School of Mathematical Sciences

Higher categorical structures in quantum field theory

Project description

Higher category theory plays an increasingly important role in the mathematical formulation of quantum field theory (QFT). It provides powerful tools to investigate and understand subtle aspects associated with gauge symmetries and thereby opens up new avenues towards designing refined axiomatic frameworks for QFT that are capable to describe quantum gauge theories such as Yang-Mills theory.

This is an interdisciplinary PhD project in the intersection of mathematical physics, algebra and topology. The project could focus either on new developments in higher categorical algebraic QFT, or on the construction of new examples in this framework.

Supervisor contacts

 
 
 

 

 

Project published references

M. Benini, A. Schenkel and L. Woike, Homotopy theory of algebraic quantum field theories, Lett. Math. Phys. 109, no. 7, 1487 (2019) [arXiv:1805.08795 [math-ph]].

M. Benini, M. Perin and A. Schenkel, Model-independent comparison between factorization algebras and algebraic quantum field theory on Lorentzian manifolds, Commun. Math. Phys. 377, no. 2, 971-997 (2019) [arXiv:1903.03396 [math-ph].

M. Benini, S. Bruinsma and A. Schenkel, Linear Yang-Mills theory as a homotopy AQFT, Commun. Math. Phys. 378, no. 1, 185-218 (2019) [arXiv:1906.00999 [math-ph]].

M. Benini, M. Perin, A. Schenkel and L. Woike, Categorification of algebraic quantum field theories, Lett. Math. Phys. 111, 35 (2021) [arXiv:2003.13713 [math-ph]].

M. Benini, V. Carmona and A. Schenkel, Strictification theorems for the homotopy time-slice axiom, arXiv:2208.04344 [math-ph].

 

More information

Full details of our Maths PhD

How to apply to the University of Nottingham

School of Mathematical Sciences

The University of Nottingham
University Park
Nottingham, NG7 2RD

For all enquiries please visit:
www.nottingham.ac.uk/enquire