School of Mathematical Sciences

Geometry-based methods for statistics on functions and curves

Project description

How can we define an average closed curve on the plane from a random sample of many such curves, such that it is invariant to certain transformations (e.g. rotations)? Answers to such questions have far-reaching impact on analysis of images arising in numerous discplines (e.g. images of brain tumours). Extending statistical methodology from finite- to infinite-dimensional linear and nonlinear settings requires an improved understanding of probability distributions on constrained function spaces. Employing stochastic processes as a tool to study the interplay between probability and geometry, the project will address some fundamental issues that arise in the development of statistical theory and methodology for data in the form of functions and curves.

Supervisor contacts

 

Related research centre or theme

Computational Statistics and Machine Learning

 
 

 

 

Project published references

Functional and Shape Data Analysis. (2016). A. Srivastava and E. Klassen. Springer, NY.

 

More information

Full details of our Maths PhD

How to apply to the University of Nottingham

School of Mathematical Sciences

The University of Nottingham
University Park
Nottingham, NG7 2RD

For all enquiries please visit:
www.nottingham.ac.uk/enquire