Contact
Research Summary
My full publication list can be found here Google Scholar
My research interests include the electrical control and imaging of antiferromagnetic, altermagnetic and nodal fully compensated magnetic order.
Research highlights include the first direct demonstration of the spin split nature of altermagnetic order (J. Krempaský, P. Wadley et al - Nature volume 626, 517-522 (2024) - https://doi.org/10.1038/s41586-023-06907-7)
Unique imaging and control of altermagnets (O. J. Amin...., P. Wadley - Nature (in-press) https://doi.org/10.48550/arXiv.2405.02409
Research Highlights
- Altermagnetism imaged and controlled down to the nanoscale
O. J. Amin, A. Dal Din, E. Golias, Y. Niu, A. Zakharov, S. C. Fromage, C. J. B. Fields, S. L. Heywood, R. B. Cousins, J. Krempasky, J. H. Dil, D. Kriegner, B. Kiraly, R. P. Campion, A. W. Rushforth, K. W. Edmonds, S. S. Dhesi, L. Šmejkal, T. Jungwirth, P. Wadley
https://doi.org/10.48550/arXiv.2405.02409
Accepted (30/09/2024) - in press Nature
This project utilised the unique properties of altermagnets to pioneer a new way of imaging and controlling altermagnetism. Accepted for publication in Nature and will be featured in a forthcoming Financial Times article.
- Altermagnetic lifting of Kramers spin degeneracy
J. Krempaský, L. Šmejkal, S. W. D'Souza, M. Hajlaoui, G. Springholz, K. Uhlířová, F. Alarab, P. C. Constantinou, V. Strocov, D. Usanov, W. R. Pudelko, R. González-Hernández, A. Birk Hellenes, Z. Jansa, H. Reichlová, Z. Šobáň, R. D. Gonzalez Betancourt, P. Wadley, J. Sinova, D. Kriegner, J. Minár, J. H. Dil & T. Jungwirth
Nature volume 626, 517-522 (2024).
https://doi.org/10.1038/s41586-023-06907-7
The first direct experimental evidence of the spin split nature of the altermagnetic band structure. Currently in the top 0.1% of most cited articles in Physics.
- Electrical switching of an antiferromagnet*
P. Wadley, B. Howells, J. Železný, C. Andrews, V. Hills, R. P. Campion, V. Novák, K. Olejník, F. Maccherozzi, S. S. Dhesi, S. Y. Martin, T. Wagner, J. Wunderlich, F. Freimuth, Y. Mokrousov, J. Kuneš, J. S. Chauhan, M. J. Grzybowski, A. W. Rushforth, K. W. Edmonds, B. L. Gallagher, and T. Jungwirth.
Science 351, 6273, 587 (2016).
DOI: 10.1126/science.aab1031
(See also perspective article in the same issue - Marrows "Addressing an antiferromagnetic memory")
First demonstration that antiferromagnetic order can be efficiently and reversibly controlled using ordinary electrical currents, completely transforming the field of AF spintronics.
- Antiferromagnetic half-skyrmions electrically generated and controlled at room temperature
OJ Amin, SF Poole, S Reimers, LX Barton, A Dal Din, F Maccherozzi, SS Dhesi, V Novák, F Krizek, JS Chauhan, RP Campion, AW Rushforth, T Jungwirth, OA Tretiakov, KW Edmonds, P. Wadley Nature Nanotechnology 18, 849-853 (2023) (https://www.nature.com/articles/s41565-023-01386-3)
I led and designed this project showing the first electrical generation and control of tiny "swirling knots", half-skyrmions, in the magnetic order of an antiferromagnet. Predicted to be a highly promising route forward for low-loss, ultrafast memory devices and a highly significant step towards application.
- Current polarity dependent manipulation of antiferromagnetic domains Wadley P, Reimers S, Grzybowski MJ, Andrews C, Wang M, Chauhan JS, Gallagher BL, Campion RP, Edmonds KW, Dhesi SS, Maccherozzi F, Novak V, Wunderlich J and Jungwirth T. NATURE NANOTECHNOLOGY,(2018)Vol. 13(5) (https://www.nature.com/articles/s41565-018-0079-1)
This is the first demonstration of a two-terminal means of controlling antiferromagnetic order. This has significant impact for technology because it reduces the footprint of each device allowing higher component density. I was the main contributor, lead and corresponding author for this work.
