The Granger Centre for Time Series Econometrics

GC 06/04: Testing for a change in persistence in the presence of non-stationary volatility

 

Abstract

In this paper we consider tests for the null of (trend-) stationarity against the alternative of a change in persistence at some (known or unknown) point in the observed sample, either from I(0) to I(1) behaviour or vice versa, of, inter alia, Kim (2000). We show that in circumstances where the innovation process displays non-stationary unconditional volatility of a very general form, which includes single and multiple volatility breaks as special cases, the ratio-based statistics used to test for persistence change do not have pivotal limiting null distributions. Numerical evidence suggests that this can cause severe over-sizing in the tests. In practice it may therefore be hard to discriminate between persistence change processes and processes with constant persistence but which display time-varying unconditional volatility. We solve the identified inference problem by proposing wild bootstrap-based implementations of the tests. Monte Carlo evidence suggests that the bootstrap tests perform well in finite samples. An empirical application to a variety of measures of U.S. price inflation data is provided.

Download the paper in PDF format

Authors

Giuseppe Cavaliere and A. M. Robert Taylor

 

View all Granger Centre discussion papers | View all School of Economics featured discussion papers

 

Posted on Saturday 1st July 2006

The Granger Centre for Time Series Econometrics

School of Economics
University of Nottingham
University Park
Nottingham, NG7 2RD


lorenzo.trapani@nottingham.ac.uk