Synchronisation and propagation in human cortical networks
Project description
Around 25% of the 50 million epilepsy sufferers worldwide are not responsive to antiepileptic medication; improved understanding of this disorder has the potential to improve diagnosis, treatment and patient outcomes. The idea of modelling the brain as a complex network is now well established. However, the emergence of pathological brain states via the interaction of large interconnected neuronal populations remains poorly understood. Current theoretical study of epileptic seizures is flawed by dynamical simulation on inadequate network models, and by the absence of customised network measures that capture pathological connectivity patterns.
This project aims to address these deficiencies via improved computational models with which to investigate thoroughly the influence of the geometry and connectivity of the human brain on epileptic seizure progression and initiation, and the development of novel network measures with which to characterise epileptic brains. Such investigations will be informed by exhaustive patient datasets (such as recordings of neural activity in epilepsy patients and age-matched controls), and will be used to study (i) improved diagnostic strategies, (ii) the influence of treatment strategies on seizure progression and initiation, and (iii) the identification of key sites of epilepsy initiation.
More information
Full details of our Maths PhD
How to apply to the University of Nottingham