Sniffed out - the 'gas detectors' of the plant world

  Plantpr
23 Jan 2014 17:00:00.000

PA 17/14

The elusive trigger that allows plants to ‘see’ the gas nitric oxide (NO), an important signalling molecule, has been tracked down by scientists at The University of Nottingham. It is the first time that a central mechanism for the detection of NO in plants has been identified. 

Led by Professor Michael Holdsworth in the School of Biosciences, a team of experts, including researchers from UK and EU Universities and government research institutes, have found the ‘master regulators’ that control the detection of NO by plants and that regulate many important aspects of plant growth and response to environmental stress.

Their research “Nitric oxide sensing in plants is mediated by proteolytic control of GroupVII ERF transcription factors” is published on Thursday January 23 2014 in the academic journal Molecular Cell.

Click here for full story
Plants fine-tune their growth and survival in response to various signals, including internal hormones and external factors such as light or temperature. Nitric oxide gas is one such signal. 

Professor Holdsworth said: “In plants, NO regulates many different processes throughout the plant’s lifetime from seeds to flowering and responses to the environment. Although the effect of NO on plants has been known for many years, a general mechanism for the initial sensing of this important molecule has remained elusive. We have identified a small number of key proteins, called transcription factors, which act as ‘master sensors’ to control NO responses throughout the plant life cycle.” 

A specific structure at the beginning of these proteins means that they are rapidly degraded in the presence of NO. However, when NO is absent they become stable, resulting in changed growth and development. This mechanism allows plants to sense the NO signal and alter its growth accordingly.  

Interestingly, these proteins had previously been shown to control the plant response to low oxygen stress, which occurs when plants are flooded. Therefore they appear to act as central “gas detectors”, providing plants with an inbuilt mechanism for sensing and responding to different gas signals.  

Due to the importance of both NO and oxygen in plant development and stress responses, these proteins represent promising targets in the development of crops that have improved agricultural traits, particularly in relation to climate change. 

The work was carried out by Professor Holdsworth and his team in the School of Biosciences in collaboration with researchers at the Universities of Sheffield, Warwick, Vienna, Rothamsted Research in the United Kingdom and CSIC-IBMCP in Valencia, Spain.

The work was funded by the UK Biotechnology and Biological Sciences Research Council (BBSRC), EU, Malaysian government, Spanish and Austrian government funding agencies, and by SABMiller plc.

— Ends —

Our academics can now be interviewed for broadcast via our new Globelynx fixed camera facility at the University. For further information please contact a member of the Communications team on +44 (0)115 951 5798, email mediahub@nottingham.ac.uk or see the Globelynx website for how to register for this service.

For up to the minute media alerts follow us on Twitter

Notes to editors: The University of Nottinghamhas 43,000 students and is ‘the nearest Britain has to a truly global university, with campuses in China and Malaysia modelled on a headquarters that is among the most attractive in Britain’ (Times Good University Guide 2014). It is also the most popular university among graduate employers, the world’s greenest university, and winner of the Times Higher Education Award for ‘Outstanding Contribution to Sustainable Development’. It is ranked in the World's Top 75 universities by the QS World University Rankings.

Impact: The Nottingham Campaign, its biggest-ever fundraising campaign, is delivering the University’s vision to change lives, tackle global issues and shape the future. More news…


Story credits

More information is available from Professor Michael Holdsworth on +44 (0)115 951 6046, michael.holdsworth@nottingham.ac.uk
Lindsay Brooke

Lindsay Brooke - Media Relations Manager

Email: lindsay.brooke@nottingham.ac.uk Phone: +44 (0)115 951 5751 Location: University Park

Additional resources

No additional resources for this article

Related articles

Breakthrough in the production of flood-tolerant crops

Published Date
Sunday 23rd October 2011

Nottingham scientists reveal genetic 'wiring' of seeds

Published Date
Monday 23rd May 2011

Dealing with disaster - when rooted to the spot

Published Date
Thursday 12th October 2017

New tools to breed cereal crops that survive flooding

Published Date
Friday 6th February 2015

How thirsty roots go in search of water

Published Date
Wednesday 10th May 2017

New water-hunting power of plant roots discovered

Published Date
Monday 9th June 2014

Plant sciences student showcases new crop on BBC Countryfile

Published Date
Friday 22nd August 2014

Media Relations - External Relations

The University of Nottingham
YANG Fujia Building
Jubilee Campus
Wollaton Road
Nottingham, NG8 1BB

telephone: +44 (0) 115 951 5798
email: pressoffice@nottingham.ac.uk