3

 calculate the parametric equation of the plane

containing all three points.

Looking at the general case above, We can assume that one of a,b or c is the position vector. By ’po-
sition vector’, we mean a vector that takes you from the point (0,0) to a general point in the plane. Any
choice is fine, but here we will take a.

We now need to find two direction vectors, as listed above. We can do this (generally) by finding the
vectors that go from a to b and from a to c, calculated as follows:
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b− a =

−8
3
−7

−

−5
4
1

 =

−3
−1
−8



c− a =

 4
6
−3

−

−5
4
1

 =

 9
2
−4


Then, substituting this into our parametric equation formula gives the equation of the plane to be:

r =

−5
4
1

+ λ

−3
−1
−8

+ µ

 9
2
−4


2.5.2 Cartesian Equation of a plane

The Cartesian equation of a plane is
ax+ by + cz = d (20)

where (a, b, c) represents the vector normal to the plane. The normal n is perpendicular to any vector in
the plane.

Alternatively, the Vector equation of a plane is given by:

n · (r− a) = 0.

Where ’a’ is a specific, known point on the plane and ’r’ is another general point on the plane. More precisely,
a = (a, b, c) and r = (x, y, z).

Adding/subtracting two vectors that lie on a general plane ’P’ produces another vector in P; for exam-
ple, the addition/subtraction of any two vectors in the x-y plane produces another vector in the x-y plane!
Note that this is true for every plane!

Hence, (r − a) remains on the plane. This makes it perpendicular to n, since n is perpendicular to ev-
ery point on the plane. By this, and recalling dot product properties, we know their dot product is 0.

If we now again look at
n · (r− a) = 0,

we may expand out the bracket and add on each side, producing the following:

r · n = a · n.

The above line is equivalent to x
y
z

 ·

a
b
c

 =

a1
a2
a3

 ·

a
b
c


and if we expand the dot products, we find

a · n = aa1 + ba2 + ca3 =⇒ a · n = d

We note that the right-hand-side (aa1 + ba2 + ca3) is a scalar; this is equal to d. We also note that this
essentially gives the Cartesian equation of the plane (20). This is just a little manipulation to demonstrate
that the Cartesian and Vector equations of planes are completely equivalent and interchangeable.
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From section 2.3 we have found out how to calculate the normal of two vectors. This means if we have
two direction vectors in the plane, we can use the cross product to find the normal vector. In order to find
the value of d, substitute the coordinates of any point in the plane into the equation.

Example 11:

Two direction vectors in a plane are a =

2
4
5

 and b =

1
7
3

. Find the cartesian equation of the plane.

Answer

a× b =

2
4
5

×

1
7
3

 . =

∣∣∣∣∣∣
i j k
2 4 5
1 7 3

∣∣∣∣∣∣ = (12− 35)i+ (5− 6)j+ (14− 4)k = −23i− j+ 10k =

−23
−1
10


This is the normal vector to the plane.

So we can substitute this normal vector into ax+ by + cz + d = 0
∴ −23x− y + 10z + d = 0.

We know that

2
4
5

 is a vector in the plane therefore we can substitue this into the equation.

−23(2)− (4) + 10(5) + d = 0 =⇒ d = 0

=⇒ −23x− y + 10z = 0

15



Questions

1. Let a =

 2
3
−7

, b =

 5
−8
1

, c =

 0
−7
3

and d =

9
5
2

.

Calculate the following:

(a) c · b
Link to Solution

(b) a · d
(c) d · a
(d) what do you notice about the results in b) and c) and why?

Link to solution to b) c) d)

Calculate the following cross products:

(e) c× a
Link to solution

(f) a× b

(g) d× b

(h) a× a
Link to solution

(i) what do you notice about h) and why?

2. Calculate the angle between x =

6
7
1

 and y =

5
0
3


Link to Solution

3. Given points A=(1,1,1), B=(-1,1,0) and C=(2,0,3)

(a) show that n =

−1
3
2

 is the normal to the plane containing A,B and C.

Link to Solution

(b) Find the Cartesian equation of the plane.
Link to Solution

4. Do the lines L1 =

3
1
4

+ λ

2
0
1

 and L2 =

 2
−1
1

+ µ

3
1
1

 cross?

Link to Solution
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3 Matrix Algebra

3.1 Introduction

A matrix is a mathematical array that holds information, be it numbers, symbols, expressions etc. A general
(n by m) matrix, denoted in bold capital letters A, is shown below:

An,m =


a1,1 a1,2 · · · a1,m
a2,1 a2,2 · · · a2,m
...

...
. . .

