Malaria research begins to bite

Mossypr 
20 Oct 2010 17:00:00.000

Scientists at The University of Nottingham and the Wellcome Trust Sanger Institute near Cambridge have pin-pointed the 72 molecular switches that control the three key stages in the life cycle of the malaria parasite and have discovered that over a third of these switches can be disrupted in some way.

Their research which has been funded by Wellcome Trust and the Medical Research Council (MRC) is a significant breakthrough in the search for cheap and effective vaccines and drugs to stop the transmission of a disease which kills up to a million children a year.

Until now little has been known about the cellular processes involved in the development of this deadly disease. The research, published in the journal Cell Host & Microbe, involved the very first comprehensive functional analysis of protein kinases in any malaria parasite. It is also the largest gene knock-out study in Plasmodium berghei — a malaria parasite infecting rodents.

 

Click here for full story

Dr Rita Tewari, in the School of Biology at The University of Nottingham, led the research. Dr Tewari said: “Blocking parasite transmission is recognised as an important element in the global fight to control malaria. Kinases are a family of proteins which contribute to the control of nearly all cellular processes and have already become major drug targets in the fight against cancer and other diseases. Now we have identified some key regulators that control the transmission of the malaria parasite. Work to develop drugs to eradicate this terrible disease can now focus on the best targets. This study shows how systematic functional studies not only increase our knowledge in understanding complexity of malaria parasite development but also gives us the rational approach towards drug development.”

The life cycle of the malaria parasite is complex. Once the mosquito has feasted off infected blood fertilisation takes place within the mosquito. The deadly parasites are then injected back into another host in large numbers when the mosquito bites again. Once inside its mammalian host the parasite first infects the liver where it replicates again. After 48 hours millions of parasites are released into the red bloods cells of its host where they attack in vast numbers overwhelming their host producing high fever and sickness.

Dr Oliver Billker, an expert in pathogen genetics at the Wellcome Trust Sanger Institute, said: “This is a major leap forward — we can now set aside these 23 functionally redundant genes. This act of prioritisation alone has narrowed the set of targets for drug searches by a third.

“Our study demonstrates how a large scale gene knockout study can guide drug development efforts towards the right targets. We must now develop the technology to ask across the genome which pathways are important for parasite development and transmission.”

As the malaria parasite becomes increasingly resistant to existing drugs and vaccines the race to find ways of blocking the transmission of malaria is becoming increasingly important. Last month the journal PLoS ONE published Dr Tewari’s research which identified a protein, PF16, which is critical in the development of the malaria parasite — specifically the male sex cells (gametes) — which are essential in the spread by mosquitoes of this lethal parasite. The study, led by The University of Nottingham, found a way of disabling the PF16 protein.

In future studies, Dr Tewari’s group is concentrating on the role of other signalling molecules like phosphatases, kinases and armadillo repeat proteins and their interaction in understanding malaria parasite development. The aim is to identify the best drug or vaccine target along the way.

The University of Nottingham has broad research portfolio but has also identified and badged 13 research priority groups, in which a concentration of expertise, collaboration and resources create significant critical mass. Key research areas at Nottingham include energy, drug discovery, global food security, biomedical imaging, advanced manufacturing, integrating global society, operations in a digital world, and science, technology & society.

Through these groups, Nottingham researchers will continue to make a major impact on global challenges.

 

— Ends —

 

Notes to editors: The University of Nottingham, described by The Times as “the nearest Britain has to a truly global university, has award-winning campuses in the United Kingdom, China and Malaysia. It is ranked in the UK's Top 10 and the World's Top 75 universities by the Shanghai Jiao Tong (SJTU) and the QS World University Rankings.

The University is committed to providing a truly international education for its 39,000 students, producing world-leading research and benefiting the communities around its campuses in the UK and Asia.

More than 90 per cent of research at The University of Nottingham is of international quality, according to the most recent Research Assessment Exercise, with almost 60 per cent of all research defined as ‘world-leading’ or ‘internationally excellent’. Research Fortnight analysis of RAE 2008 ranked the University 7th in the UK by research power.

The University’s vision is to be recognised around the world for its signature contributions, especially in global food security, energy & sustainability, and health.

More news from the University at: www.nottingham.ac.uk/news

University facts and figures at: www.nottingham.ac.uk/about/facts/factsandfigures.aspx

The Wellcome Trust Sanger Institute, which receives the majority of its funding from the Wellcome Trust, was founded in 1992. The Institute is responsible for the completion of the sequence of approximately one-third of the human genome as well as genomes of model organisms and more than 90 pathogen genomes. In October 2006, new funding was awarded by the Wellcome Trust to exploit the wealth of genome data now available to answer important questions about health and disease. For more information

www.sanger.ac.uk

Story credits

More information is available from Dr Rita Tewari on +44 (0)115 823 0362, rita.tewari@nottingham.ac.uk
Lindsay Brooke

Lindsay Brooke - Media Relations Manager

Email: lindsay.brooke@nottingham.ac.uk Phone: +44 (0)115 951 5751 Location: University Park

Additional resources

No additional resources for this article

Related articles

Mutant parasite could stop malaria in its tracks

Published Date
Thursday 20th September 2012

Slamming the brakes on the malaria life-cycle

Published Date
Thursday 23rd February 2012

The 'yin and yang' of malaria parasite development

Published Date
Wednesday 9th July 2014

Beating the world's deadliest diseases

Published Date
Tuesday 5th April 2011

Diet could combat adverse side-effects of quinine

Published Date
Tuesday 11th September 2012

Putting malaria on the SHELPH

Published Date
Friday 22nd February 2013

Nottingham research plays key role in malaria breakthrough

Published Date
Wednesday 5th July 2017

Secretary of State for Health meets Nottingham academics

Published Date
Monday 7th March 2011

Media Relations - External Relations

The University of Nottingham
YANG Fujia Building
Jubilee Campus
Wollaton Road
Nottingham, NG8 1BB

telephone: +44 (0) 115 951 5798
email: pressoffice@nottingham.ac.uk