Project description
This is a unique and exciting opportunity to undertake research that spans across the disciplines of energy engineering and mathematical sciences. With additional supervision from Prof Mark Gillott and Dr Parham Mirzaei Ahrnjani (Architecture & Built Environment), the doctoral student will be joining a strong interdisciplinary team from academia and industry who are currently working on the delivery of the Energy Research Accelerator (ERA) Community Energy System (CES) demonstrator at the 15 acre Trent Basin site in Nottingham.
The project will investigate the energy challenges and complexity science issues associated with heat and electrical power generation, storage and use arising from the connections between micro-generation output, grid/heat loads, weather, and energy/power demands (including occupant behaviour) combined with variable load energy storage devices in order to provide energy stability, a reduction of cost and associated carbon emissions from fossil fuel use. The PhD research will develop new multi-vector CES models that utilise 'big data' obtained from a dedicated onsite monitoring platform at the housing development applied to a heterogeneous network of users. The work will ultimately help inform the design, implementation and operation of local community energy schemes in the UK.
About the Energy Research Accelerator: The Energy Research Accelerator (ERA) is a cross-disciplinary energy innovation hub which brings together capital assets, data and intellectual leadership to foster collaboration between academia and business to accelerate the development of solutions to the global energy challenge. It will provide new buildings and cutting-edge demonstrators, develop highly skilled people and jobs, as well as new products and services to ultimately transform the UK's energy sector. Building on existing programmes and academic expertise across the partnership, universities within ERA have committed over £2m for doctoral students as a critical part of the ERA skills agenda. Delivered through Innovate UK, the government has committed an initial capital investment of £60m, and ERA has secured private sector co-investment of £120m. ERA's initial priorities of Geo-Energy Systems, Integrated Energy Systems and Thermal Energy will help deliver the new technologies and behaviours that will open the avenues for its future development and demonstrate the transformative effect ERA can have across the energy spectrum.