Modelling wave propagation in meta-materials: a graph network approach
Project description
A meta-material exhibits exotic properties, such as negative refraction, wave cloaking and non-reciprocal response, amongst others. These properties allow one to manipulate the propagation of waves in such a way as to, for example, realise an “invisible cloak”. Constructing meta-materials is not a trivial task, as one needs to judiciously design the material “atom-by-atom” in a periodic or aperiodic fashion using multiple-coupled geometrical and physical material parameters.
The fascinating properties of meta-materials occur at the interface where a continuum model can be used for the periodic structure (limit of large wave length) and the discrete “atomic” limit, where wave interference dominates (limit of small wave length). The aim of the project is to study this critical wavelength region using wave models on graph networks. The PhD project will develop such graph network models to study the dispersion relations of periodic meta-materials. The student will be introduced to the relevant electromagnetics theory and graph network techniques and will study the fundamental dynamics of rays and waves propagating through 1D and 2D meta-material structures modelling electromagnetic meta-surfaces, widely used for the manipulation of electromagnetic wave-front for fast signal processing and which can be realized in the laboratory. At a later stage of the project, the model parameters will be adjusted to mimic properties of meta-materials as they are produced in The Centre for Additive Manufacturing in Nottingham. Those structures are relevant for the next generation of electronics components and for cloaking of 3D objects.
Dr Gabriele Gradoni is also based at George Green Institute of Electromagnetics Research in the Faculty of Engineering.
More information
Full details of our Maths PhD
How to apply to the University of Nottingham