Improving modern vaccines - sugar polymer tails wag the protein dog

 glycovaccinepr
07 Mar 2016 14:05:48.227

PA 53/16

Millions of people – particularly infants in underdeveloped countries – suffer from the serious life threatening illnesses of meningitis, pneumonia and influenza.  These are due to infection by microbes such as N. meninigitidis, S. pneumoniae and H. influenzae b.

Early vaccines were based on the large and complex carbohydrate (sugar) based polymers produced by the bacteria. More recently new glycoconjugate vaccines have been developed which involves ‘fusing’ the complex carbohydrates – the sugar polymer tails - onto carrier proteins. These sugar-protein complexes improve the effectiveness and longevity of the vaccine. However, there are still problems concerning the stability of formulations they are prepared in.

Scientists at The University of Nottingham’s National Centre for Macromolecular Hydrodynamics have just published the third in a series of papers showing that the sugar chains control the physical behaviour of these vaccines in the aqueous preparations used in their delivery. It is hoped this research into the hydrodynamic properties of vaccine preparations will help lead to the development of improved and more stable vaccines.

Click here for full story

Story credits

More information is available from Professor Stephen Harding in the School of Biosciences at The University of Nottingham, on +44 (0) 115 951 6148 steve.harding@nottingham.ac.uk
Lindsay Brooke

Lindsay Brooke - Media Relations Manager

Email: lindsay.brooke@nottingham.ac.uk Phone: +44 (0)115 951 5751 Location: University Park

Additional resources

No additional resources for this article

Related articles

No related articles

Media Relations - External Relations

The University of Nottingham
YANG Fujia Building
Jubilee Campus
Wollaton Road
Nottingham, NG8 1BB

telephone: +44 (0) 115 951 5798
email: pressoffice@nottingham.ac.uk