Driving the technology behind fuel-efficient electric cars

Electric Vehicle 445 x 124
13 Jul 2016 08:00:00.000

An £830K research project to speed up the shift from fossil-fuel reliant to greener, quieter and cheaper electric vehicles, using low carbon propulsion technologies, is being run at The University of Nottingham.

The research, led by an EPSRC Challenge Network in Automotive Power Electronics, aims to support innovation in electrically-powered drive trains to benefit the entire UK automotive supply chain.

This important early-stage research will help to develop power electronics, a key enabling technology for all hybrid-electric and electric vehicles for application in the automotive sector. 

Click here for full story

Accelerating adoption of energy-efficient technologies

The results will yield direct environmental and economic benefits, ensuring that the UK automotive supply chain is well-positioned to grow its share of the global market. 

“Timely application of power electronics will enable and accelerate the development and adoption of energy-efficient and environmentally-friendly technologies,” said Director of the Challenge Network, Professor Mark Johnson, from the Faculty of Engineering at Nottingham.

“This is critical as manufacturers race to meet higher fuel-efficiency standards and cut the cost of in-car electrics, which currently make up 45 per cent of costs in modern hybrid cars.

“The EPSRC Challenge Network in Automotive Power Electronics will bring together the academic and industrial communities to identify and address the long-term challenges in the design and manufacture of automotive electrical-power conversion and conditioning systems.”

In the longer term manufacturers of power electronic modules and systems stand to gain benefits through expanded material and processing knowledge, an extended capability in high reliability packaging and integration and greater understanding of automotive system requirements. 

Benefits to other engineering sectors

In addition, the Challenge Network findings will reap significant benefits in other areas. Professor Johnson, also Director of the EPSRC Centre for Power Electronics, said: “In aerospace and rail transport, for example, integrated power electronics will permit weight reduction and yield improved safety and reliability.

In the energy sector, major opportunities are apparent in power quality control, in the renewable energy system market, in the emerging "smart grid", and in the consumer appliances sector.”

Researchers working in fields such as thermo-fluids, mechanical engineering, advanced manufacturing, physics and materials science, will be encouraged to participate in the themed workshops. They will also be invited to attend sandpits, an annual conference on power electronics, roadmap events and feasibility studies with the explicit aim of building collaborative links that can be exploited to generate additional research funding addressing the long-term technical challenges.

UK strength in power electronics

“UK-based technology and manufacturing capability is currently very strong in the power electronics sector. It is arguably one of the few areas in the electronics industry where the UK is internationally competitive across the whole supply chain from power device die, packaging and power modules to converters and drive systems,” said Jon Clare,  Deputy Director of the Challenge Network and Professor of Power Electronics at the University of Nottingham.

“The Network Challenge will provide improved design methodologies, life tests and standards that will facilitate the design and product qualification process resulting in shorter time to market. This means automotive system providers will benefit from early access to enhanced integration technologies and design methodology giving them a competitive advantage.”

— Ends —

Our academics can now be interviewed for broadcast via our Media Hub, which offers a Globelynx fixed camera and ISDN line facilities at University Park campus. For further information please contact a member of the Communications team on +44 (0)115 951 5798, email mediahub@nottingham.ac.uk or see the Globelynx website for how to register for this service.

For up to the minute media alerts, follow us on Twitter

Notes to editors: The University of Nottingham has 43,000 students and is ‘the nearest Britain has to a truly global university, with a “distinct” approach to internationalisation, which rests on those full-scale campuses in China and Malaysia, as well as a large presence in its home city.’ (Times Good University Guide 2016). It is also one of the most popular universities in the UK among graduate employers and was named University of the Year for Graduate Employment in the 2017 The Times and The Sunday Times Good University Guide. It is ranked in the world’s top 75 by the QS World University Rankings 2015/16, and 8th in the UK for research power according to the Research Excellence Framework 2014. It has been voted the world’s greenest campus for four years running, according to Greenmetrics Ranking of World Universities.

Impact: The Nottingham Campaign, its biggest-ever fundraising campaign, is delivering the University’s vision to change lives, tackle global issues and shape the future. More news…

Story credits

More information is available from Professor Mark Johnson, Department of Electrical and Electronic Engineering, University of Nottingham, on +44 (0)115 8468685, mark.johnson@nottingham.ac.uk
EmmaLowry

Emma Lowry - Media Relations Manager

Email: emma.lowry@nottingham.ac.uk  Phone: +44 (0)115 846 7156  Location: University Park

Additional resources

No additional resources for this article

Related articles

Media Relations - External Relations

The University of Nottingham
YANG Fujia Building
Jubilee Campus
Wollaton Road
Nottingham, NG8 1BB

telephone: +44 (0) 115 951 5798
email: pressoffice@nottingham.ac.uk