Pseudo-orbit expansions in quantum graphs and their application
Project description
Quantum graphs are a paradigm model to understand and analyse the effect of complexity on wave propagation and excitations in a network of wires. They have also been used as a paradigm model to understand topics in quantum and wave chaos where the complexity has a different origin while the mathematical framework is to a large extent analogous.
Many properties of the waves that propagate through such a network can be described in terms of trajectories of a point particle that propagates through the network. The ideas is to write a property of interest as a sum over amplitudes (complex numbers) connected to all possible trajectories of the point particle. These sums remain challenging objects for explicit evaluations. Recently a numer of advanced methods for their summation have been introduced. The latter are built on so-called pseudo-orbits. In this project these methods will be develloped further and applied to questions related to quantum chaos and random-matrix theory.
Project published references
Daniel Waltner, Sven Gnutzmann, Gregor Tanner, Klaus Richter, A sub-determinant approach for pseudo-orbit expansions of spectral determinants, arXiv:1209.3131 [nlin.CD]
Ram Band, Jonathan M. Harrison, Christopher H. Joyner, Finite pseudo orbit expansions for spectral quantities of quantum graphs, arXiv:1205.4214 [math-ph]
More information
Full details of our Maths PhD
How to apply to the University of Nottingham