...
an,1 an,2 · · · an,m

 (21)

Where each lower case ’a’ represents an element, and the subscript represents its position in the matrix A.
Below are several examples, each with their own explanation. This should help to bolster your understanding
of the concept of a matrix.

Example 1:

A =

[
a b
c d

]
(22)

The matrix A is (2 by 2) and contains the first four letters of the English alphabet.

Example 2:

B =

1 0 0
0 1 0
0 0 1

 (23)

Here, a new matrix B is (3 by 3) and contains a collection of 0s and 1s. This matrix is extremely important,
and is called the identity matrix, denoted I. It can be of any dimension (provided no. rows = no. columns)
and it characterised by the leading diagonal having entries of 1, and all other entries being 0.

The two examples above are (n by n); that is, n rows by n columns. Note that despite this, a matrix
can have any number of rows and columns, as long as they are integers of course. Below is one final example,
but this time we have an (n by m) matrix.

Example 3:

C =

4 8 3 1
1 3 2 4
5 2 0 7

 (24)

Here, n = 3 and m = 4.

3.2 Matrix Addition and Subtraction

Adding and subtracting matrices is fairly straightforward. It is best displayed using an example.

Example 4:

A =

1 0 1
0 3 1
2 1 0

 and B =

4 2 1
0 2 5
7 6 1

 (25)
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Then,

A+B =

1 + 4 0 + 2 1 + 1
0 + 0 3 + 2 1 + 5
2 + 7 1 + 6 0 + 1

 =

5 2 2
0 5 6
9 7 1

 (26)

Subtraction is similar! In this case,

A−B =

−3 −2 0
0 1 −4
−5 −5 −1

 (27)

3.3 Determinants

The determinant (denoted det of a matrix is a scalar value that is a function of the entries in the matrix.
Note that, for a general matrix M, the determinant is also denoted as ∥M∥.

3.3.1 2 by 2 Determinants

In order to calculate the determinant (of a (2 by 2) matrix, such as E =

[
a b
c d

]
, we use a simple formula:

det(E) = ad− bc (28)

3.3.2 3 by 3 Determinants

For matrix M =

a b c
d e f
g h i

, the determinant is calculated using the formula:

det(M) = a ∗ det
[
e f
h i

]
− b ∗ det

[
d f
g i

]
+ c ∗ det

[
d e
g h

]
(29)

Your Linear Mathematics module will go into more detail as to why this formula arises, but in essence you
expand along the top row and take the determinants of the (2 by 2) matrices across the bottom two rows (see
formula above). Note that the smaller matrices are called ’minors’, but this will be covered in MATH1007.

3.4 Matrix Multiplication

Multiplying and dividing matrices go hand-in-hand. Firstly, we will tackle multiplication.

Unlike the determinant, matrix multiplication is essentially the same for all possible pairs A and B, ex-
cept with more steps for higher dimension matrices.

A Condition and its Consequence (for general matrices A and B):

For matrix multiplication to be possible, the number of columns in A must equal the number of rows in B
(in this booklet, these matrices will be referred to as ’compatible’).

As a consequence, the new matrix produced by multiplying two ’compatible’ A and B will have the same
number of rows as A and the same number of columns as B.
In other words, let two matrices L and P be (n by m) and (i by j) respectively. If we wanted to perform the
multiplication LP, we need to check that m = i:
- If m ̸= i, LP is not a possible multiplication.
- If m = i, LP produces an (n by j) matrix.

18



Method
As for the method, matrix multiplication is performed by multiplying each row with each column (see ex-
ample below):

Example 5:

A =

4 6 2
3 9 7
6 1 6

 ,B =

3 7 1
4 2 1
3 6 6

 (30)

Then, AB = 4 ∗ 3 + 6 ∗ 4 + 2 ∗ 3 4 ∗ 7 + 6 ∗ 2 + 2 ∗ 6 4 ∗ 1 + 6 ∗ 1 + 2 ∗ 6
3 ∗ 3 + 9 + 4 + 7 ∗ 3 3 ∗ 7 + 9 ∗ 2 + 7 ∗ 6 3 ∗ 1 + 9 ∗ 1 + 7 ∗ 6
6 ∗ 3 + 1 ∗ 4 + 6 ∗ 3 6 ∗ 7 + 1 ∗ 2 + 6 ∗ 6 6 ∗ 1 + 1 ∗ 1 + 6 ∗ 6

 (31)

i.e.

AB =

42 52 22
66 81 54
40 80 43

 (32)

3.4.1 Some Properties

1. Non-Commutative: AB ̸= BA (in general)

2. Distributivity: A(B+C) = AB + AC

More properties will be discussed in your Linear Mathematics module, but these two will provide you with
an introduction.

