What lies beneath? New survey technique offers detailed picture of our changing landscape

A visual representation of the results of the new surveying technique
14 Nov 2012 12:45:55.670

PA 326/12

A new surveying technique developed at The University of Nottingham is giving geologists their first detailed picture of how ground movement associated with historical mining is changing the face of our landscape.

The new development by engineers at the University has revealed a more complete map of subsidence and uplift caused by the settlement of old mines in the East Midlands and other areas of the country and has shown that small movements in the landscape are bound by natural fault lines and mining blocks.

It appears to support concerns that movement associated with historical mining is continuing far longer than previously anticipated.

Click here for full story

The research has been led by Dr Andrew Sowter in the University’s Department of Civil Engineering. He said: "This method allows us to measure patterns of slow millimetre-scale movement across large regions of the landscape and, in the UK, almost everywhere we look is dominated by our industrial past. Large tracts of our land, including parts of our cities, towns and infrastructure as well as agricultural and woodland areas, are steadily creeping upwards over mines that were closed decades ago."

The new development builds on existing technology that allows engineers to use satellite radar technology to measure points on the landscape over a length of time to assess whether they are moving up (uplifting) or sinking down (subsiding).

A complete picture

Previously, this has relied on using fixed, unchanging objects like buildings that can be accurately re-measured and compared against previous measurements time after time. However, the technique has not been practical for use in the rural landscape meaning that geologists could only get half the picture.

Now, Dr Sowter has developed a technique called the Intermittent Small Baseline Subset (ISBAS) method which adapts the same technology and extends it to rural areas by taking stacks of these radar images and identifying those more transient points in the rural landscape against which changes over time are able to be measured.

The technique is now being used by the British Geological Survey (BGS), based in Keyworth in Nottinghamshire, which is the world’s oldest national geological survey providing expert services and impartial advice on all areas of geosciences for both the public and private sectors.

Principal geologist at the BGS Poul Strange said: “This new technique is going to allow us to refine our geological maps. Previously when surveying rural areas we were almost guessing and the final result was more of an interpretation. Now we are able to produce maps that far more accurately reflect what is happening with the geology below the surface and enable us to predict any potential risks posed by ground movement.

“Rural areas are particularly important because we need to know what is happening with the geology there and how movement or natural fault lines may affect future developments such as new housing or high speed rail links.”
 

Bounce back effect

The technique will assist BGS in the work it is doing looking at potential ground movement in former mining areas of South Derbyshire, Nottinghamshire and Leicestershire where most mines closed no later than the early 90s.

The BGS has so far recorded geological evidence that movement in areas where deep coal mining has been in operation historically actually continues for up to 11 years, far more than any previous estimate such as the six-year limit set by the Subsidence Act of 1991.

They believe the problem may be caused by ground water, which would have been pumped out while the mines were open, seeping back into the disused pits and causing a ‘bounce back’ effect on the surrounding landscape. However, they estimate that this uplift is only likely to offer around a 4% recovery on where the landscape would have been before mining began.

In particular, they have been using the new technique to explore the rural areas surrounding locations like Swadlincote in Derbyshire and Oakthorpe near Measham in Leicestershire which have a long-standing history of problems with mining-related subsidence.
 

Seismic activity

They are able to see how this movement is interacting with natural fault lines, which could potentially cause other seismic activity such as the Market Rasen earthquake of 2008, which measured 5.2 on the Richter Scale and was felt as far away as Wales, Scotland and London.

The research could also be of vital significance in assessing future issues with subsidence and uplift connected with other types of activity such as fracking, where geological shale rocks are drilled and injected with fluid to encourage them to fracture and release natural gases.

Dr Sowter has previously spent time working at The University of Nottingham China Ningbo, where his research centred on China’s ‘sinking cities’ problem, where some of the country’s most densely populated communities, such as Shanghai, are sinking under the weight of towering skyscrapers.

Funded by the National Natural Science Foundation of China, the work aimed to develop techniques to help Chinese authorities identify with far greater accuracy which areas are moving and by how much.

— Ends — 

 

For up to the minute media alerts, follow us on Twitter

Notes to editors: The University of Nottingham, described by The Sunday Times University Guide 2011 as ‘the embodiment of the modern international university’, has 40,000 students at award-winning campuses in the United Kingdom, China and Malaysia. It is ranked in the UK's Top 10 and the World's Top 75 universities by the Shanghai Jiao Tong (SJTU) and the QS World University Rankings. It was named ‘the world’s greenest university’ in the UI GreenMetric World University Ranking 2011.

More than 90 per cent of research at The University of Nottingham is of international quality, according to the most recent Research Assessment Exercise. The University’s vision is to be recognised around the world for its signature contributions, especially in global food security, energy & sustainability, and health. The University won a Queen’s Anniversary Prize for Higher and Further Education in 2011, for its research into global food security.

Impact: The Nottingham Campaign, its biggest ever fund-raising campaign, will deliver the University’s vision to change lives, tackle global issues and shape the future. More news

 

Story credits

More information is available from Dr Andy Sowter on +44 (0)115 823 2765, andrew.sowter@nottingham.ac.uk

Emma Thorne Emma Thorne - Media Relations Manager

Email: emma.thorne@nottingham.ac.uk Phone: +44 (0)115 951 5793 Location: University Park

Additional resources

No additional resources for this article

Related articles

Scientist to tackle China's 'sinking cities' problem

Published Date
Wednesday 19th January 2011

Scientists discover how tectonic plates collide

Published Date
Tuesday 8th September 2015

Engineering the 'smart healthcare' of the future

Published Date
Thursday 19th July 2012

Warming to shale gas

Published Date
Friday 2nd August 2013

Support for 'fracking' continues to decline

Published Date
Wednesday 29th January 2014

Media Relations - External Relations

The University of Nottingham
YANG Fujia Building
Jubilee Campus
Wollaton Road
Nottingham, NG8 1BB

telephone: +44 (0) 115 951 5798
email: pressoffice@nottingham.ac.uk