Properties of Banach function algebras and their extensions
Project description
Banach function algebras are complete normed algebras of bounded continuous, complex-valued functions defined on topological spaces. There are very many different examples with a huge variety of properties. Two contrasting examples are the algebra of all continuous complex-valued functions on the closed unit disc, and the subalgebra of this algebra consisting of those functions which are continuous on the closed disc and analytic on the interior of the disc. In the second of these algebras, any function which is zero throughout some non-empty open set must be constantly zero. This is very much not the case in the bigger algebra: indeed Urysohn’s lemma shows that for any two disjoint closed subsets of the closed disc, there is a continuous, complex-valued function defined on the disc which is constantly 0 on one closed set and constantly 1 on the other (algebras of this type are called regular algebras).
Most Banach function algebras have some features in common with one or the other of these two algebras. The aim of this project is to investigate a variety of conditions (including regularity conditions) for Banach function algebras, to relate these conditions to each other, and to other important conditions that Banach function algebras may satisfy, and to investigate the preservation or introduction of these conditions when you form various types of extension of the algebras (especially ‘algebraic’ extensions such as Arens-Hoffman or Cole extensions).
More information
Full details of our Maths PhD
How to apply to the University of Nottingham