Artificial materials based on simple synthetic polymers can disrupt the way in which bacteria communicate with each other, a study led by scientists at The University of Nottingham has shown.
The findings, published in the journal
Nature Chemistry, could further our knowledge on how better to control and exploit bacteria in the future and will have implications for work in the emerging field of synthetic biology.
“It gives us more information about how to design artificial cells and to produce materials that will interact with microorganisms and control their behaviour, with a whole host of potential applications including drug discovery and energy production.”
Influencing microbial behaviour
As part of their research into the development of artificial cells and programmable bacterial coatings, the team found that polymers — long-chain molecules — that were able to arrange bacteria into clustered communities were, surprisingly, encouraging these bacteria to actively ‘talk’ to each other. This communication occurred by quorum sensing (QS), a way in which bacteria signal to each other, and coordinate response to environment. Quorum sensing also controls the way in which bacteria release certain types of molecules — for example as a defence mechanism or as tools for infection.
This finding opens up the possibility to influence microbial behaviour by controlling their ability to form productive communities. This can be exploited to prevent the release of toxins during the spread of infection or, alternatively, the production of useful molecules which can act as drugs, food source or biofuels.
Simple design principles
The researchers used the bioluminescent marine bacterium Vibrio harveyi, as it allows them to easily track the changes in the bacteria’s behaviour by measuring the pattern and intensity of the natural light produced by the organism.
Building on some intriguing initial results, the team of pharmacists, microbiologists chemists and computer scientists were also able to produce computational models predicting and explaining the behaviour of the microbial communities, which were crucial to deduct simple design principles for the programmable interaction of bacteria and polymers.
Overall, this research offers new understanding of bacterial community behaviour and will have implications in the design of materials as antimicrobials, for bioprocessing, biocomputation and, more generally, synthetic biology.
The paper,
Bacteria clustering by polymers induces the expression of quorum sense controlled phenotypes, is available online on the
Nature Chemistry website.
— Ends —
Our academics can now be interviewed for broadcast via our new Globelynx fixed camera facility at the University. For further information please contact a member of the Communications team on +44 (0)115 951 5798, email mediahub@nottingham.ac.uk or see the Globelynx website for how to register for this service.
For up to the minute media alerts follow us on Twitter
Notes to editors: The University of Nottinghamhas 43,000 students and is ‘the nearest Britain has to a truly global university, with campuses in China and Malaysia modelled on a headquarters that is among the most attractive in Britain’ (Times Good University Guide 2014). It is also the most popular university among graduate employers, the world’s greenest university, and winner of the Times Higher Education Award for ‘Outstanding Contribution to Sustainable Development’. It is ranked in the World's Top 75 universities by the QS World University Rankings.
Impact: The Nottingham Campaign, its biggest-ever fundraising campaign, is delivering the University’s vision to change lives, tackle global issues and shape the future. More news…