- Quenching of an antiferromagnet into high resistivity states using electrical or ultrashort optical pulses
Zdeněk Kašpar, Miloslav Surýnek, Jan Zubáč, Filip Krizek, Vít Novák, Richard P Campion, Martin S Wörnle, Pietro Gambardella, Xavier Marti, Petr Němec, KW Edmonds, S Reimers, OJ Amin, F Maccherozzi, Sarnjeet S Dhesi, Peter Wadley, Jörg Wunderlich, Kamil Olejník, Tomáš Jungwirth Nature Electronics 4 (1), 30-37
https://www.nature.com/articles/s41928-020-00506-4)
This discovery represents the first demonstration of an entirely novel class of magnetic memory with huge potential benefits over existing types.
- "Atomically sharp domain walls in an antiferromagnet" Filip Krizek, Sonka Reimers, Zdeněk Kašpar, Alberto Marmodoro, Jan Michalička, Ondřej Man, Alexander Edström, Oliver J Amin, Kevin W Edmonds, Richard P Campion, Francesco Maccherozzi, Samjeet S Dhesi, Jan Zubáč, Dominik Kriegner, Dina Carbone, Jakub Železný, Karel Výborný, Kamil Olejník, Vít Novák, Jan Rusz, Juan-Carlos Idrobo, Peter Wadley, Tomas Jungwirth. SCIENCE ADVANCES 30, 8, 13 (May 2022) https://www.science.org/doi/10.1126/sciadv.abn3535-
The discovery of a new type of magnetic domain wall with the potential to create memory devices at the atomic limit.
- Imaging Current-Induced Switching of Antiferromagnetic Domains in CuMnAs MJ Grzybowski, P Wadley, KW Edmonds, R Beardsley, V Hills, RP Campion, BL Gallagher, Jasbinder S Chauhan, V Novak, T Jungwirth, F Maccherozzi, SS Dhesi. PHYSICS REVIEW LETTERS 118 (5), 057701 (2017) DOI: 10.1103/PhysRevLett.118.057701 This work conducted in collaboration with Diamond light Source represents the first imaging of electrical switching in an antiferromagnet. It paved the way for many other groups to image their antiferromagnet.
- Terahertz electrical writing speed in an antiferromagnetic memory.
Olejnik, K., Seifert, T., Kaspar, Z., Novak, V., Wadley, P., Campion, R. P., Baumgartner, M., Gambardella, P., Nemec, P., Wunderlich, J., Sinova, J., Muller, M., Kampfrath, T. & Jungwirth, T. SCIENCE ADVANCES, 4(3), MAR 2018.
DOI: 10.1126/sciadv.aar3566
First demonstration of the enhanced dynamics and lower energy requirements of antiferromagnetic switching.
- Room-temperature antiferromagnetic memory resistor. X. Marti, I. Fina, C. Frontera, Jian Liu, P. Wadley, Q. He, R. J. Paull, J. D. Clarkson, J. Kudrnovský, I. Turek, J. Kuneš, D. Yi, J-H. Chu, C. T. Nelson, L. You, E. Arenholz, S. Salahuddin, J. Fontcuberta, T. Jungwirth, and R. Ramesh NATURE MATERIALS, 13(4):367-374 (2014)
https://doi.org/10.1038/nmat3861
The first demonstration of antiferromagnetic anisotropic magnetoresistance
Recent Publications
SAIDL, V., NEMEC, P., WADLEY, P., HILLS, V., CAMPION, R. P., NOVAK, V., EDMONDS, K. W., MACCHEROZZI, F., DHESI, S. S., GALLAGHER, B. L., TROJANEK, F., KUNES, J., ZELEZNY, J., MALY, P. and JUNGWIRTH, T., 2017. Optical determination of the Neel vector in a CuMnAs thin-film antiferromagnet NATURE PHOTONICS. 11(2), 91-96 OLEJNIK, K., SCHULER, V., MARTI, X., NOVAK, V., KASPAR, Z., WADLEY, P., CAMPION, R. P., EDMONDS, K. W., GALLAGHER, B. L., GARCES, J., BAUMGARTNER, M., GAMBARDELLA, P. and JUNGWIRTH, T., 2017. Antiferromagnetic CuMnAs multi-level memory cell with microelectronic compatibility NATURE COMMUNICATIONS. 