School of Mathematical Sciences

Pseudo-orbit expansions in quantum graphs and their application

Project description 

Quantum graphs are a paradigm model to understand and analyse the effect of complexity on wave propagation and excitations in a network of wires. They have also been used as a paradigm model to understand topics in quantum and wave chaos where the complexity has a different origin while the mathematical framework is to a large extent analogous.

Many properties of the waves that propagate through such a network can be described in terms of trajectories of a point particle that propagates through the network. The ideas is to write a property of interest as a sum over amplitudes (complex numbers) connected to all possible trajectories of the point particle. These sums remain challenging objects for explicit evaluations. Recently a numer of advanced methods for their summation have been introduced. The latter are built on so-called pseudo-orbits. In this project these methods will be develloped further and applied to questions related to quantum chaos and random-matrix theory.

 

 

 

Supervisor contacts

 

Related research centre or theme

Quantum Information and Metrology

Quantum Mathematics

 
 

 

 

Project published references

Daniel Waltner, Sven Gnutzmann, Gregor Tanner, Klaus Richter, A sub-determinant approach for pseudo-orbit expansions of spectral determinants, arXiv:1209.3131 [nlin.CD]

Ram Band, Jonathan M. Harrison, Christopher H. Joyner, Finite pseudo orbit expansions for spectral quantities of quantum graphs, arXiv:1205.4214 [math-ph]

More information

Full details of our Maths PhD

How to apply to the University of Nottingham

School of Mathematical Sciences

The University of Nottingham
University Park
Nottingham, NG7 2RD

For all enquiries please visit:
www.nottingham.ac.uk/enquire