School of Mathematical Sciences

Coherent states, nonhermitian Quantum Mechanics and PT-symmetry

Project description

Heisenberg's uncertainty principle states that momentum and position cannot be sharp at the same time because there is a lower bound for the product of the uncertaincies. Coherent states can be defined as the states that minimize the uncertainty -- in this sense they are as close as quantum mechanics allows to describe a classical point particle. When a quantum system starts in a coherent states it's expectation values follow the classical equations of motion while the shape of the wave function often changes only very slowly. Coherent states are an important tool to understand the corresp[ondence between quantum and classical dynamics.

In this project this correspondence will be analysed for a generalized quantum dynamics where the Hamilton operator is not required to be Hermitian. Such dynamics can arise in practice as an effective description for an open quantum system with eitehr decay or gain. Accordingly the energy eigenvalues may have an imaginary part that describes the loss or gain. Recently there have also be suggestions that non-hermitian Hamilton operators could play a fundamental role in quantum mechanics if the Hamilton operator remains symmetric with respect to a combined operatyion of parity P and time reversal T. Such PT-symmetric dynamics have a balance between gain and loss which can lead to real energy eigenvalues. Classical to quantum correspondence for such systems remains an open research topic and this project will aim at getting a clear understanding of the underlying classical dynamics using coherent states as the main tool.

Supervisor contacts

 

Related research centre or theme

Quantum Information and Metrology

Quantum Mathematics

 
 

 

 

Project published references

  • S.Gnutzmann, M Kus, Coherent states and the classical limit on irreducible SU3 representations, J. Phys. A 31, 9871 (1998)
  • E.-M. Graefe, M. Höning, H.J. Korsch, Classical limit of non-Hermitian quantum dynamic - a generalized canonical structure, J. Phys A 43, 075306 (2010)
  • E.-M. Graefe, R. Schubert, Complexified coherent states and quantum evolution with non-Hermitian Hamiltonians, J. Phys. A 45, 244033 (2012)
  • C.M. Bender, M. DeKieviet, S.P. Klevansky, PT Quantum Mechanics, Philosophical Transactions of the Royal Society A 371, 20120523 (2013)

More information

Full details of our Maths PhD

How to apply to the University of Nottingham

School of Mathematical Sciences

The University of Nottingham
University Park
Nottingham, NG7 2RD

For all enquiries please visit:
www.nottingham.ac.uk/enquire