School of Pharmacy

Image of Lee Buttery

Lee Buttery

Associate Professor in Cell Biology/Tissue Engineering, Faculty of Science

Contact

Biography

I gained a BSc (Hons) degree in Applied Zoology at the University of Leeds in 1987 and MSc (Biomolecular Organization; 1990) and PhD (Medicine/Pathology; 1996) degrees at the University of London. Prior to moving to Nottingham in 2003, I was based largely at the former Royal Postgraduate Medical School, now part of Imperial College London working with late Professor Dame Julia Polak. My PhD focussed on investigating the distributions and possible functions of nitric oxide/nitric oxide synthases in the physiology and pathology of a variety of tissues and organs and I was fortunate enough to publish some of the first papers on the involvement of these molecules in human diseases, notably in the cardiovascular system.

My first postdoctoral position was held jointly between Imperial College and the Royal London Hospital School of Medicine and Dentistry (with Professor Francis Hughes) looking at the roles of the nitric oxide and prostaglandin pathways in bone biology, specifically the osteoblast.

I returned full time to Imperial College in 1999 to take up a lectureship in cell biology and tissue engineering and was also actively involved in establishing the Tissue Engineering Centre. From 1999 onwards my research has been focused primarily on osteoblast biology and approaches to tissue engineer and model bone biology, pathology and repair. At this time I also began working with mouse and human embryonic stem cells resulting in the publication of some of the first papers describing the osteogenic differentiation of mouse ES and human cells in vitro and in vivo.

In 2003 I moved to the University Nottingham and the School of Pharmacy. I was also affiliated with the Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), part of the Centre for Biomolecular Sciences, which is now the Biodiscovery Institute. My research continues to focus on stem cells and osteoblasts and in particular 3D cell culture models and microenvironments. I work on various biochemical and biophysical approaches to investigate and control cell-cell, cell-scaffold interactions.

Coordinator (Nottingham) of EPSRC/MRC CDT in Regenerative Medicine http://www.dtcregen-med.com/

Expertise Summary

Histology, immunocytochemistry, general cell biology, 2D and 3D cell culture (including embryonic stem cell, mesenchymal stem cells and primary tissue-derived cells), holographic optical tweezers (for cell biology)

Teaching Summary

I teach on the Master of Pharmacy (MPharm) and Master of Science / Bachelor of Science (MSci/BSc) in Pharmaceutical Sciences courses. I cover mainly cell biology and physiology.

Modules MPharm;

Year 1. Fundamentals of Pharmacy, Bacterial and Fungal Infections

Year 3. Research Project

Year 4 Future Medicines

Modules MSci/BSc Pharmaceutical Science:

Year 1. Cardiovascular and Haematology

Basic cell biology (structure and organization of the cell and biological macromolecules)

Pharmaceutical microbiology -bacterial pathogens, pathogenesis of bacterial infections, infection control and management

Stem cell biology - basics of stem cell sources/origins, self-renewal and differentiation

Tissue engineering and regenerative medicine

I am also UG Admissions Tutor to the School of Pharmacy and coordinate recruitment activities (open days, offer holder days) and selection of candidates to the MPharm course in particular.

Research Summary

My research interests focus mainly on stem cells (embryonic, 'adult' and fetal origins) and their applications in tissue engineering, particularly the osteoblast and bone tissue. I am involved in a… read more

Selected Publications

Current Research

My research interests focus mainly on stem cells (embryonic, 'adult' and fetal origins) and their applications in tissue engineering, particularly the osteoblast and bone tissue. I am involved in a number of projects to investigate the influence of 3-D cell-cell, cell-scaffold/matrix interactions and angiogenesis / vasoreactivity on the induction and control of stem cell differentiation.

I also work with optical tweezers to precisely position stem cells to simulate/recreate the stem cell niche and probe the role of cell-cell, cell-cytokine and cell-scaffold interactions in controlling stem cell potency and differentiation.

Other projects and interests include tissue engineering of human bronchiolar tissue (with Professor Felicity Rose/Dr Amanda Tatler, University of Nottingham).

Notable collaborations/collaborators include;

Professor Morgan Alexander (Nottingham) - cell-materials interactions

Professor Amir Ghaemmaghami (Nottingham) - osteoblast-macrophage interactions

Professor Matthew Dalby (University of Glasgow) - osteoblasts and cell mechanics/signalling

Dr Glen Kirkham (Nottingham Trent) Optical tweezers, cell patterning, localized signal gradients

Past Research

Worked for 11 years at the Royal Postgraduate Medical School/Imperial College in cell pathology and in particular investigation of the contribution of nitric oxide and nitric oxide synthases to disease processes including human atherosclerosis, sepsis and more latterly bone damage/turnover.

Future Research

3D in vitro model of bone fracture callus - focus on osteoblast-macrophage interactions

Building 3D microenvironments to study early embryogenesis

School of Pharmacy

University of Nottingham
University Park
Nottingham, NG7 2RD

For all enquiries please visit:
www.nottingham.ac.uk/enquiry