3D Vision for the next generation of biomaterials

 Advancedmaterialspr
26 Aug 2015 14:32:58.560
PA 135/15

The University of Nottingham is to lead a £6.5m research project which aims to make the leap from 2D to 3D in the development of advanced materials and realise the true potential of regenerative medicine and medical devices for the future.
With £5.4m from the Engineering and Physical Sciences Research Council (EPSRC) and another £1.1m from The University of Nottingham Professor Morgan Alexander, in the School of Pharmacy, and his multi-disciplinary team of experts across the University will collaborate with leading international groups to realise the vision of materials discovery in 3D, while aiming to keep the UK ahead in the global materials competition.
Professor Alexander said: “Advanced biomaterials are essential components in targeting infectious diseases and cancers. Without this leap beyond 2D screening methodologies we will miss new advanced materials because they omit architecture and often poorly represent the in vivo environment. We aim to move beyond the existing limited range of generic bio-resorbable polymeric drug and cell delivery agents to bespoke materials identified to function for specific applications.” 
Click here for full story
Materials have become an integral part of modern medicine, used to target the delivery of drugs, expand and deliver cells in regenerative medicine, and to construct a wide variety of medical devices. Over the last decade there have been huge advances with the stage now set for developing the next generation of biomaterials. 
Next generation biomaterials discovery
Advances have been made through both hypotheses relating material properties to cell response, and the discovery of new materials made using high throughput screening. Despite these advances, rational design of new biomaterials is hindered by the paucity of information on the physicochemical parameters governing the response of all cell types of interest to a broad range of materials. Defining chemistry, stiffness, topography and shape can control the response of cells to materials. This programme will focus on producing and testing large libraries of these attributes in the form of patterned surfaces, particles and more complex architectures. 
New materials will be identified for application in the areas of targeted drug delivery, regenerative medicine and advanced materials for next generation medical devices. The exploitation of the resulting lead materials will be undertaken with our network of clinical and industrial end users in existing and future projects.
The team will also investigate and develop materials that can work around the abilities of bacteria and microbes to sense and signal to each other. This could have application in the field of antimicrobial resistance.
Professor Alexander’s research will bring together, Cameron Alexander, Professor of Polymer Therapeutics, Kevin Shakesheff, Professor of Advanced Drug Delivery, and Martyn Davies, Professor of Biomedical Surface Chemistry in the School of Pharmacy; Richard Hague, Professor of Innovative Manufacturing and Tissue Engineering, Ricky Wildman, Professor of Multiphase Flow and Mechanics, and Derek Irvine, Associate Professor in Chemical Engineering  in the Faculty of Engineering; Paul Williams, Professor of Molecular Microbiology and Amir Ghaemmaghami, Professor of Immunology and Immuno-bioengineering in the School of Life Sciences; and Chris Denning, Professor of Stem Cell Biology and Dr Anna Grabowska in the School of Medicine. The University funding will also support 12 new PhD studentships.
Co-Director Professor Cameron Alexander, Professor of Polymer Therapeutics and Head of the Division of Drug Delivery and Tissue Engineering in the Faculty of Science, said: “This is a great opportunity to address unmet clinical need by identifying new biomaterials targeted to specific applications. We are really excited about having resources to lead an ambitious programme of this scope. There is real potential for targeting drugs to cancers and to infection sites, for new material-guided cell therapies to treat difficult conditions such as cardiac damage, and for innovative medical devices which can reduce infection rates.”
Minister for Life Sciences George Freeman said: “From regenerative medicine through to the next generation of cutting-edge medical devices, biomaterials will be essential components of 21st Century healthcare. This £5.4 million government investment will help researchers at The University of Nottingham to develop ground breaking new techniques that will speed up the discovery and application of these increasingly important materials.”
Professor Philip Nelson, EPSRC’s Chief Executive, said: “The development of new advanced materials is vital to extending our capabilities across a wide range of scientific disciplines. The work planned as part of this programme grant promises to find new materials that will have many applications in the healthcare sector. This grant will support some of the UK’s talented scientists and help achieve EPSRC’s vision to make the UK the best place in the world to research, discover and innovate.”

— Ends —

Our academics can now be interviewed for broadcast via our Media Hub, which offers a Globelynx fixed camera and ISDN line facilities at University Park campus. For further information please contact a member of the Communications team on +44 (0)115 951 5798, email mediahub@nottingham.ac.uk or see the Globelynx website for how to register for this service.

For up to the minute media alerts, follow us on Twitter

Notes to editors: The University of Nottingham has 43,000 students and is ‘the nearest Britain has to a truly global university, with campuses in China and Malaysia modelled on a headquarters that is among the most attractive in Britain’ (Times Good University Guide 2014). It is also one of the most popular universities in the UK among graduate employers and the winner of ‘Research Project of the Year’ at the THE Awards 2014. It is ranked in the world’s top one per cent of universities by the QS World University Rankings, and 8th in the UK by research power according to REF 2014.

The University of Nottingham in Malaysia (UNMC) is holding events throughout 2015 to celebrate 15 years as a pioneer of transnational education. Based in Semenyih, UNMC was established as the UK's first overseas campus in Malaysia and one of the first world-wide.

Impact: The Nottingham Campaign, its biggest-ever fundraising campaign, is delivering the University’s vision to change lives, tackle global issues and shape the future. More news…

Story credits

More information is available from Professor Morgan Alexander in the School of at The University of Nottingham via email morgan.alexander@nottingham.ac.uk; or Professor Cameron Alexander in the School of Pharmacy on +44 (0) 115 8467678, Cameron.alexander@nottingham.ac.uk or the EPSRC Press Office on +44 (0) 1793 444 404, pressoffice@epsrc.ac.uk
Lindsay Brooke

Lindsay Brooke - Media Relations Manager

Email: lindsay.brooke@nottingham.ac.uk Phone: +44 (0)115 951 5751 Location: University Park

Additional resources

No additional resources for this article

Related articles

Media Relations - External Relations

The University of Nottingham
YANG Fujia Building
Jubilee Campus
Wollaton Road
Nottingham, NG8 1BB

telephone: +44 (0) 115 951 5798
email: pressoffice@nottingham.ac.uk