3.5 Matrix Inverse

Calculating matrix inverses can be fairly involved. Here, you will be shown how to find the inverse of a
(2 by 2) matrix. The method is as follows:

1. Calculate the determinant (recall (13) ’ad-bc’)

2. Find the adjugate matrix

3. Multiply the adjugate matrix by 1/(ad-bc)

The adjugate matrix (denoted ’adj’) is defined as the ’transpose of the cofactor matrix’ (Linear and UG).
More simply, [

a b
c d

]
=⇒

[
d −b
−c a

]
(33)

Matrix −→ Adjugate

This is essentially a transformation of the entries in the original matrix. To shore up your understanding,
an example of a (2 by 2) inversion is shown below:
Example 6:

If A =

[
4 5
3 9

]
, then A−1 =

1

det(A)

[
9 −5
−3 4

]
, (34)

where det(A) = ad - bc, giving

A−1 =
1

21

[
9 −5
−3 4

]
(35)
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This new matrix is the matrix inversion of A and has several properties, one of which will be discussed now.
Similar to how multiplying a real number with its inverse always produces 1, multiplying a matrix with its
inverse always produces the ’Identity matrix’ as previously discussed.

i.e. AA−1 = A−1A = I

NOTE: A matrix is called ’non-invertible’ if its determinant is equal to 0, since division by 0 is impos-
sible/undefined.

3.6 Matrix Division

Now we have looked at the concept of a matrix inverse, we can assess how matrix division works! For
matrices A and B, the division A/B is practically carried out by multiplying A with B−1.

In essence, A/B = AB−1. We can now look at some examples!

Example 7: Calculate A/B where A =

[
3 1
2 4

]
and B =

[
2 3
4 1

]
.

We need to find the inverse of matrix B, which can be done using the method learnt in the previous
section (see 2.5).

B−1 = 1
det(B) * adj(B)

=⇒ B−1 = 1
2−12

[
1 −3
−4 2

]
=

[
−1/10 3/10
2/5 −1/5

]
Then, we can carry out matrix multiplication as normal!

AB−1 =

[
3 1
2 4

] [
−1/10 3/10
2/5 −1/5

]
=

[
−3/10 + 2/5 9/10− 1/5
−2/10 + 8/5 6/10− 4/5

]
=

[
1/10 7/10
7/5 −1/5

]
(36)

Example 8: Calculate C/D where C =

[
19 23
12 4

]
and D =

[
42 51
42 51

]
.

As before, we must find the inverse of D.

=⇒ D−1 = 1
2142−2142

[
1 −3
−4 2

]
This is undefined, since division by 0 is impossible. Hence, the inverse of D does not exist and division by
D is not possible!

3.7 Eigenvalues and Eigenvectors

Note that for this subsection, A must be a square/(n by n) matrix. Also keep in mind that this can and
will be applied to a (2 by 2) matrix as well; (3 by 3) is generally more difficult, so we thought we’d help you out!

Informal Definition: A non-zero column vector v =

v1
v2
v3

 is an eigenvector of the matrix A with corre-

sponding eigenvalue λ iff
Av = λv (37)
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Solving this type of equation is difficult in that you cannot ’divide’ by the vector v on both sides; this would
leave a matrix being equal to a scalar, which is invalid. Instead, we must use an entirely new method.

Consider this: we need to ’convert’ equation (37) into a solvable format. We can actually think about
this equation in a different way. Recall the identity matrix I, and that multiplying it with a matrix A or
column vector v simply returns A or v respectively.

We then rewrite (37) as
Av = λIv. (38)

Both (37) and (38) mean the exact same thing, but (38) is a bit easier to manipulate. We can subtract the
RHS on both sides and factor out v, leaving

(A - λI) v = 0

Here, 0 is the vector of entries 0 (the ’zero vector’). Since by assumption (see the informal definition) the
v vector is non-zero, we can attempt to solve the equation for λ. We have (written out in full):a1,1 a1,2 a1,3

a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

−

λ 0 0
0 λ 0
0 0 λ

v1
v2
v3

 = 0 =⇒

a1,1 − λ a1,2 a1,3
a2,1 a2,2 − λ a2,3
a3,1 a3,2 a3,3 − λ

v1
v2
v3

 = 0 (39)

We then take the determinant of the LHS! This temporarily eliminates v from our calculations; det(v) is
non-zero, leaving det(A - λI) = det(0) = 0.

