Scientists have discovered how the materials used in medical implants like artificial joints can be adapted to control the immune response to them and reduce the risk of rejection.
The team from the University of Nottingham’s Schools of Pharmacy and Life Sciences have found that the surface shape (topography) and chemical composition of polymer materials can be changed to create materials that control the body’s immune response. This could have future applications in the fight against rejection of medical devices including artificial joints, dental implants and vascular implants. The results from two recent studies have been published in Advanced Science and Matter.
Taking control of the immune response
A state-of-the-art high throughput screening approach was used to investigate the relationship between material topographies and immune cell attachment and behaviours for 2176 different micropatterns.
The results indicated that micron-scale pillars 5-10um in diameter were key in driving macrophage attachment, and that the density of the micropillars proved key in controlling inflammatory reactions.
The team also discovered immune instructive polymer chemistries that successfully controlled the immune response in a pre-clinical rodent model. This was achieved through screening libraries of diverse polymers and identifying materials that control the behaviour of macrophages.
An AI algorithm was used to model the relationships between the material chemistries and the cell responses they produced. These results suggest that different immune-instructive polymers attract different amounts of protein adsorption which was key to the macrophage responses.
"These latest discoveries add to a wealth of materials research taking place at the University of Nottingham and it is exciting to have discovered these biomaterials that could be a real game-changer in the area of medical implants. Getting these materials used in a commercial product would be our ultimate aim for this research, there is still a way to go to get there but these discoveries are a significant step towards that."
Professor Morgan Alexander, School of Pharmacy
This research was conducted in collaboration with Technical University Eindhoven, La Trobe University Australia and Maastricht University. It has been funded by an EPSRC Programme Grant in Next Generation Biomaterials Discovery that aims to find new biomaterials. The aim is to allow us to move beyond the existing limited range of polymeric drug and cell delivery agents and medical device polymers that are currently licensed for use in man, to bespoke materials identified to function optimally for specific applications.
Read more and for story credits, visit our
University News page.
Posted on Tuesday 5th May 2020