Fundamentals of Additive Manufacturing (autumn)
20 credits
This is a two week intensive module. This module examines both the basic implementation and theory of additive manufacturing, its translation into modern additive manufacturing techniques that are currently being researched and exploited within both academia and industry which result in net shape parts.
The content of the module is as follows:
- Introduction and individual coursework setting
- Design and design systems for AM
- Integration aspects with 3D scanning
- Overview of the 7 ASTM AM processes
- Material Jetting
- Powder Bed Fusion
- Vat Polymerisation
- Material Extrusion
- Direct Energy Deposition
- Sheet Lamination
- Binder Jetting
- Commercial 3D Printing
- Experimental Systems for AM
- Materials Requirements for 3D Printing
- InkJet materials
- Software and systems
- Impact of AM and 3D Printing
- Case Studies of AM in Industry
- The Future of AM and 3D Printing
The module will be mainly delivered in an intensive week(s) of lectures and laboratory classes.
Group Grand Challenge (autumn)
40 credits
The module aims to provide the opportunity to work in small, multidisciplinary teams to address a grand challenge in the area of additive manufacturing.
Although some variation in content is expected due to the varying nature of the possible challenges, it is expected that a common project will take the following form:
- Discussion of challenge with the tutor and setting of challenge brief
- Literature review and fact finding
- Definition of challenge brief and setting of aims, objectives, deliverables, methodology and time-plan
- Experimental/theoretical/computational work
- Analysis and interpretation of results
- Presentation of results
In many cases the project will take the form of a design and make project in which the stages of the project will include the evaluation of alternative design concepts, engineering analysis, prototyping, performance evaluation and improvement.
Advanced Materials Characterisation
10 credits
This is a module which requires personal engagement in the classes and there is no examination. In this way the module is like the Individual Project.
The module has four cycles, each comprising students individually preparing a talk, and report, on a topic within a theme and with a title that has been negotiated with the Teachers straight after the Teachers have delivered an introductory lecture on that theme.
The point of this module is to improve oral presentation and engineering report-writing skills using advanced materials as a vehicle.
The classes are seminars, where good practice is openly discussed and materials' advantages and disadvantages are openly debated.
This module is designed to deal with a wide range of materials (including advanced metallic, ceramic, glass, composite and polymeric-based materials) for a wide range of applications. Also it considers materials' themes, such as aerospace materials, medical materials, coatings, carbon-based materials, and so on.
The module deals with:
- the underlying principles behind the suitability of material properties for the targeted applications
- the processing of these materials
- the effects of processing on their subsequent structure and properties
- ultimate performance
Advanced Topics in Additive Manufacturing (spring)
20 credits
The module will be based on a number of topics of interest in research in additive manufacturing, which may change over time as the module is refreshed to reflect the current state of the art. Example topics to be included in the module programme include materials development for AM, in-situ and post process characterisation of materials and structures and computational methods for the modelling, design and optimisation of AM processes and parts.
Advanced Engineering Research Project Organisation and Design (spring)
10 credits
A project-oriented module involving a review of publications and views on a topic allied to the chosen specialist subject. The module will also involve organisation and design of the main project. Skills will be acquired through workshops and seminars that will include:
- Further programming in MATLAB and /or MSExcel Macros
- Project planning and use of Microsoft Project
- Measurement and error analysis
- Development of laboratory skills including safety and risk assessment
Students will select a further set of specialist seminars from, e.g.:
- Meshing for computational engineering applications
- Modelling using CAE packages
- Use of CES Selector software
- Specific laboratory familiarisation
- Use of MSVisio software for process flow
- Use of HYSYS process modelling software
- Use of PSpice to simulate analogue and digital circuits
The specialist seminars will be organised within the individual MSc courses.
Delivery
Activity |
Number of Weeks |
Number of sessions |
Duration of a session |
Seminar |
12 weeks |
1 week |
3 hours |
Assessment method
Assessment Type |
Weight |
Requirements |
Coursework 1 |
40.00 |
Project planning |
Coursework 2 |
20.00 |
Literature review |
Coursework 3 |
20.00 |
Experimental Design |
In-Class Test |
20.00 |
Stats test |
Health and Safety test |
|
Pass required. |
Introduction to Metrology (spring)
10 credits
This is a one-week intensive module. The course provides cutting-edge lectures on a range of metrology topics for dimensional measurement of additive structures. Topics include introductory and advanced metrology lectures, and hands-on training in the use of measuring instruments.
The lectures are designed to give a feel for the subject and why it is important, but do not cover difficult mathematical detail. The lectures will cover the following topics: Basics of measurement, terminology, SI units, uncertainty analysis, tolerance principles, length measurement, form measurement, coordinate measurement, x-ray computed tomography and surface texture measurement.
The module will be mainly delivered in an intensive week of lectures and laboratory classes.
Individual Postgraduate Project for Additive Manufacturing and 3D Printing MSc (summer)
60 credits
This course includes a 60 credit research project, which is completed over the summer. The project area is flexible and will be supervised by a member of the Centre for Additive Manufacturing.
Previous research projects have included:
- Exploring the compatibility between conductive metals processed by Metaljet and dielectric substrates
- Development of water soluble biocompatible inks to print vascularised tissues
- Multi-material printing of biodegradable polymers for manufacturing dual drug delivery devices for chronic diseases
Advanced Technology Review (spring)
10 credits
This module will initially look at new technology development and introduction focusing on innovation, funding and decision-making processes. The rest of the module will cover an engineering topic dealing with new and/or rapidly developing technologies with important applications.
Coverage of each subject will typically include:
- a review of background and context, importance, and pressures driving development
- engineering principles, current research and development objectives and progress being made
- case study illustration(s)
- analysis of prospects, technology transfer, market applications, challenges and imperatives
Topics are selected each year to reflect current developments and issues; one or more topics may be changed each time the module is run. These topics will be associated with activities in major segments of manufacturing or service industries or of generic technologies. In each case, emphasis will be placed on review and analysis.
Materials Design Against Failure (spring)
10 credits
This module focuses on understanding and manipulating of material's microstructure to avoid failure. It addresses the main areas of mechanical failure using specific material system examples to illustrate how materials design is used to develop better materials for particular applications.
The four areas are:
- Design for strength – metallic alloys, ceramics
- Design for toughness – metallic alloys (including discussion of strength/toughness balance for Al alloys)
- Design for creep resistance - metallic alloys
- Design for fatigue resistance