We have

(a1,1 − λ) ∗ det
[
a2,2 − λ a2,3
a3,2 a3,3 − λ

]
− a1,2 ∗ det

[
a2,1 a2,3
a3,1 a3,3 − λ

]
+ a1,3 ∗ det

[
a2,1 a2,2 − λ
a3,1 a3,2

]
= 0

Note 0 is now a scalar!

After solving this, we obtain our eigenvalues λ1, λ2 and λ3. We then substitute these back into our equation
(A - λI) v = 0, giving a set of simultaneous equations. These will allow us, by inspection, to find each
eigenvalues corresponding eigenvector v1, v2 and v3 respectively.

We will now show a couples of examples, one (2 by 2) and the other (3 by 3), to shore up your understanding.

Example 9: Find the eigenvalues and corresponding eigenvectors of A =

[
0 1
−2 −3

]
.

We may write (A - λI) v = 0 as before; this is the step you will typically start on when solving these
problems. We now have [

−λ 1
−2 −3− λ

]
v = 0

Now, we may assume: det

[
−λ 1
−2 −3− λ

]
= 0. Working through the determinant gives the equation

λ2 + 3λ+ 2 = 0 (40)

We may use standard methods to solve this, leaving the eigenvalues λ1 = -2 and λ2 = -1. We may now
substitute these two values back in.

• First, we assess λ1 = -2: we have

[
−(−2) 1
−2 −3− (−2)

]
v1 = 0.
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The v1 here represents the eigenvector associated with eigenvalue -2. Then we may rewrite the above
equation more explicitly as [

2 1
−2 −1

] [
a
b

]
=

[
0
0

]
(41)

We can now multiply out the LHS, leaving [
2a+ b
−2a− b

]
=

[
0
0

]
We can now solve either the top line or the bottom line as a standard equation! It doesn’t actually matter
which one you choose, since they will output the same eigenvector! In this case we arbitrarily choose the
top line.

We then have 2a+b = 0 =⇒ b = -2a. a and b are arbitrary values: we are working out a vector that
points in a direction, so naturally any choice of b and a satisfying b = -2a lies on that vector! Therefore, if
we choose a = 1, we have b = -2.

We may then conclude that λ1 = -2 has eigenvector v1 =

[
1
−2

]
. A similar process can be carried out

to find the eigenvector for λ2 = -1, giving v2 =

[
1
−1

]
. In essence, for any k,t∈ R, λ1 and λ2 have eigen-

vectors k

[
1
−2

]
and t

[
1
−1

]
respectively. We have simply chosen the simplest one in this case, but any choice

works: the most important part of your answer is the ratio between each entry in the eigenvector.

Example 10: For B =

−2 −4 2
−2 1 2
4 2 5

, carry out the process to find the correct eigenvalues and eigen-

vectors shown below:

λ1 = 3 with v1 =

 1
−1.5
−0.5

, λ2 = -5 with v2 =

 1
−0.5
0.5

 and finally λ3 = 6 with v3 =

 1
6
16

.
There will be a video detailing how to calculate this in case you get stuck, so don’t be afraid to try the
question yourself!
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Questions

1. Find the determinants of the following matrices:

(a) A =

[
4 3
2 −2

]
(b) B =

[
6 13
3 7

]

(c) C =

4 3 1
2 5 6
7 9 1


(d) D =

 1 −5 7
9 4 0
−8 −13 10


Video solution links):

• 1(a) and 1(b)

• 1(c) and 1(d)

2. Calculate, if possible, the following multiplications:

(a) AB where A =

[
2 8 9
7 3 6

]
and B =

4 1 2
7 6 0
8 3 4

.
(b) BA for the same matrices as in part (a).

(c) CD where C =

[
7 6 3
2 4 9

]
and D =

[
2 9 1
6 5 3

]

(d) EF where E =

2 3 1
1 0 1
4 3 0

 and F =

1 7 4
1 1 3
3 4 3

.
(e) FE for the same matrices as in part (d). Are they different? If so, why?

Video solution link:

• All of Question 2

3. Calculate, if possible, the inverses of the following matrices:

(a) A =

[
3 1
5 4

]
(b) B =

[
15 42
71 143

]
(c) C =

[
8 10
4 5

]
Video solution link:

• All of Question 3

4. Calculate, if possible, the following divisions:
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(a) A/B where A =

[
8 7
2 1

]
and B =

[
5 4
3 6

]
(b) C/D where C =

[
2 3
1 9

]
and D =

[
9 3
18 6

]
Video solution link:

• All of Question 4

5. Find the eigenvalues and eigenvectors of the following matrices:

(a) M =

2 1 0
1 2 1
0 1 2


(b) The matrix B from Example 10 (despite the answer already being provided, this serves as really

good practice).

