article

CaterpillarCordyceps

Research shows caterpillar fungus can slow down growth of cancer cells

Thursday, 07 November 2024

New research into a chemical produced by a caterpillar fungus that has shown promise as a possible cancer treatment has revealed how it interacts with genes to interrupt cell growth signals. The discovery is an important step towards developing new drugs for the treatment of the disease.

The research has revealed how the chemical Cordycepin may work as a cancer treatment. It interrupts the cell growth signals that are overactive in cancer, an approach that could be less damaging to healthy tissues than most currently available treatments.

Scientists from the University of Nottingham’s School of Pharmacy have been studying how a parasitic fungus that grows on caterpillars could work as a potential treatment for a range of diseases by studying Cordycepin, one of the drugs found in these mushrooms. The research has been published in the journal FEBS Letters.

The caterpillar fungi are famous in Asia as a health food and traditional medicine. Cordycepin, which is produced by Cordyceps militaris, a pretty orange fungus that infects caterpillars, has shown promise as a cancer medicine in a range of studies, but until now it has been unclear how it works.

Using high-throughput techniques the research team measured the effects of Cordycepin on the activity of thousands of genes in multiple cell lines. The research compared the effects of cordycepin with those from other treatments deposited in databases and showed that it works by acting on the growth inducing pathways of the cell in all cases.

By studying what happens to Cordycepin inside the cell, the team confirmed that Cordycepin is converted to Cordycepin Triphosphate, an analogue of the cell’s energy carrier ATP. Cordycepin triphosphate was shown to be the likely cause of the effects on cell growth, and therefore the molecule that can directly affect cancer cells.

Dr Cornelia de Moor in the School of Pharmacy has led this research, she explains: “We have been researching the effects of Cordycepin on a range of diseases for a number of years and with each step we get closer to understanding how it could be used as an effective treatment. One of the exciting things to have been happening is that it has become easier and less expensive to do these very large experiments, so we were able to examine thousands of genes at the same time.

Our data confirms that Cordycepin is a good starting point for novel cancer medicines and explains its beneficial effects. For instance, derivatives of cordycepin could aim to produce the triphosphate form of the drug to have the same effect. In addition, the data will help with monitoring the effects of cordycepin in patients, as our data indicate particular genes whose activity reliably responds to cordycepin, which could for instance be measured in blood cells.
Dr Cornelia de Moor, School of Pharmacy

Story credits

More information is available from Dr Cornelia De Moor on cornelia.de_moor@nottingham.ac.uk

janeicke
Jane Icke - Media Relations Manager Science
Email: jane.icke@nottingham.ac.uk
Phone: 0115 7486462
Location:

Notes to editors:

About the University of Nottingham

Ranked 32 in Europe and 16th in the UK by the QS World University Rankings: Europe 2024, the University of Nottingham is a founding member of the Russell Group of research-intensive universities. Studying at the University of Nottingham is a life-changing experience, and we pride ourselves on unlocking the potential of our students. We have a pioneering spirit, expressed in the vision of our founder Sir Jesse Boot, which has seen us lead the way in establishing campuses in China and Malaysia - part of a globally connected network of education, research and industrial engagement.

Nottingham was crowned Sports University of the Year by The Times and Sunday Times Good University Guide 2024 – the third time it has been given the honour since 2018 – and by the Daily Mail University Guide 2024.

The university is among the best universities in the UK for the strength of our research, positioned seventh for research power in the UK according to REF 2021. The birthplace of discoveries such as MRI and ibuprofen, our innovations transform lives and tackle global problems such as sustainable food supplies, ending modern slavery, developing greener transport, and reducing reliance on fossil fuels.

The university is a major employer and industry partner - locally and globally - and our graduates are the second most targeted by the UK's top employers, according to The Graduate Market in 2022 report by High Fliers Research.

We lead the Universities for Nottingham initiative, in partnership with Nottingham Trent University, a pioneering collaboration between the city’s two world-class institutions to improve levels of prosperity, opportunity, sustainability, health and wellbeing for residents in the city and region we are proud to call home.

More news…

Media Relations - External Relations

The University of Nottingham
YANG Fujia Building
Jubilee Campus
Wollaton Road
Nottingham, NG8 1BB

telephone: +44 (0) 115 951 5798
email: pressoffice@nottingham.ac.uk