8, WADLEY, P., HOWELLS, B., ZELEZNY, J., ANDREWS, C., HILLS, V., CAMPION, R. P., NOVAK, V., OLEJNIK, K., MACCHEROZZI, F., DHESI, S. S., MARTIN, S. Y., WAGNER, T., WUNDERLICH, J., FREIMUTH, F., MOKROUSOV, Y., KUNES, J., CHAUHAN, J. S., GRZYBOWSKI, M. J., RUSHFORTH, A. W., EDMONDS, K. W., GALLAGHER, B. L. and JUNGWIRTH, T., 2016. Electrical switching of an antiferromagnet SCIENCE. 351(6273), 587-590 KATS, V. N., LINNIK, T. L., SALASYUK, A. S., RUSHFORTH, A. W., WANG, M., WADLEY, P., AKIMOV, A. V., CAVILL, S. A., HOLY, V., KALASHNIKOVA, A. M. and SCHERBAKOV, A. V., 2016. Ultrafast changes of magnetic anisotropy driven by laser-generated coherent and noncoherent phonons in metallic films PHYSICAL REVIEW B. 93(21), 4422-4422
Research Highlights
- Altermagnetism imaged and controlled down to the nanoscale
O. J. Amin, A. Dal Din, E. Golias, Y. Niu, A. Zakharov, S. C. Fromage, C. J. B. Fields, S. L. Heywood, R. B. Cousins, J. Krempasky, J. H. Dil, D. Kriegner, B. Kiraly, R. P. Campion, A. W. Rushforth, K. W. Edmonds, S. S. Dhesi, L. Šmejkal, T. Jungwirth, P. Wadley
https://doi.org/10.48550/arXiv.2405.02409
Accepted (30/09/2024) - in press Nature
This project utilised the unique properties of altermagnets to pioneer a new way of imaging and controlling altermagnetism. Accepted for publication in Nature and will be featured in a forthcoming Financial Times article.
- Altermagnetic lifting of Kramers spin degeneracy
J. Krempaský, L. Šmejkal, S. W. D'Souza, M. Hajlaoui, G. Springholz, K. Uhlířová, F. Alarab, P. C. Constantinou, V. Strocov, D. Usanov, W. R. Pudelko, R. González-Hernández, A. Birk Hellenes, Z. Jansa, H. Reichlová, Z. Šobáň, R. D. Gonzalez Betancourt, P. Wadley, J. Sinova, D. Kriegner, J. Minár, J. H. Dil & T. Jungwirth
Nature volume 626, 517-522 (2024).
https://doi.org/10.1038/s41586-023-06907-7
The first direct experimental evidence of the spin split nature of the altermagnetic band structure. Currently in the top 0.1% of most cited articles in Physics.
- Electrical switching of an antiferromagnet*
P. Wadley, B. Howells, J. Železný, C. Andrews, V. Hills, R. P. Campion, V. Novák, K. Olejník, F. Maccherozzi, S. S. Dhesi, S. Y. Martin, T. Wagner, J. Wunderlich, F. Freimuth, Y. Mokrousov, J. Kuneš, J. S. Chauhan, M. J. Grzybowski, A. W. Rushforth, K. W. Edmonds, B. L. Gallagher, and T. Jungwirth.
Science 351, 6273, 587 (2016).
DOI: 10.1126/science.aab1031
(See also perspective article in the same issue - Marrows "Addressing an antiferromagnetic memory")
First demonstration that antiferromagnetic order can be efficiently and reversibly controlled using ordinary electrical currents, completely transforming the field of AF spintronics.
- Antiferromagnetic half-skyrmions electrically generated and controlled at room temperature
OJ Amin, SF Poole, S Reimers, LX Barton, A Dal Din, F Maccherozzi, SS Dhesi, V Novák, F Krizek, JS Chauhan, RP Campion, AW Rushforth, T Jungwirth, OA Tretiakov, KW Edmonds, P. Wadley Nature Nanotechnology 18, 849-853 (2023) (https://www.nature.com/articles/s41565-023-01386-3)
I led and designed this project showing the first electrical generation and control of tiny "swirling knots", half-skyrmions, in the magnetic order of an antiferromagnet. Predicted to be a highly promising route forward for low-loss, ultrafast memory devices and a highly significant step towards application.