Video solution links:

• Question 5(a)

• Question 5(b)
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4 Solutions to Questions:

4.1 Complex numbers

1. (a) (5− 3i) + (2 + 7i) = 7 + 4i

(b) (4− 6i)− (1 + 3i) = 3− 9i

(c) (5− 3i)(4− 6i) = 20− 30i− 12i− 18 = 2− 42i

(d) 2+7i
1+3i =

(2+7i)(1−3i)
(1+3i)(1−3i) =

2−6i+7i+21
1+9 = 23+i

10

2. (a) | z |=
√
22 + 32 =

√
13

θ = tan−1( 32 ) = 0.9827937232

z =
√
13(cos(0.9827937232) + isin(0.9827937232)

(b) | z |=
√
62 + 82 =

√
100 = 10

θ = tan−1( 86 ) = 0.927295218
z = 10(cos(0.927295218) + isin(0.927295218)

(c) 7+5i | z |=
√
72 + 52 =

√
74

θ = tan−1( 57 ) = 0.620249486

z =
√
74(cos(0.620249486) + isin(0.620249486)

3. (a) z =
√
3(−1 + 0) = −

√
3

(b) z =
√
5( 12 +

√
3
2 i) =

√
5
2 +

√
15
2 i

(c) z = 6(cos(π5 ) + isin(π5 )) = 4.854101966 + 3.526711514i

(d) z = 10(cos(π2 + isin(π2 )) = 0 + 10i

4. Refer to videos

5. (a) (45(cos(10θ) + isin(10θ)) = 1024(cos(10θ) + isin(10θ))

(b)
√
5
2
(cos(8θ) + isin(8θ)) = 5(cos(8θ) + isin(8θ)

(c) 6
−3
2 (cos(−6θ) + isin(−6θ)) = 6

−3
2 (cos(6θ)− isin(6θ))

(d) 8
−7
2 (cos(−28θ) + isin(−28θ)) = 8

−7
2 (cos(28θ)− isin(28θ))

4.2 Vectors

1. (a) c · b = (0)(5) + (−8)(−7) + (3)(1) = 59

(b) a · d = (2)(9) + (3)(5) + (−7)(2) = 19

(c) d · a = (9)(2) + (5)(3) + (−7)(2) = 19

(d) Answer b) and c) are the same, this is because the dot product is commutative.
Calculate the following cross products:

(e) c× a =

40
6
14


(f) a× b =

−53
−37
−31


(g) d× b =

 21
1

−97
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(h) a× a =

0
0
0


(i) result h) is the zero vector because θ = 0 ∴ sin(0) = 0

2. Calculate the angle between x =

6
7
1

 and y =

5
0
3


52.4◦

3. Given points A=(1,1,1), B=(-1,1,0) and C=(2,0,3)

(a) Find the A⃗B and A⃗C

AB =

−1
1
0

−

1
1
1

 =

−2
0
−1

,

AC =

2
0
3

−

1
1
1

 =

 1
−1
2


These two vectors are in the plane with points A, B and C. The cross product of two vectors

produces the vector normal to the two vectors.

−2
0
−1

×

 1
−1
2

 =

−1
3
2

 hence shown

(b) Find the equation of the plane.
−x+ 3y + 2z − 4 = 0.

4. Do the lines L1 =

3
1
4

+ λ

2
0
1

 and L2 =

 2
−1
1

+ µ

3
1
1

 cross?

Lines do not cross.

4.3 Matrices

1. (a) det(A) = -14

(b) det(B) = 3

(c) det(C) = -93

(d) det(D) = -105

2. (a) AB =

[
136 77 40
97 43 38

]
(b) BA = N/A

(c) CD = N/A

(d) EF =

8 21 20
4 11 7
7 31 25
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(e) FE =

25 15 8
15 12 2
22 18 7


3. (a) A−1 =

[
4/7 −1/7
−5/7 3/7

]
(b) B−1 = −1

837

[
143 −42
−71 15

]
(c) C−1 = N/A

4. Calculate, if possible, the following divisions:

(a) A/B =

[
1/3 −2/9
−1/6 5/18

]
(b) C/D = N/A

5. (a) λ1 = 2, v1 =

 1
0
−1


λ2 = 2 +

√
2, v2 =

 1√
2

−1


λ3 = 2 -

√
2, v3 =

 1

−
√
2

−1


(b) The matrix B from Example 2 (despite the answer already being provided, this serves as really

good practice).
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