Accelerating fuel-efficient car production with disruptive 3D print process

FLAC lattice new 445 x 124
19 Jan 2017 09:55:04.470

Engineers at The University of Nottingham are developing lightweight automotive components using new additive manufacturing processes to boost vehicle fuel efficiency, while cutting noise and CO2 emissions.

The components will be constructed using selective laser melting (SLM). SLM uses a 3-Dimensional Computer Aided Design (CAD) model to digitally reproduce the object in a number of layers. 

Each layer is sequentially recreated by melting sections of a bed of aluminium alloy powder using a laser beam. Layer by layer, the melted particles fuse and solidify to form novel structures that can be made up from complex lattices to provide a light-weight component. 

Click here for full story

SLM is a highly disruptive AM technology, helping to increase functionality and lower the number of separate components in production. This significant mass saving cuts component costs and increases overall vehicle efficiency. 

The Functional Lattices for Automotive Components (FLAC) project aims to achieve significant weight reductions in mass (40-80 per cent) and optimised thermo-mechanical performance in new vehicle components.

The use of advanced lightweight materials in the project will serve to minimise wastage. Only the required material is incorporated into the built component, reducing costs, increasing the ability to manipulate the material to achieve the required performance and efficiency.

Environmental advantages include the inherent recyclability of the aluminium powder waste, reduced transportation and the elimination of special tooling and hazardous cutting fluids to produce the SLM parts.

The three-year FLAC project also will demonstrate the viability and cost analysis of the industrialisation of SLM, along with possible manufacturing routes and supply chain models. 

FLAC project lead, Professor Chris Tuck, from the Additive Manufacturing and 3D Printing Research Group, said: “FLAC will benefit UK automotive companies, increasing their competitiveness by allowing them to adopt innovative routes for the design and manufacture of lightweight on-vehicle componentry, with shorter lead times and lower costs than are presently available."

The University of Nottingham has secured £368,286 for it's part in the FLAC project from Innovate UK (the total for all partners was £1.7m) to investigate components such as brake calipers, heat sinks for LED headlights and power train sub-systems.

The short-term market opportunity for these components - which will also deliver a decrease in CO2 emissions by 16.97g/km - lies in the luxury car and motorsport markets.                                                

Professor Tuck said: “The automotive sector is one of the UK’s leading export sectors by value, representing around 6.3 per cent of all UK exports. Successful delivery of FLAC’s portfolio will enhance the R&D leadership in the key automotive technologies, and strengthen the UK automotive supply chain, resulting in increased revenues to the UK economy and government.”

— Ends —

Our academics can now be interviewed for broadcast via our Media Hub, which offers a Globelynx fixed camera and ISDN line facilities at University Park campus. For further information please contact a member of the Communications team on +44 (0)115 951 5798, email mediahub@nottingham.ac.uk or see the Globelynx website for how to register for this service.

For up to the minute media alerts, follow us on Twitter

Notes to editors: The University of Nottingham has 43,000 students and is ‘the nearest Britain has to a truly global university, with a “distinct” approach to internationalisation, which rests on those full-scale campuses in China and Malaysia, as well as a large presence in its home city.’ (Times Good University Guide 2016). It is also one of the most popular universities in the UK among graduate employers and was named University of the Year for Graduate Employment in the 2017 The Times and The Sunday Times Good University Guide. It is ranked in the world’s top 75 by the QS World University Rankings 2015/16, and 8th in the UK for research power according to the Research Excellence Framework 2014. It has been voted the world’s greenest campus for four years running, according to Greenmetrics Ranking of World Universities.

Impact: The Nottingham Campaign, its biggest-ever fundraising campaign, is delivering the University’s vision to change lives, tackle global issues and shape the future. More news…

Story credits

More information is available from Professor Christopher Tuck in Faculty of Engineering, University of Nottingham on +44 (0)115 9513702, Christopher.tuck@nottingham.ac.uk
EmmaLowry

Emma Lowry - Media Relations Manager

Email: emma.lowry@nottingham.ac.uk  Phone: +44 (0)115 846 7156  Location: University Park

Additional resources

No additional resources for this article

Related articles

Media Relations - External Relations

The University of Nottingham
YANG Fujia Building
Jubilee Campus
Wollaton Road
Nottingham, NG8 1BB

telephone: +44 (0) 115 951 5798
email: pressoffice@nottingham.ac.uk