Monday, 19 August 2019
An experiment to test a popular theory of dark energy has found no evidence of new forces, placing strong constraints on related theories.
Dark energy is the name given to an unknown force that is causing the universe to expand at an accelerating rate.
Some physicists propose dark energy is a ‘fifth’ force that acts on matter, beyond the four already known – gravitational, electromagnetic, and the strong and weak nuclear forces.
However, researchers think this fifth force may be ‘screened’ or ‘hidden’ for large objects like planets or weights on Earth, making it difficult to detect.
Now, researchers at Imperial College London and the University of Nottingham have tested the possibility that this fifth force is acting on single atoms, and found no evidence for it in their most recent experiment.
This could rule out popular theories of dark energy that modify the theory of gravity, and leaves fewer places to search for the elusive fifth force.
The experiment, performed at Imperial College London and analysed by theorists at the University of Nottingham, is reported today in Physical Review Letters.
This experiment, connecting atomic physics and cosmology, has allowed us to rule out a wide class of models that have been proposed to explain the nature of dark energy, and will enable us to constrain many more dark energy models.
The experiment tested theories of dark energy that propose the fifth force is comparatively weaker when there is more matter around – the opposite of how gravity behaves.
This would mean it is strong in a vacuum like space, but is weak when there is lots of matter around. Therefore, experiments using two large weights would mean the force becomes too weak to measure.
The researchers instead tested a larger weight with an incredibly small weight – a single atom – where the force should have been observed if it exists.
The team used an atom interferometer to test whether there were any extra forces that could be the fifth force acting on an atom. A marble-sized sphere of metal was placed in a vacuum chamber and atoms were allowed to free-fall inside the chamber.
The theory is, if there is a fifth force acting between the sphere and atom, the atom's path will deviate slightly as it passes by the sphere, causing a change in the path of the falling atom. However, no such force was found.
It is very exciting to be able to discover something about the evolution of the universe using a table-top experiment in a London basement.
Story credits
More information is available from Professor Edmund Copeland, University of Nottingham on 0115 951 5164 or email Edmund.copeland@nottingham.ac.uk
Notes to editors:
About the University of Nottingham
Ranked 32 in Europe and 16th in the UK by the QS World University Rankings: Europe 2024, the University of Nottingham is a founding member of the Russell Group of research-intensive universities. Studying at the University of Nottingham is a life-changing experience, and we pride ourselves on unlocking the potential of our students. We have a pioneering spirit, expressed in the vision of our founder Sir Jesse Boot, which has seen us lead the way in establishing campuses in China and Malaysia - part of a globally connected network of education, research and industrial engagement.
Nottingham was crowned Sports University of the Year by The Times and Sunday Times Good University Guide 2024 – the third time it has been given the honour since 2018 – and by the Daily Mail University Guide 2024.
The university is among the best universities in the UK for the strength of our research, positioned seventh for research power in the UK according to REF 2021. The birthplace of discoveries such as MRI and ibuprofen, our innovations transform lives and tackle global problems such as sustainable food supplies, ending modern slavery, developing greener transport, and reducing reliance on fossil fuels.
The university is a major employer and industry partner - locally and globally - and our graduates are the second most targeted by the UK's top employers, according to The Graduate Market in 2022 report by High Fliers Research.
We lead the Universities for Nottingham initiative, in partnership with Nottingham Trent University, a pioneering collaboration between the city’s two world-class institutions to improve levels of prosperity, opportunity, sustainability, health and wellbeing for residents in the city and region we are proud to call home.
More news…