- Current polarity dependent manipulation of antiferromagnetic domains Wadley P, Reimers S, Grzybowski MJ, Andrews C, Wang M, Chauhan JS, Gallagher BL, Campion RP, Edmonds KW, Dhesi SS, Maccherozzi F, Novak V, Wunderlich J and Jungwirth T. NATURE NANOTECHNOLOGY,(2018)Vol. 13(5) (https://www.nature.com/articles/s41565-018-0079-1)
This is the first demonstration of a two-terminal means of controlling antiferromagnetic order. This has significant impact for technology because it reduces the footprint of each device allowing higher component density. I was the main contributor, lead and corresponding author for this work.
- Quenching of an antiferromagnet into high resistivity states using electrical or ultrashort optical pulses
Zdeněk Kašpar, Miloslav Surýnek, Jan Zubáč, Filip Krizek, Vít Novák, Richard P Campion, Martin S Wörnle, Pietro Gambardella, Xavier Marti, Petr Němec, KW Edmonds, S Reimers, OJ Amin, F Maccherozzi, Sarnjeet S Dhesi, Peter Wadley, Jörg Wunderlich, Kamil Olejník, Tomáš Jungwirth Nature Electronics 4 (1), 30-37
https://www.nature.com/articles/s41928-020-00506-4)
This discovery represents the first demonstration of an entirely novel class of magnetic memory with huge potential benefits over existing types.
- "Atomically sharp domain walls in an antiferromagnet" Filip Krizek, Sonka Reimers, Zdeněk Kašpar, Alberto Marmodoro, Jan Michalička, Ondřej Man, Alexander Edström, Oliver J Amin, Kevin W Edmonds, Richard P Campion, Francesco Maccherozzi, Samjeet S Dhesi, Jan Zubáč, Dominik Kriegner, Dina Carbone, Jakub Železný, Karel Výborný, Kamil Olejník, Vít Novák, Jan Rusz, Juan-Carlos Idrobo, Peter Wadley, Tomas Jungwirth. SCIENCE ADVANCES 30, 8, 13 (May 2022) https://www.science.org/doi/10.1126/sciadv.abn3535-
The discovery of a new type of magnetic domain wall with the potential to create memory devices at the atomic limit.
- Imaging Current-Induced Switching of Antiferromagnetic Domains in CuMnAs MJ Grzybowski, P Wadley, KW Edmonds, R Beardsley, V Hills, RP Campion, BL Gallagher, Jasbinder S Chauhan, V Novak, T Jungwirth, F Maccherozzi, SS Dhesi. PHYSICS REVIEW LETTERS 118 (5), 057701 (2017) DOI: 10.1103/PhysRevLett.118.057701 This work conducted in collaboration with Diamond light Source represents the first imaging of electrical switching in an antiferromagnet. It paved the way for many other groups to image their antiferromagnet.
- Terahertz electrical writing speed in an antiferromagnetic memory.
Olejnik, K., Seifert, T., Kaspar, Z., Novak, V., Wadley, P., Campion, R. P., Baumgartner, M., Gambardella, P., Nemec, P., Wunderlich, J., Sinova, J., Muller, M., Kampfrath, T. & Jungwirth, T. SCIENCE ADVANCES, 4(3), MAR 2018.
DOI: 10.1126/sciadv.aar3566
First demonstration of the enhanced dynamics and lower energy requirements of antiferromagnetic switching.
- Room-temperature antiferromagnetic memory resistor. X. Marti, I. Fina, C. Frontera, Jian Liu, P. Wadley, Q. He, R. J. Paull, J. D. Clarkson, J. Kudrnovský, I. Turek, J. Kuneš, D. Yi, J-H. Chu, C. T. Nelson, L. You, E. Arenholz, S. Salahuddin, J. Fontcuberta, T. Jungwirth, and R. Ramesh NATURE MATERIALS, 13(4):367-374 (2014)
https://doi.org/10.1038/nmat3861
The first demonstration of antiferromagnetic anisotropic magnetoresistance